Practical Numerical

Training UKNum Interpolation, Extrapolation, Splines

Hubert Klahr with Bertram Bitsch,
slides adapted by Christoph Mordasini
Max Planck Institute for Astronomy, Heidelberg

Schedule:

1) Introduction
2) Direct Method
3) Divided Differences Method
4) Splines

1 Intro

Task:

- Given $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots \ldots\left(x_{n}, y_{n}\right)$ discrete data sets
E.g. measurements, numerical Results
- Assume ordered values $\mathrm{X}_{0}<\mathrm{X}_{1} \ldots<\mathrm{X}_{\mathrm{N}}$
- Asking for $y=f(x)$ for an arbitrary value x
- If $X_{0} \leq x \leq X_{N}$: Interpolation

Else: x outside interval: Extrapolation (!)

- Basic requirement for interpolant $f(x)$
- For $\forall x_{i}$ it must be $f\left(x_{i}\right)=y_{i}$
-Different classes of Interpolants
- Polynomials
- Rational Functions
-Trigonometric Functions
-...
- Most common interpolants: Polynomials. Because easy to
- Evaluate
- Differentiate
- Integrate

Polynomial interpolation

-For n+1 pairwise different data points there is exactly one Interpolation polynomial of n-th order, to fulfil $\forall x_{i} f\left(x_{i}\right)=y_{i}$.

$$
p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}
$$

-Oth-order: constant
-1st-order: linear interpolation
-2nd-order: quadratic interpolation
-3rd-order: cubic interpolation

Suggested grade?

- More orders (higher grade) mean more oscillations.

-2nd. 3rd. and 4th order recommended. Higher orders dangerous!
- Only use points x_{i} in the direct neighbourhood of x. Piecewise Interpolation (see also Splines).

Warning

- One generally assumes that the values between tabulated data is smooth.
- But sometimes we do not know...
- If the data is not smooth, interpolated values can strongly deviate:
- Example:

$$
f(x)=3 x^{2}+\frac{1}{\pi^{4}} \ln \left[(\pi-x)^{2}\right]+1
$$

Warning II

$\bullet \mathrm{X}_{\mathrm{i}}=3.12,3.13,3.14,3.15,3.16,3.17 \quad f(x)=3 x^{2}+\frac{1}{\pi^{4}} \ln \left[(\pi-x)^{2}\right]+1$

2 Direct Methods

Ansatz

Given ' $n+1$ ' data points $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots \ldots \ldots \ldots . .\left(x_{n}, y_{n}\right)$, pass a polynomial of order ' n ' through the data as given below:

$y=a_{0}+a_{1} x+\ldots \ldots \ldots \ldots \ldots \ldots+a_{n} x^{n}$.

 where $a_{0}, a_{1}, \ldots \ldots a_{n}$ are real constants.- Set up ' $n+1$ ' equations to find ' $n+1$ ' constants.
- To find the value ' y ' at a given value of ' x ', simply substitute the value of ' x ' in the above polynomial.
- Lineare System:

$$
\left[\begin{array}{cccccc}
x_{0}^{n} & x_{0}^{n-1} & x_{0}^{n-2} & \ldots & x_{0} & 1 \\
x_{1}^{n} & x_{1}^{n-1} & x_{1}^{n-2} & \ldots & x_{1} & 1 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
x_{n}^{n} & x_{n}^{n-1} & x_{n}^{n-2} & \ldots & x_{n} & 1
\end{array}\right]\left[\begin{array}{c}
a_{n} \\
a_{n-1} \\
\vdots \\
a_{0}
\end{array}\right]=\left[\begin{array}{c}
y_{0} \\
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]
$$

Polynomial interpolation

- So called Wandermonde Matrix.
- Solved via Gaussian Elimination
- Has a solution, but numerically expensive: scales as N3 and has relative large errors in determining the values for ai.

Beispiel

- The upward velocity of a rocket is given as a function of time in Table 1.
- Find the velocity at $t=16$ seconds using the direct method for linear interpolation.

