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2) Direkte Methode 
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1 Einführung



•Gegeben sei (x0,y0), (x1,y1), …… (xn,yn)  so genannte Stützpunkte 
‣Messwerte, numerische Resultate 

•Wir nehmen an x0 < x1 ... <xN 
•Gesucht ist der Wert y=f(x) an einem beliebigen Punkt x 
‣Falls x0≤x≤xN : Interpolation 
‣Falls x ausserhalb des Intervalls: Extrapolation (!) 

Aufgabe



Grundprinzip
•Grundanforderung an die Interpolierende f(x) 
‣ ∀ xi muss gelten f(xi)=yi 

•Es gibt verschiedene Klassen von Interpolationsfunktionen 
•Polynome 
•Rationale Funktionen 
•Trigonometrisch Funktionen 
•... 

•Wichtigste Klasse: Polynome.  Da einfach 
•auszuwerten 
•abzuleiten 
•zu integrieren



Polynominterpolation
•Für n+1 paarweise verschiede Datenpunkte gibt 
es genau ein Interpolationspolynom n-ten Grades, 
das ∀ xi f(xi)=yi erfüllt. 

p(x) = a0 + a1x + a2x2 + ... + anxn 

•0-ter Grad: Konstante 
•1-ter Grad: Lineare Interpolation 
•2-ter Grad: Quadratische Interpolation 
•3-ter Grad: Kubische Interpolation 



Empfohlener Grad
•Mit zunehmendem Grad beginnen die Polynome 
immer stärker zwischen den Stützstellen zu 
schwingen. 3.0 Introduction 101
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Figure 3.0.1. (a) A smooth function (solid line) is more accurately interpolated by a high-order
polynomial (shown schematically as dotted line) than by a low-order polynomial (shown as a piecewise
linear dashed line). (b) A function with sharp corners or rapidly changing higher derivatives is less
accurately approximated by a high-order polynomial (dotted line), which is too “stiff,” than by a low-order
polynomial (dashed lines). Even some smooth functions, such as exponentials or rational functions, can
be badly approximated by high-order polynomials.

but a finer mesh implies a larger table of values, not always available.

Unless there is solid evidence that the interpolating function is close in form to

the true function f , it is a good idea to be cautious about high-order interpolation.
We enthusiastically endorse interpolations with 3 or 4 points, we are perhaps tolerant

of 5 or 6; but we rarely go higher than that unless there is quite rigorous monitoring

of estimated errors.

When your table of values contains many more points than the desirable order

of interpolation, you must begin each interpolation with a search for the right “local”

place in the table. While not strictly a part of the subject of interpolation, this task is

important enough (and often enough botched) that we devote §3.4 to its discussion.
The routines given for interpolation are also routines for extrapolation. An

important application, in Chapter 16, is their use in the integration of ordinary

differential equations. There, considerable care is taken with the monitoring of

errors. Otherwise, the dangers of extrapolation cannot be overemphasized: An

interpolating function, which is perforce an extrapolating function, will typically go

berserk when the argument x is outside the range of tabulated values by more than
the typical spacing of tabulated points.

Interpolation can be done in more than one dimension, e.g., for a function

•Quadratisch, kubisch,oder 4-ter 
Ordnung empfehlenswert. Höher 
dagegen nicht! 
•Verwende nur die Stützstellen xi 
die den gesuchten Wert x 
umgeben. (Stückweise 
Interpolation, vgl. Splines später) 

DEMO: Mit Mathematica



•Eine Grundannahme der Interpolation ist dass sich 
die unterliegende Funktion zwischen den tabellierten 
Werten relativ glatt verhält. 
‣Aber oft wissen wir das gerade nicht.... 

•Falls dies nicht der Fall ist, liefert die Interpolation 
Werte die sehr stark vom wahren Wert abweichen 
können. 
•Beispiel:

Warnung
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Chapter 3. Interpolation and

Extrapolation

3.0 Introduction

We sometimes know the value of a function f(x) at a set of pointsx1, x2, . . . , xN

(say, with x1 < . . . < xN ), but we don’t have an analytic expression for f(x) that lets
us calculate its value at an arbitrary point. For example, the f(x i)’s might result from
some physical measurement or from long numerical calculation that cannot be cast

into a simple functional form. Often the xi’s are equally spaced, but not necessarily.