Direct Method, linear

- Ansatz: $\quad v(t)=a_{0}+a_{1} t$
- Bracketing values:

$$
\begin{aligned}
& v(15)=a_{0}+a_{1}(15)=362.78 \\
& v(20)=a_{0}+a_{1}(20)=517.35
\end{aligned}
$$

- Thus

$$
\begin{aligned}
& v(t)=-100.91+30.913 t, 15 \leq t \leq 20 . \\
& v(16)=-100.91+30.913(16)=393.7 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Directe Method, quadratic

- Ansatz: $v(t)=a_{0}+a_{1} t+a_{2} t^{2}$
- Bracketing values: (which ones?)

$$
\begin{aligned}
& v(10)=a_{0}+a_{1}(10)+a_{2}(10)^{2}=227.04 \\
& v(15)=a_{0}+a_{1}(15)+a_{2}(15)^{2}=362.78 \\
& v(20)=a_{0}+a_{1}(20)+a_{2}(20)^{2}=517.35
\end{aligned}
$$

- Find:

$$
a_{0}=12.001 \quad a_{1}=17.740 \quad a_{2}=0.37637
$$

- Thus

$$
\begin{aligned}
& v(t)=12.001+17.740 t+0.37637 t^{2}, 10 \leq t \leq 20 \\
& v(16)=12.001+17.740(16)+0.37637(16)^{2} \\
& =392.19 \mathrm{~m} / \mathrm{S}
\end{aligned}
$$

Direct Method, quadratic II

-Difference between higher and Lower order used for estimate error.

- Error:

$$
\begin{aligned}
E_{a} \mid & =\left|\frac{392.19-393.70}{392.19}\right| \times 100 \\
& =0.38502 \%
\end{aligned}
$$

- Quadratic Contribution is small.

Direct Method, cubic

- Ansatz: $v(t)=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}$
- Bracketing values

$$
\begin{aligned}
& v(10)=227.04=a_{0}+a_{1}(10)+a_{2}(10)^{2}+a_{3}(10)^{3} \\
& v(15)=362.78=a_{0}+a_{1}(15)+a_{2}(15)^{2}+a_{3}(15)^{3} \\
& v(20)=517.35=a_{0}+a_{1}(20)+a_{2}(20)^{2}+a_{3}(20)^{3} \\
& v(22.5)=602.97=a_{0}+a_{1}(22.5)+a_{2}(22.5)^{2}+a_{3}(22.5)^{3}
\end{aligned}
$$

- Man findet

$$
a_{0}=-4.3810 \quad a_{1}=21.289 \quad a_{2}=0.13065 \quad a_{3}=0.0054606
$$

-Somit

$$
\begin{aligned}
& v(t)=-4.3810+21.289 t+0.13064 t^{2}+0.0054606 t^{3}, \quad 10 \leq t \leq 22.5 \\
& v(16)=-4.3810+21.289(16)+0.13064(16)^{2}+0.0054606(16)^{3} \\
& =392.06 \mathrm{~m} / \mathrm{S}
\end{aligned}
$$

Direct Method, cubic II

- Error with respect to quadratic solution:

$$
\begin{aligned}
\left|\epsilon_{a}\right| & =\left|\frac{392.06-392.19}{392.06}\right| \times 100 \\
& =0.033427 \%
\end{aligned}
$$

- Cubic contribution very small
$\left.\begin{array}{|c|c|c|c|}\hline \begin{array}{c}\text { Order of } \\ \text { Polynomial }\end{array} & 1 & 2 & 3 \\ \hline \mathrm{v}(\mathrm{t}=16) \\ \mathrm{m} / \mathrm{s}\end{array}\right) ~ 393.69 ~ 392.19 ~ 392.06$
- Increasing order -> lower error -> Convergence