The task now is to estimate f(x) for arbitrary x by, in some sense, drawing a
smooth curve through (and perhaps beyond) the x i. If the desired x is in between the
largest and smallest of the xi’s, the problem is called interpolation; if x is outside
that range, it is called extrapolation, which is considerably more hazardous (as many

former stock-market analysts can attest).

Interpolation and extrapolation schemes must model the function, between or

beyond the known points, by some plausible functional form. The form should

be sufficiently general so as to be able to approximate large classes of functions

which might arise in practice. By far most common among the functional forms

used are polynomials (§3.1). Rational functions (quotients of polynomials) also turn
out to be extremely useful (§3.2). Trigonometric functions, sines and cosines, give
rise to trigonometric interpolation and related Fourier methods, which we defer to

Chapters 12 and 13.

There is an extensive mathematical literature devoted to theorems about what

sort of functions can be well approximated by which interpolating functions. These

theorems are, alas, almost completely useless in day-to-day work: If we know

enough about our function to apply a theorem of any power, we are usually not in

the pitiful state of having to interpolate on a table of its values!

Interpolation is related to, but distinct from, function approximation. That task

consists of finding an approximate (but easily computable) function to use in place

of a more complicated one. In the case of interpolation, you are given the function f
at points not of your own choosing. For the case of function approximation, you are

allowed to compute the function f at any desired points for the purpose of developing
your approximation. We deal with function approximation in Chapter 5.

One can easily find pathological functions that make a mockery of any interpo-

lation scheme. Consider, for example, the function

f(x) = 3x2 +
1
π4

ln
[

(π − x)2
]

+ 1 (3.0.1)

99



•xi=3.12, 3.13, 3.14, 3.15, 3.16, 3.17

Warnung II

Polynom 5ten Grades 
Tatsächliche Funktion

mit Pol
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Chapter 3. Interpolation and

Extrapolation

3.0 Introduction

We sometimes know the value of a function f(x) at a set of pointsx1, x2, . . . , xN

(say, with x1 < . . . < xN ), but we don’t have an analytic expression for f(x) that lets
us calculate its value at an arbitrary point. For example, the f(x i)’s might result from
some physical measurement or from long numerical calculation that cannot be cast

into a simple functional form. Often the xi’s are equally spaced, but not necessarily.

The task now is to estimate f(x) for arbitrary x by, in some sense, drawing a
smooth curve through (and perhaps beyond) the x i. If the desired x is in between the
largest and smallest of the xi’s, the problem is called interpolation; if x is outside
that range, it is called extrapolation, which is considerably more hazardous (as many

former stock-market analysts can attest).

Interpolation and extrapolation schemes must model the function, between or

beyond the known points, by some plausible functional form. The form should

be sufficiently general so as to be able to approximate large classes of functions

which might arise in practice. By far most common among the functional forms

used are polynomials (§3.1). Rational functions (quotients of polynomials) also turn
out to be extremely useful (§3.2). Trigonometric functions, sines and cosines, give
rise to trigonometric interpolation and related Fourier methods, which we defer to

Chapters 12 and 13.

There is an extensive mathematical literature devoted to theorems about what

sort of functions can be well approximated by which interpolating functions. These

theorems are, alas, almost completely useless in day-to-day work: If we know

enough about our function to apply a theorem of any power, we are usually not in

the pitiful state of having to interpolate on a table of its values!

Interpolation is related to, but distinct from, function approximation. That task

consists of finding an approximate (but easily computable) function to use in place

of a more complicated one. In the case of interpolation, you are given the function f
at points not of your own choosing. For the case of function approximation, you are

allowed to compute the function f at any desired points for the purpose of developing
your approximation. We deal with function approximation in Chapter 5.

One can easily find pathological functions that make a mockery of any interpo-

lation scheme. Consider, for example, the function

f(x) = 3x2 +
1
π4

ln
[

(π − x)2
]

+ 1 (3.0.1)
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2 Direkte Methode



Ansatz
Gegeben sind n+1 Datenpunkte (x0,y0), (x1,y1),………….. (xn,yn) 
Finde ein Polynom der Ordnung n (Standardbasis): 

wobei a0, a1,………………. an reelle Konstanten sind. 
• Stelle n+1 Gleichungen auf um die n+1 Konstanten zu finden 
• Lineares Gleichungssystem: 



Polynominterpolation

•So genannte Wandermonde Matrix. 

•Kann z.B. mit dem Gaussschen Eliminationsverfahren 
gelöst werden.

•Hat zwar eine Lösung, doch numerisch aufwendig  
(Rechenaufwand proportional zu N3) und führt oft zu 
grossen Fehlern bei der Berechnung der ai.  



Beispiel
•Gegeben sei die Aufwärtsgeschwindigkeit einer Rakete als 
Funktion der Zeit in der Tabelle.  
•Finde die Geschwindigkeit v zur Zeit t=16 Sekunden.

901.6730
602.9722.5
517.3520
362.7815
227.0410

00
m/ss
v(t)t



 Direkte Methode, linear
•Ansatz: 

•Umgebende Werte  
(Bracketing values): 

•Man findet

•Somit



 Direkte Methode, quadratisch
•Ansatz: 

•Umgebende Werte (welche?)

•Man findet

•Somit



 Direkte Methode, quadratisch II

•Der Unterschied zwischen einer höheren und 
einer tieferen Ordnung wird oft als Schätzung des 
Interpolationsfehlers verwendet. 

•Hier finden wir:

•Der quadratische Anteil ist somit nur klein.



 Direkte Methode, kubisch
•Ansatz: 

•Umgebende Werte 

•Man findet

•Somit



 Direkte Methode, kubisch II
•Hier finden wir als Fehler relativ zur quadratischen 
Interpolation:

•Der kubische Anteil ist somit nur sehr klein.

•Mit zunehmender Ordnung wird der Beitrag kleiner: 
Konvergenz

•Der kubische Anteil ist somit nur sehr klein.



 Zurückgelegte Strecke
Wie gross ist die von der Rakete zurückgelegte 
Strecke zwischen 11 und 16 Sekunden?  

•Benütze einfache Integrierbarkeit der Polynome 



Beschleunigung
Wie gross ist die Beschleunigung der Rakete zum 
Zeitpunkt t = 16 Sekunden?  

•Benütze einfache Differenzierbarkeit der 
Polynome 



Anwendung
•Im Zentrum unserer Galaxis befindet sich ein Massives 
Schwarzes Loch (MBH). Das Schwarze Loch ist selber 
nicht (kaum) sichtbar (Sgr A*). 
•Die Sterne in der Umgebung umkreisen das MBH.

2 Gillessen et al.
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Fig. 1.— Finding chart of the S-star cluster. This figure is based on a natural guide star adaptive optics image obtained as part of
this study, using NACO at UT4 (Yepun) of the VLT on July 20, 2007 in the H-band. The original image with a FWHM of ≈ 75mas
was deconvolved with the Lucy-Richardson algorithm and beam restored with a Gaussian beam with FWHM= 2pix=26.5mas. Stars as
faint as mH = 19.2 (corresponding roughly to mK = 17.7) are detected at the 5σ level. Only stars that are unambiguously identified in
several images have designated names, ranging from S1 to S112. Blue labels indicate early-type stars, red labels late-type stars. Stars with
unknown spectral type are labelled in black. At the position of Sgr A* some light is seen, which could be either due to Sgr A* itself or due
to a faint, so far unrecognized star being confused with Sgr A*.

stellar motions in the vicinity of Sgr A*. We reanalyzed
all data available to our team from 16 years. The basic
steps of the analysis are:

• Obtain high quality, astrometrically unbiased maps
of the S-stars. Obtain high quality spectra for these
stars.

• Extract pixel positions from the maps and radial
velocities from the spectra.

• Transform the pixel positions to a common astro-
metric coordinate system; transform the radial ve-
locities to the local standard of rest (LSR). For the
astrometric data several steps are needed:

– Relate the fainter S-stars positions to those of
the brighter S-stars (Speckle data only).

– Relate the S-stars positions to a set of selected
reference stars.

– Relate the reference stars to a set of SiO
maser stars, of which the positions relative to
Sgr A* are known with good accuracy from
radio (VLA) observations (Reid et al. 2007).

• Fit the data with a model for the potential and
gather in that way orbital parameters as well as
information about the potential.

We organize this paper according to these steps.

2. DATA BASE

The present work relies on data obtained over many
years with different instruments. In this section we
briefly describe the different data sets.