Covered Distance? Integral

What distance was covered between $t=10$ and t
$=22.5 \mathrm{sec}$?
-Polynome can be easily integrated

$$
\begin{aligned}
v(t)=-4.3810 & +21.289 t+0.13064 t^{2}+0.0054606 t^{3}, \quad 10 \leq t \leq 22.5 \\
s(16)-s(11) & =\int_{11}^{16} v(t) d t \\
& \approx \int_{11}^{16}\left(-4.3810+21.289 t+0.13065 t^{2}+0.0054606 t^{3}\right) d t \\
& =\left[-4.3810 t+21.289 \frac{t^{2}}{2}+0.13065 \frac{t^{3}}{3}+0.0054606 \frac{t^{4}}{4}\right]_{11}^{16} \\
& =1605 \mathrm{~m}
\end{aligned}
$$

Acceleration

What was the acceleration at $\mathrm{t}=16 \mathrm{sec}$?
-Polynomials can be easily differentiated:

$$
\begin{gathered}
v(t)=-4.3810+21.289 t+0.13064 t^{2}+0.0054606 t^{3}, \quad 10 \leq t \leq 22.5 \\
a(t)=\frac{d}{d t} v(t)=\frac{d}{d t}\left(-4.3810+21.289 t+0.13064 t^{2}+0.0054606 t^{3}\right) \\
=
\end{gathered}
$$

$$
=29.664 m / s^{2}
$$

Application

- Black hole in center of our galaxy (MBH). Basically invisible (Sgr A*).
- But stars circle MBH.

Application II

- Motion of stars (Newton, or GR) helps derive a mass for MBH.

Application III

- Motion of S2

$(1,1500),(2,1000),(3,800),(4,700)$

$$
\begin{aligned}
& x 0=\{1,2,3,4\} \\
& c=\{1500,1000,800,700\}
\end{aligned}
$$

Solve[\{c[[1]] $==a 0+a 1^{*} x 0[[1]]+a 2^{*} x 0[[1]]^{\wedge} 2+a 3^{*} x 0[[1]]^{\wedge} 3$,

$$
\mathrm{c}[[2]]==\mathrm{a} 0+\mathrm{a} 1^{*} \mathrm{x} 0[[2]]+\mathrm{a} 2^{*} \mathrm{x} 0[[2]]^{\wedge} 2+\mathrm{a} 3^{*} \mathrm{x} 0[[2]]^{\wedge} 3,
$$

$$
c[[3]]=a 0+a 1^{*} x 0[[3]]+a 2^{*} x 0[[3]]^{\wedge} 2+a 3^{*} x 0[[3]]^{\wedge} \wedge,
$$

$$
\left.\left.c[[4]]==a 0+a 1^{*} x 0[[4]]+a 2^{*} x 0[[4]]^{\wedge} 2+a 3^{*} x 0[[4]]^{\wedge} 3\right\},\{a 0, a 1, a 2, a 3\}\right]
$$

$$
\{\{a 0->2500, \text { a1 -> -(3950/3), a2 -> 350, a3 -> -(100/3) })\}
$$

$$
\begin{align*}
M= & \left(3.95 \pm\left. 0.06\right|_{\text {stat }} \pm\left. 0.18\right|_{\mathrm{R}_{0}, \text { stat }} \pm\left. 0.31\right|_{\mathrm{R}_{0}, \text { sys }}\right) \\
& \times 10^{6} M_{\odot} \times\left(R_{0} / 8 \mathrm{kpc}\right)^{2.19} \\
& =(4.31 \pm 0.36) \times 10^{6} M_{\odot} \text { for } R_{0}=8.33 \mathrm{kpc} \\
R_{0}= & 8.33 \pm\left. 0.17\right|_{\text {stat }} \pm\left. 0.31\right|_{\text {sys }} \mathrm{kpc} \tag{30}
\end{align*}
$$

3 Divided
Difference Method

Ansatz

Newton base for Polynomials:

$$
N_{0}(x)=1 \quad N_{i}(x)=\prod_{j=0}^{i-1}\left(x-x_{j}\right)=\left(x-x_{0}\right) \cdots\left(x-x_{i-1}\right) \quad i=1, \ldots, n
$$