2.1. SHARP

The first high resolution imaging data of the GC region
were obtained in 1992 with the SHARP camera built at
MPE (Hofmann et al. 1992; Eckart et al. 1994). SHARP
was used by MPE scientists until 2002 at ESO’s 3.5m



Anwendung II
•Aus der Bewegung der Sterne, und 
dem Gravitationsgesetz (Newton, oder 
allgemein relativistisch) lässt sich die 
Masse des MBH herleiten.Stellar orbits in the Galactic Center 23
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Fig. 16.— The stellar orbits of the stars in the central arcsecond for which we were able to determine orbits. In this illustrative figure,
the coordinate system was chosen such that Sgr A* is at rest.

Among the stars with orbital solution, six stars are
late type (S17, S21, S24, S27, S38 and S111). It is worth
noting that for the first time we determine here the or-
bits of late-type stars in close orbits around Sgr A*. In
particular S17, S21 and S38 have small semi major axes
of a ≈ 0.25′′. The late-type star S111 is marginally un-
bound to the MBH, a result of its large radial velocity
(−740 km/s) at r = 1.48′′ which brings its total velocity
up to a value ≈ 1σ above the local escape velocity.

Furthermore we determined (preliminary) orbits for
S96 (IRS16C) and S97 (IRS16SW), showing marginal ac-
celerations (2.1σ and 3.9σ respectively). These stars are
of special interest, since they were proposed to mem-
ber of a clockwise rotating disk of stars (Paumard et al.
2006). Similarly, we could not detect an acceleration
for S95 (IRS16 NW). This excludes the star from being
a member of the counter-clockwise disk (Paumard et al.
2006), since in that case it should show an acceleration
of ≈ 150 µas/yr2, while we can place a safe upper limit

of a < 30 µas/yr2.

18.0 18.5 19.0 19.5

299.6

299.8

300.0

300.2

300.4

300.6

300.8

i !!"

"
!!
"

S1

0.44 0.46 0.48 0.50
112

114

116

118

120

e

Ω
!!
"

S1

15 20 25 30 35 40 45 50
0.36

0.38

0.40

0.42

0.44

0.46

0.48

tPeri !yr$2100"

a
!'
'"

S20

Fig. 17.— Examples from the Markov-Chain Monte Carlo sim-
ulations. Each panel shows a 2D cut through the six dimensional
phase space of the orbital elements for the respective star. Left:
Example of two well constrained and nearly uncorrelated param-
eters. Middle: Example for two correlated parameters, which are
nonetheless well constrained. Right: Example of badly constrained
parameters, showing a non-compact configuration in parameter
space.
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Fig. 13.— Top: The S2 orbital data plotted in the combined
coordinate system and fitted with a Keplerian model in which the
velocity of the central point mass and its position were free fit pa-
rameters. The non-zero velocity of the central point mass is the
reason why the orbit figure does not close exactly in the overlap
region 1992/2008 close to apocenter. The fitted position of the
central point mass is indicated by the elongated dot inside the or-
bit near the origin; its shape is determined from the uncertainty
in the position and the fitted velocity, which leads to the elonga-
tion. Bottom: The measured radial velocities of S2 and the radial
velocity as calculated from the orbit fit.

We also report the S2-only fits when not using any
coordinate system priors at all (rows 5 and 6 in table 4).
This enlarges the errors on R0 and MMBH substantially,
the fit values however are not significantly different from
the respective fits in which the vz-prior was applied. Not
applying the vz-prior also shows a large uncertainty on
vz of ≈ 50 km/s; this parameter also is degenerate with
R0.
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Fig. 14.— Fitted value of R0 for various scaling factors of the
S2 2002 data, using a fit with the coordinate system priors. The
factor by which the 2002 astrometric errors of the S2 data is scaled
up strongly influences the distance. The mean factor determined
in Figure 9 is ≈ 7, corresponding to R0 ≈ 8.1kpc.
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Fig. 15.— Contour plot of χ2 as function of R0 and central point
mass. The two parameters are strongly correlated. The contours
are generated from the S2 data including the 2002 data; fitting
at each point all other parameters both of the potential and the
orbital elements. The black dots indicate the position and errors of
the best fit values of the mass for the respective distance; the blue
line is a power law fit to these points; the corresponding function is
given in the upper row of the text box. The central point is chosen
at the best fitting distance. The red points and the red dashed
line are the respective data and fit for the S2 data excluding the
2002 data; the fit is reported in the lower row of the text box.
The contour levels are drawn at confidence levels corresponding to
1σ, 3σ, 5σ, 7σ, 9σ.