New coefficients bi can easily determined via divided differences:

$$
f_{n}(x)=b_{0}+b_{1}\left(x-x_{0}\right)+\ldots .+b_{n}\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n-1}\right)
$$

Differences method, linear

- Ansatz:

$$
f_{1}(x)=b_{0}+b_{1}\left(x-x_{0}\right)
$$

$\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right)$,

$$
\begin{aligned}
b_{0} & =f\left(x_{0}\right) \\
b_{1} & =\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}
\end{aligned}
$$

Example

- Ansatz: $v(t)=b_{0}+b_{1}\left(t-t_{0}\right)$
-Bracketing Values and Coefficients

$$
\begin{aligned}
& t_{0}=15, v\left(t_{0}\right)=362.78 \\
& t_{1}=20, v\left(t_{1}\right)=517.35 \\
& b_{0}=v\left(t_{0}\right)=362.78 \\
& b_{1}=\frac{v\left(t_{1}\right)-v\left(t_{0}\right)}{t_{1}-t_{0}}=30.914
\end{aligned}
$$

- Thus

$$
\begin{aligned}
& \begin{aligned}
v(t) & =b_{0}+b_{1}\left(t-t_{0}\right) \\
& =362.78+30.914(t-15), 15 \leq t \leq 20
\end{aligned} \\
& \begin{aligned}
\text { At } t & =16 \\
\qquad & v(16)=362.78+30.914(16-15) \\
& =393.69 \mathrm{~m} / \mathrm{s}
\end{aligned}
\end{aligned}
$$

Difference method, quadratic

- Ansatz:

$$
f_{2}(x)=b_{0}+b_{1}\left(x-x_{0}\right)+b_{2}\left(x-x_{0}\right)\left(x-x_{1}\right)
$$

-Coefficients

$$
\begin{aligned}
& b_{0}=f\left(x_{0}\right) \\
& b_{1}=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}} \\
& b_{2}=\frac{\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}-\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}}{x_{2}-x_{0}}
\end{aligned}
$$

Evaluation of b via condition $\forall x_{i} f\left(x_{i}\right)=y_{i}$

Example

- Ansatz: $f_{2}(x)=b_{0}+b_{1}\left(x-x_{0}\right)+b_{2}\left(x-x_{0}\right)\left(x-x_{1}\right)$
- Bracketing Values and Koeffizienten

$$
\begin{aligned}
t_{0} & =10, v\left(t_{0}\right)=227.04 \\
t_{1} & =15, v\left(t_{1}\right)=362.78 \\
t_{2} & =20, v\left(t_{2}\right)=517.35 \\
b_{0} & =v\left(t_{0}\right) \\
& =227.04 \\
b_{1} & =\frac{v\left(t_{1}\right)-v\left(t_{0}\right)}{t_{1}-t_{0}}=\frac{362.78-227.04}{15-10} \\
& =27.148
\end{aligned}
$$

$$
b_{2}=\frac{\frac{v\left(t_{2}\right)-v\left(t_{1}\right)}{t_{2}-t_{1}}-\frac{v\left(t_{1}\right)-v\left(t_{0}\right)}{t_{1}-t_{0}}}{t_{2}-t_{0}}=\frac{\frac{517.35-362.78}{20-15}-\frac{362.78-227.04}{15-10}}{20-10}
$$

$$
=\frac{30.914-27.148}{10}
$$

$$
=0.37660
$$

Example II

- Thus

$$
\begin{aligned}
v(t) & =b_{0}+b_{1}\left(t-t_{0}\right)+b_{2}\left(t-t_{0}\right)\left(t-t_{1}\right) \\
& =227.04+27.148(t-10)+0.37660(t-10)(t-15), \quad 10 \leq t \leq 20 \\
\text { At } t & =16 \\
v(16) & =227.04+27.148(16-10)+0.37660(16-10)(16-15)=392.19 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

- Error estimate 2nd vs. 1st order

$$
\begin{gathered}
\epsilon_{a}\left|=\left|\frac{392.19-393.69}{392.19}\right| \times 100\right. \\
=0.38502 \%
\end{gathered}
$$

(As before with direct method!)

Difference method quadratic II

- Ansatz: $f_{2}(x)=b_{0}+b_{1}\left(x-x_{0}\right)+b_{2}\left(x-x_{0}\right)\left(x-x_{1}\right)$
-Define new Notation:

$$
\begin{aligned}
& b_{0}=f\left[x_{0}\right]=f\left(x_{0}\right) \\
& b_{1}=f\left[x_{1}, x_{0}\right]=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}} \\
& b_{2}=f\left[x_{2}, x_{1}, x_{0}\right]=\frac{f\left[x_{2}, x_{1}\right]-f\left[x_{1}, x_{0}\right]}{x_{2}-x_{0}}=\frac{\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}-\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}}{x_{2}-x_{0}}
\end{aligned}
$$

- Then

$$
f_{2}(x)=f\left[x_{0}\right]+f\left[x_{1}, x_{0}\right]\left(x-x_{0}\right)+f\left[x_{2}, x_{1}, x_{0}\right]\left(x-x_{0}\right)\left(x-x_{1}\right)
$$

Difference method, general

$\bullet \mathrm{N}+1$ Data points: $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots . .,\left(x_{n-1}, y_{n-1}\right),\left(x_{n}, y_{n}\right)$

- General Form

$$
f_{n}(x)=b_{0}+b_{1}\left(x-x_{0}\right)+\ldots .+b_{n}\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n-1}\right)
$$

- With

$$
\begin{aligned}
b_{0} & =f\left[x_{0}\right] \\
b_{1} & =f\left[x_{1}, x_{0}\right] \\
b_{2} & =f\left[x_{2}, x_{1}, x_{0}\right] \\
& \vdots \\
b_{n-1} & =f\left[x_{n-1}, x_{n-2}, \ldots, x_{0}\right] \\
b_{n} & =f\left[x_{n}, x_{n-1}, \ldots, x_{0}\right]
\end{aligned}
$$

Recursion formula after Aitken

-Cubic:

$$
\begin{aligned}
& f_{3}(x)=f\left[x_{0}\right]+f\left[x_{1}, x_{0}\right]\left(x-x_{0}\right)+f\left[x_{2}, x_{1}, x_{0}\right]\left(x-x_{0}\right)\left(x-x_{1}\right) \\
&+f\left[x_{3}, x_{2}, x_{1}, x_{0}\right]\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)
\end{aligned}
$$

- Upper row are the b Coefficients!
- Numerically solve one collumn after the other
-1 more point: (higher Order), means additional row

Example

- Ansatz (cubic): $\quad v(t)=b_{0}+b_{1}\left(t-t_{0}\right)+b_{2}\left(t-t_{0}\right)\left(t-t_{1}\right)+b_{3}\left(t-t_{0}\right)\left(t-t_{1}\right)\left(t-t_{2}\right)$
- Bracketing values

$$
\begin{array}{ll}
t_{0}=10, & v\left(t_{0}\right)=227.04 \\
t_{1}=15, & v\left(t_{1}\right)=362.78 \\
t_{2}=20, & v\left(t_{2}\right)=517.35 \\
t_{3}=22.5, & v\left(t_{3}\right)=602.97
\end{array}
$$

$$
b_{0}=227.04 ; b_{1}=27.148 ; b_{2}=0.37660 ; b_{3}=5.4347 * 10^{-3}
$$

Im Beispiel II

-Thus

$$
\begin{aligned}
v(t)= & b_{0}+b_{1}\left(t-t_{0}\right)+b_{2}\left(t-t_{0}\right)\left(t-t_{1}\right)+b_{3}\left(t-t_{0}\right)\left(t-t_{1}\right)\left(t-t_{2}\right) \\
= & 227.04+27.148(t-10)+0.37660(t-10)(t-15) \\
& +5.4347 * 10^{-3}(t-10)(t-15)(t-20)
\end{aligned}
$$

- At $t=16 s$

$$
\begin{aligned}
v(16)=227.04 & +27.148(16-10)+0.37660(16-10)(16-15) \\
& +5.4347 * 10^{-3}(16-10)(16-15)(16-20) \\
= & 392.06 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

- Error estimate

Order of Polynomial	1	2	3
$\mathrm{v}(\mathrm{t}=16)$ m / s	393.69	392.19	392.06
Absolute Relative Approximate Error	---------	0.38502%	0.033427%

As before...