From the numbers it seems that the fit excluding the
2002 data agrees better with the expectations for the co-
ordinate system (equation 4) than the fit including it.
The latter is marginally consistent with the priors, while
the former is fully consistent. This means that the 2002
data not only affects R0 (which we want to measure and
thus cannot use to judge the result) but also the position
and velocity of the mass for which we have an indepen-
dent measurement via the coordinate system definition.
This argument points towards rejecting the 2002 data.



Anwendung III
•Bewegung von S2

 (1,1500), (2,1000), (3,800), (4,700)
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bit near the origin; its shape is determined from the uncertainty
in the position and the fitted velocity, which leads to the elonga-
tion. Bottom: The measured radial velocities of S2 and the radial
velocity as calculated from the orbit fit.

We also report the S2-only fits when not using any
coordinate system priors at all (rows 5 and 6 in table 4).
This enlarges the errors on R0 and MMBH substantially,
the fit values however are not significantly different from
the respective fits in which the vz-prior was applied. Not
applying the vz-prior also shows a large uncertainty on
vz of ≈ 50 km/s; this parameter also is degenerate with
R0.
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up strongly influences the distance. The mean factor determined
in Figure 9 is ≈ 7, corresponding to R0 ≈ 8.1kpc.
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are generated from the S2 data including the 2002 data; fitting
at each point all other parameters both of the potential and the
orbital elements. The black dots indicate the position and errors of
the best fit values of the mass for the respective distance; the blue
line is a power law fit to these points; the corresponding function is
given in the upper row of the text box. The central point is chosen
at the best fitting distance. The red points and the red dashed
line are the respective data and fit for the S2 data excluding the
2002 data; the fit is reported in the lower row of the text box.
The contour levels are drawn at confidence levels corresponding to
1σ, 3σ, 5σ, 7σ, 9σ.

From the numbers it seems that the fit excluding the
2002 data agrees better with the expectations for the co-
ordinate system (equation 4) than the fit including it.
The latter is marginally consistent with the priors, while
the former is fully consistent. This means that the 2002
data not only affects R0 (which we want to measure and
thus cannot use to judge the result) but also the position
and velocity of the mass for which we have an indepen-
dent measurement via the coordinate system definition.
This argument points towards rejecting the 2002 data.
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to the theoretically predicted stellar density
there (Hopman & Alexander 2006). See also
Vasiliev & Zelnikov (2008).

7.4.7. Conclusions for an extended mass component

The various estimates for η all consistently point to-
wards an expected value of ≈ 10−3−10−4, approximately
two orders of magnitude smaller than what we can mea-
sure with orbital dynamics today. Nevertheless, some
astrophysical insights are possible.

Among the most important scientific questions in the
GC is the origin of the S-stars, being a population of ap-
parently young stars close to the MBH (Ghez et al. 2003;
Martins et al. 2008). One possible origin is that these
stars have reached their current orbits by TBR. Then
the S-stars would have an isotropic, thermal velocity dis-
tribution, naturally explaining the observed random dis-
tribution of angular momentum vectors (Figure 19). The
number of stars visible is by far too low to make TBR
efficient enough to account for the present population
of S-stars. A hypothetical cluster of SBHs could accel-
erate the process. The Chandrasekhar TBR timescale
(Binney & Tremaine 1987) is given by

tr ≈
0.34 σ3

G2⟨M⋆⟩2n⋆ lnΛ
. (28)

For a power law cusp around a MBH, the velocity disper-
sion and the density are related to each other. Assuming
lnΛ ≈ 10, a power law index of −3/2 (which is approxi-
mately what is observed) and a population of stars with
a single mass one obtains a relaxation time independent
of radius

tr ≈ 1.8 × 105 yr η−1
(m⋆

10

)−1
, (29)

Thus, if the S-stars formed at the same epoch as the
stellar disks 6 × 106 years ago (Paumard et al. 2006)
and reached their present-day orbits by TBR, one needs
η ! 0.033 for m⋆ = 10 (Timmes et al. 1996). This ex-
ceeds the expectations by at least two orders of mag-
nitudes. If the S-stars were not born in the presently
observed disks, but in older, now-dispersed disks, one
can use Equation 29 with the typical age of B stars
(≈ 5 × 107 yr). For m⋆ = 10 this yields η ! 3.5 × 10−3,
which could be marginally compatible with the other es-
timates for η.