3 Splines

Why Splines?

- Assume (simple) Funktion

$$
f(x)=\frac{1}{1+25 x^{2}}
$$

(Runges Function)

- Six equidistant points im Interval [-1,1]
- Interpolation With Polynomial 5th Order.

x	$y=\frac{1}{1+25 x^{2}}$
-1.0	0.038461
-0.6	0.1
-0.2	0.5
0.2	0.5
0.6	0.1
1.0	0.038461

Higher order does not help!

Idea Splines

- Only use a few points x_{i} around x
- No Oscillations
- But use values outside interval
-Ask for continuous derivatives!
-Trivial Case: Sequential of linear Interpolations (Polygon)

Quadratic Splines

-Quadratic interpolation between neighbours plus additional condition.

$$
\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots \ldots,\left(x_{n-1}, y_{n-1}\right),\left(x_{n}, y_{n}\right)
$$

$$
\begin{array}{rlrl}
f(x) & =a_{1} x^{2}+b_{1} x+c_{1}, & & x_{0} \leq x \leq x_{1} \\
& =a_{2} x^{2}+b_{2} x+c_{2}, & & x_{1} \leq x \leq x_{2} \\
& \cdot \\
& \cdot \\
& \cdot \\
& =a_{n} x^{2}+b_{n} x+c_{n}, & & \\
x_{n-1} \leq x \leq x_{n}
\end{array}
$$

\bullet Needed: $\quad a_{i}, b_{i}, c_{i}, i=1,2, \ldots, \mathrm{n}$

Bedingung 1

- Interpolant is to be continuous:
-Each spline connects two data points

$$
\begin{gathered}
a_{1} x_{0}{ }^{2}+b_{1} x_{0}+c_{1}=f\left(x_{0}\right) \\
a_{1} x_{1}{ }^{2}+b_{1} x_{1}+c_{1}=f\left(x_{1}\right) \\
\cdot \\
a_{i} x_{i-1}{ }^{2}+b_{i} x_{i-1}+c_{i}=f\left(x_{i-1}\right) \\
a_{i} x_{i}^{2}+b_{i} x_{i}+c_{i}=f\left(x_{i}\right) \\
\cdot \\
\cdot \\
a_{n} x_{n-1}^{2}+b_{n} x_{n-1}+c_{n}=f\left(x_{n-1}\right) \\
a_{n} x_{n}{ }^{2}+b_{n} x_{n}+c_{n}=f\left(x_{n}\right)
\end{gathered} .
$$

-Lead to 2N Equations

Condition 2

-First derivative shall be continuous from one segment to the next:

For example, the derivative of the first spline \uparrow

$$
a_{1} x^{2}+b_{1} x+c_{1} \quad \text { is } \quad 2 a_{1} x+b_{1}
$$

The derivative of the second spline

$$
a_{2} x^{2}+b_{2} x+c_{2} \text { is } \quad 2 a_{2} x+b_{2}
$$

and the two are equal at $x=x_{1}$ giving

$$
\begin{aligned}
& 2 a_{1} x_{1}+b_{1}=2 a_{2} x_{1}+b_{2} \\
& 2 a_{1} x_{1}+b_{1}-2 a_{2} x_{1}-b_{2}=0
\end{aligned}
$$

Conditon 2 II

- Same condition for all splines:

$$
2 a_{2} x_{2}+b_{2}-2 a_{3} x_{2}-b_{3}=0
$$

$$
2 a_{i} x_{i}+b_{i}-2 a_{i+1} x_{i}-b_{i+1}=0
$$

$$
2 a_{n-1} x_{n-1}+b_{n-1}-2 a_{n} x_{n-1}-b_{n}=0
$$

-Thus additional N - 1 Equations

- and in total $2 \mathrm{~N}+\mathrm{N}-1=3 \mathrm{~N}-1$ Equations. (1 missing?)
-Final assumption: first spline is linear: $a_{1}=0$

Derivation

-Finally we have 3 N equations for 3 N unknowns.

$$
\begin{aligned}
f(x) & =a_{1} x^{2}+b_{1} x+c_{1}, & & x_{0} \leq x \leq x_{1}, \\
& =a_{2} x^{2}+b_{2} x+c_{2}, & & x_{1} \leq x \leq x_{2} \\
& \cdot & & \\
& \cdot & & \\
& =a_{n} x^{2}+b_{n} x+c_{n}, & & x_{n-1} \leq x \leq x_{n}
\end{aligned}
$$

- Determine: $\mathrm{a}_{\mathrm{i}}, \mathrm{b}_{\mathrm{i}}$ and c_{i}

- Spline Interpolation for full interval defined
- Sequential quadratic interpolations fulfilling additional conditions, continuous in derivatives

Example

- With 6 data points We need 5 Splines

$$
\begin{aligned}
v(t) & =a_{1} t^{2}+b_{1} t+c_{1}, \quad 0 \leq t \leq 10 \\
& =a_{2} t^{2}+b_{2} t+c_{2}, \quad 10 \leq t \leq 15 \\
& =a_{3} t^{2}+b_{3} t+c_{3}, \quad 15 \leq t \leq 20 \\
& =a_{4} t^{2}+b_{4} t+c_{4}, \quad 20 \leq t \leq 22.5 \\
& =a_{5} t^{2}+b_{5} t+c_{5}, \quad 22.5 \leq t \leq 30
\end{aligned}
$$

Example II

- Generate system of equations: condition 1:
- Spline 1 connects x_{0} and x_{1}

$$
\begin{align*}
& a_{1}(0)^{2}+b_{1}(0)+c_{1}=0 \tag{1}\\
& a_{1}(10)^{2}+b_{1}(10)+c_{1}=227.04
\end{align*}
$$

- Analogue:

$$
\begin{align*}
& a_{2}(10)^{2}+b_{2}(10)+c_{2}=227.04 \tag{3}\\
& a_{2}(15)^{2}+b_{2}(15)+c_{2}=362.78 \tag{4}\\
& a_{3}(15)^{2}+b_{3}(15)+c_{3}=362.78 \tag{5}\\
& a_{3}(20)^{2}+b_{3}(20)+c_{3}=517.35 \tag{6}\\
& a_{4}(20)^{2}+b_{4}(20)+c_{4}=517.35 \tag{7}\\
& a_{4}(22.5)^{2}+b_{4}(22.5)+c_{4}=602.97 \tag{8}\\
& a_{5}(22.5)^{2}+b_{5}(22.5)+c_{5}=602.97 \tag{9}\\
& a_{5}(30)^{2}+b_{5}(30)+c_{5}=901.67 \tag{10}
\end{align*}
$$

Example III

- Generate system of equations: condition 2 (Derivatives)

$$
\begin{align*}
& \text { At } \mathrm{t}= 10 \\
& 2 a_{1}(10)+b_{1}-2 a_{2}(10)-b_{2}=0 \tag{11}\\
& \text { At } \mathrm{t}= 15 \\
& 2 a_{2}(15)+b_{2}-2 a_{3}(15)-b_{3}=0 \tag{12}\\
& \text { At } \mathrm{t}= 20 \\
& \quad 2 a_{3}(20)+b_{3}-2 a_{4}(20)-b_{4}=0 \tag{13}
\end{align*}
$$