In order to assess the expected progress we simu-
lated future observations with existing instrumentation
and similar sampling. Continuing the orbital monitor-
ing for two more years will lower the statistical error to
∆η ≈ 0.01, corresponding to tr ≈ 2×107 yr. This means
we will soon be able to test the hypothesis that the S-
stars formed in the disks and reached their current orbits
by TBR. Furthermore there is a chance to rule out any
TBR origin of the S-stars observationally in the near fu-
ture, namely when η " 3.5 × 10−3 is reached.

8. SUMMARY

We continued our long-term study of stellar orbits
around the MBH in the Galactic Center. This work
is based on our large, high quality data base which is
based on high resolution imaging and spectroscopy from
the years 1992 to 2008. The main results are

• The best current coordinate reference system uses
all available IR positions of the SiO maser stars
(Reid et al. 2007) for the definition of the origin
and assumes that the stellar cluster around Sgr A*
is intrinsically at rest such that it can be used for
the calibration of the coordinate system velocity.
Having more measurements of the maser sources
both in the radio and the IR domain we eventually
will be able to directly tie the coordinate system
velocity to radio Sgr A* with a sufficient precision.
Then the intermediate step of cross calibration with
the stellar cluster can be dropped and the coordi-
nate system definition would be independent from
the assumption that the stellar cluster is at rest
with respect to Sgr A*.

• We obtained orbits for 28 stars. Eleven of those
can contribute to the determination of the gravi-
tational potential, we used up to six. For the first
time we were able to determine orbital parameters
for six of the late-type stars in our sample. Fur-
thermore, we confirm unambiguously the earlier re-
port (Paumard et al. 2006) that six of the stars are
members of the clockwise disk.

• Overall, we improved measurement uncertainties
by a factor of six over the most recent set of Galac-
tic Center papers (Schödel et al. 2002; Ghez et al.
2005; Eisenhauer et al. 2005). A single point mass
potential continues to be the best fit to these im-
proved data as well. The main contribution to the
error in the mass of Sgr A* and the distance to
the Galactic Center are systematic uncertainties.
While the value of the mass is driven by the dis-
tance estimate, the latter is subject to many sys-
tematic uncertainties that amount to 0.31 kpc. The
statistical error now decreased to 0.17 kpc and be-
came smaller than the systematic one. The most
fruitful way to overcome current limitations would
probably be the observation of another close peri-
center passage of an S-star. Our current best values
are:

M =(3.95 ± 0.06|stat ± 0.18|R0, stat ± 0.31|R0, sys)

×106 M⊙ × (R0/8 kpc)2.19

= (4.31 ± 0.36)× 106 M⊙ for R0 = 8.33 kpc

R0 =8.33 ± 0.17|stat ± 0.31|sys kpc (30)

It should be noted that this value is consistent
within the errors with values published earlier
(Eisenhauer et al. 2003, 2005). The improvement
of our current work is the more rigorous treatment
of the systematic errors. Also it is worth noting
that adding more stars did not change the distance
much over the equivalent S2-only fit.

• We have obtained an upper limit for the mass en-
closed within the S2 orbit in units of the mass of
the MBH:

η = 0.021± 0.019|stat ± 0.006|model . (31)

which corresponds to a 1σ upper limit of η ≤ 0.040.

x0 = {1, 2, 3, 4}

c = {1500, 1000, 800, 700}

Solve[{c[[1]] == a0 + a1*x0[[1]] + a2*x0[[1]]^2 + a3*x0[[1]]^3,  
  c[[2]] == a0 + a1*x0[[2]] + a2*x0[[2]]^2 + a3*x0[[2]]^3,  
  c[[3]] == a0 + a1*x0[[3]] + a2*x0[[3]]^2 + a3*x0[[3]]^3,  
  c[[4]] == a0 + a1*x0[[4]] + a2*x0[[4]]^2 + a3*x0[[4]]^3}, {a0, a1, a2, a3}]

{{a0 -> 2500, a1 -> -(3950/3), a2 -> 350, a3 -> -(100/3)}}



3 Dividierte 
Differenzmethode 
 



Die Polynome werden nun in der Newton-Basis dargestellt: 

Damit können die Koeffizienten bi effizient mit der Methode der 
dividierten Differenzen bestimmt werden.