At $\mathrm{t}=22.5$

$$
\begin{equation*}
2 a_{4}(22.5)+b_{4}-2 a_{5}(22.5)-b_{5}=0 \tag{14}
\end{equation*}
$$

- Additional assumption: $a_{1} t^{2}+b_{1} t+c_{1}$ is linear,

$$
\begin{equation*}
a_{1}=0 \tag{15}
\end{equation*}
$$

Im Beispiel IV

- Complete System (as Matrix)

$$
\left[\begin{array}{ccccccccccccccc}
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
100 & 10 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 100 & 10 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 225 & 15 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 225 & 15 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 400 & 20 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 400 & 20 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 506.25 & 22.5 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 506.25 & 22.5 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 900 & 30 & 1 \\
20 & 1 & 0 & -20 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 30 & 1 & 0 & -30 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 40 & 1 & 0 & -40 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 45 & 1 & 0 & -45 & -1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
b_{1} \\
c_{1} \\
a_{2} \\
b_{2} \\
c_{2} \\
a_{3} \\
b_{3} \\
c_{3} \\
a_{4} \\
b_{4} \\
c_{4} \\
227.04 \\
362.78 \\
362.78 \\
517.35 \\
517.35 \\
602.97 \\
602.97 \\
901.67 \\
a_{5} \\
b_{5} \\
c_{5}
\end{array}\right]\left[\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

- Results in:

i	a_{i}	b_{i}	c_{i}
1	0	22.704	0
2	0.8888	4.928	88.88
3	-0.1356	35.66	-141.61
4	1.6048	-33.956	554.55
5	0.20889	28.86	-152.13

Example V

-Final result:

$$
\begin{aligned}
v(t) & =22.704 t, & & 0 \leq t \leq 10 \\
& =0.8888 t^{2}+4.928 t+88.88, & & 10 \leq t \leq 15 \\
& =-0.1356 t^{2}+35.66 t-141.61, & & 15 \leq t \leq 20 \\
& =1.6048 t^{2}-33.956 t+554.55, & & 20 \leq t \leq 22.5 \\
& =0.20889 t^{2}+28.86 t-152.13, & & 22.5 \leq t \leq 30
\end{aligned}
$$

- For $\mathrm{t}=16 \mathrm{~s}$ you get

$$
v(16)=-0.1356(16)^{2}+35.66(16)-141.61=394.24 \mathrm{~m} / \mathrm{s}
$$

- Error Estimate quad spline vs linear:
- better than 3rd vs 2nd order polynomial

$$
\begin{aligned}
\left|\in_{a}\right| & =\left|\frac{394.24-393.7}{394.24}\right| \times 100 \\
& =0.1369 \%
\end{aligned}
$$

Comparison Splines vs. Polynomials

Quad. Spline 6 points

$$
f(x)=\frac{1}{1+25 x^{2}}
$$

Ressources

- Based on: http://numericalmethods.eng.usf.edu By Autar Kaw, Jai Paul
- Strongly suggested reading material for reference: Numerical Recipes (2nd/3rd Edition). Press et al., Cambridge University Press
http://www.nr.com/oldverswitcher.html
- Exercise 1, 10 points: Newton's Divided Differences for known polynomial

Write a program that computes the Newtonian divided differences for five points (i.e. up to the fourth divided difference should be used). To test your program, use the polynomial $y=f(x)=0.1 x^{4}-x^{2}$ to compute 5 pairs of points $(x, y),(x=$ $0,0.3,13.0,-4.8,-9.0)$ and compare the original polynomial with the interpolation polynomial by plotting their values (and check the difference).

- Exercise 2, 10 points:

Use your program up to the third divided difference to obtain a fitting polynomial for the four points given (motion of the S2 star in the galactic centre). Compare its results with the direct interpolation polynomial derived in the lecture.
The data points to be used are $(1,1500),(2,1000),(3,800),(4,700)$, in units of years and km / s. They are approximately taken from the following plot of measurements obtained by Gillessen et al. (2008), with the year 1 defined as the mid-point between 2003 and 2004.