Ansatz

N0(x) = 1



 Differenzmethode, linear
•Ansatz: 

•Koeffizienten 



Im Beispiel
•Ansatz: 

•Bracketing Values und Koeffizienten 

•Somit



 Differenzmethode, quadratisch
•Ansatz: 

•Koeffizienten 

Die Koef. können durch 
die Grundbedingung ∀ xi 
f(xi)=yi  berechnet werden.



Im Beispiel
•Ansatz: 

•Bracketing Values und Koeffizienten 



Im Beispiel II
•Somit

•Wiederum Fehlerabschätzung (Vergleich zu linear)

(wie zuvor)



 Differenzmethode, quadratisch II
•Ansatz: 

•Definiere neue Notation: 

•Dann gilt



 Differenzmethode, generell

•Generelle Form
•N+1 Datenpunkte: 

•wobei



 Rekursionsformel von Aitken
•Kubisch

•Die gesuchten Koeffizienten sind die obere Schrägzeile. 
•Numerisch wird eine Spalte nach der anderen berechnet. 
•Wenn ein weiterer Punkt hinzugefügt werden soll (höhere Ordnung), muss 
nur eine weitere Zeile zusätzlich berechnet werden.

“Dividierte Differenzen”



Im Beispiel
•Ansatz (kubisch): 
•Bracketing values 



Im Beispiel II
•Somit finden wir

•Bei t=16s

(wie zuvor)•Fehlerabschätzung



3 Splines 
 



Wieso Splines?
•Betrachte die (einfache) Funktion

•Sechs equidistante Stützstellen im Interval [-1,1]
•Interpolation mit Polynom 5ter Ordnung.

(Runges Funktion)



Höhere Ordnung hilft nicht....

Demo mit Mathematica



Idee Splines

•Benutze nur wenige, lokale Punkte xi um x 
•Verhinderst Oszillationen

•Aber verwende auch noch Information von 
ausserhalb des betrachteten Intervalls 

•Insbesondere: verlange stetige Ableitungen

•Trivialer Fall: Sequenz von linearen Interpolationen 
(Polygonzug)



Quadratische Splines
•Sequenz von quadratischer Interpolationen 
mit Nebenbedingungen der Punkte

•Gesucht



Bedingung 1
•Normale Grundanforderung an die Interpolierende.  

•Jede Spline geht durch zwei aufeinanderfolgende Punkte

•Ergibt 2N Gleichungen



Bedingung 2
•Die erste Ableitung sei stetig auf dem ganzen Intervall. 

1. Ableitung der 1. Spline

•Beispiel 

1. Ableitung der 2. Spline

Forderung dass identisch bei x1



Bedingung 2 II

•Sequenz von quadratischer Interpolationen 
mit Nebenbedinungen der Punkte

•Identische Bedingungen an alle anderen Splines 

•Ergibt N-1 Gleichungen. Somit 2 N + N -1 = 3 N -1
•Letzte Bedingung: Nimm an dass die erste Spline linear ist: a1=0



Aufstellung

•Sequenz von quadratischer Interpolationen 
mit Nebenbedinungen der Punkte

•Dies ergibt 3 N Gleichungen für 3 N Unbekannte. 

•Bestimme die ai, bi und ci
•Spline Interpolation auf dem ganzen Intervall möglich



Im Beispiel

•Wir haben sechs Datenpunkte, 
dies ergibt fünf Splines 



Im Beispiel II
•Erstelle das Gleichungssystem: Bedingung 1 

•Spline 1 geht durch x0 und x1 

•Analog



Im Beispiel III
•Erstelle das Gleichungssystem: Bedingung 2 (Ableitungen) 

•Zusatzannahme   



Im Beispiel IV
•Vollständiges Gleichungssystem (Matrixschreibweise) 

•Lösen führt auf: 



Im Beispiel V
•Somit Schlussresultat 

•Bei t=16 s findet man 

•Fehlerabschätzung 



Nochmals Splines vs. Polynome
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Particle in cell…



Ressourcen 
•Dieses Script basiert auf: http://numericalmethods.eng.usf.edu 

von Autar Kaw, Jai Paul 

•Wärmstens empfohlen für alle Arten von Numerischen 
Algorithmen: 
Numerical Recipes (2nd/3rd Edition). Press et al., Cambridge 
University Press 
http://www.nr.com/oldverswitcher.html

http://numericalmethods.eng.usf.edu
http://www.nr.com/oldverswitcher.html
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