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What is Integration

Integration:

The process of measuring
the area under a function
plotted on a graph.

]=}f(x)dx

Where:
f(x) is the integrand
a= lower limit of integration

b= upper limit of integration
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* Basis of Trapezoidal Rule

Trapezoidal Rule is based on the Newton-Cotes
Formula that states if one can approximate the
integrand as an nt" order polynomial...

I =} f(x)dx  where f(x)=f,(x)

n-1 n

and f(x)=a,+ax+..+a, x +ax



* Basis of Trapezoidal Rule

Then the integral of that function is approximated
by the integral of that ntorder polynomial.

[f(x)=[f(x)

Trapezoidal Rule assumes n=1, that is, the area
under the linear polynomial,

[f(x)dx =(b-a)[f(a);f(b)]



+

Derivation of the Trapezoidal Rule




i Method Derived From Geometry

- f fi(x)dx

The area under the
curve is a trapezoid.
The integral

b
f f(x)dx = Area of trapezoid

= %(Sum of parallel sides )( height )

- (f(b)+ f(@)Yb-a)

b

(h-a )lf(a);rf(b)]

Figure 2: Geometric Representation
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Example 1

The vertical distance covered by a rocket from t=8 to
t=30 seconds is given by:

- 9.8t\—!dt
)

30
X = f 2000/n 140900
3 140000 — 2100z

a) Use single segment Trapezoidal rule to find the distance covered.
b) Find the true error, £,for part (a).
c) Find the absolute relative true error, .

for part (a).



* Solution

a=38 b =30

f(t)=2000 ln'

140000
- 9.8t
140000 - 2100z

£(8) = 20001n 140000 ]—9.8(8) —177.27 m/s

140000 - 2100(8 )

£(30) = 20001n 140000 ] ~9.8(30) =901.67 m/s

140000 - 2100(30)




Solution (cont)

a) [=(30_8)'177.27+901.67}

2

=11868 m

b) The exact value of the above integral is

—9.8t)—.dt =11061 m

30
X = f 2000/n 140900
3 140000 — 2100z



Solution (cont)

b) E, = True Value — Approximate Value

=11061-11868
=-807 m

C) The absolute relative true error, S , would be

11061 -11868
11061

‘Et‘=‘

‘xlOO =7.2959%
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i Multiple Segment Trapezoidal Rule

In Example 1, the true error using single segment trapezoidal rule was
large. We can divide the interval [8,30] into [8,19] and [19,30] intervals
and apply Trapezoidal rule over each segment.
140000

140000 - 2100z

f(t)= 2000ln( }- 0.8t

[f(tydt = [f(t)dt+ [f(t)dt

(193 )'f(S) ' f(19)} L3019 )[f(19) - f(30)}

2
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* Multiple Segment Trapezoidal Rule
With
£(8)=177.27 m/s

f(30)=901.67m/s

f(19)=484.75m/s
Hence:

? Pyt = (19 8)[177.27+484.75]

+(30_19)[484.75+901.67]

=11266 m
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Multiple Segment Trapezoidal Rule

The true error is: E =11061-11266

= =205 m

The true error now is reduced from -807 m to -205 m.

Extending this procedure to divide the interval into equal
segments to apply the Trapezoidal rule; the sum of the

results obtained for each segment is the approximate
value of the integral.
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Multiple Segment Trapezoidal Rule

N

4 )

Divide into equal segments
as shown in Figure 4. Then
the width of each segment is:

b-a
n
The integral I is:

f =

[=}f(x)dx

Figure 4: Multiple (n=4) Segment Trapezoidal Rule
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* Multiple Segment Trapezoidal Rule

The integral I can be broken into h integrals as:

b a+h a+2h a+(n-1)h b
ff(x)dx = ff(x)dx+ ff(x)dx+...+ ff(x)dx+ ff(x)dx
a a a+h a+(n-2)h a+(n-1)h

Applying Trapezoidal rule on each segment gives:

a
2n

[f(x)dx = [ Fla)+ 2{211 Fla+ih )} + f(b )}
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Example 2

The vertical distance covered by a rocket from to seconds is
given by:

-9. 8t\—.dt

X = 3{0(2000171[ j

140000
140000 - 2100z

a) Use two-segment Trapezoidal rule to find the distance covered.
b) Find the true error, £, for part (a).
c) Find the absolute relative true error, [t./for part (a).
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Solution

a) The solution using 2-segment Trapezoidal rule is

]=

17

b-a
2n

[f(a) ; 2{}) fla+ ih)} ; f(b)]




Solution (cont)

+

Then:
30 8

22) lf(8)+2{2f(a+zh)}+f(30)]

=Z[f(8)+2f(19)+f(30)]

- 2742[177.27 +2(484.75) +901.67 ]

=11266 m
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Solution (cont)

b) The exact value of the above integral is

140000
140000 - 2100z

30
x=f(20001n[ ] —9.8t>—.dt =11061 m
8

so the true error is

E, =True Value — Approximate Value

=11061-11266
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Solution (cont)

C) The absolute relative true error, S , would be

True Error |
= 100
& ‘True Value| *

11061-11266| .
11061 |

=1.8534%
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Solution (cont)

Table 1 gives the values n Value E, El% | €%
obtained using multiple 1 11868 | 807 | 7298
segment Trapezoidal rule
for- 2 11266 | -205 | 1.853 | 5.343
3 11153 | -91.4 | 0.8265 | 1.019
30
140000 4 11113 | -51.5 | 0.4655 | 0.3594
X =f 2000/n —9.8t\-.dt
: 140000 - 2100¢ ) 5 11094 | -33.0 | 0.2981 | 0.1669
6 11084 | -22.9 | 0.2070 | 0.09082
7 11078 | -16.8 | 0.1521 | 0.05482
8 11074 | -12.9 | 0.1165 | 0.03560

Table 1: Multiple Segment Trapezoidal Rule Values

21



* Example 3

Use Multiple Segment Trapezoidal Rule to find
the area under the curve

f(x)=300x from x=0 to x=10
l+e*
Using two segments, we get p10-0_ and
2
3000 300(5 300(10
£(0)= (0) =0  f(5)= (5) =10.039  £(10)= (10)
l+e l+e l+e

22

=0.136
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Solution

Then:

_ n-1
_ na[f(a)+2{2f(a+ih)}+f(b)}
i=1

_10-0
2(2)

[f(0)+2{2f(0+5)}+f(10)}

= %U(O) +2£(5)+ f(10)] = %[m 2(10.039) +0.136

=50.535



* Solution (cont)

So what is the true value of this integral?

19300x

J

01+€x

dx = 246.59

Making the absolute relative true error:

246.59 - 50.535
246.59

e =‘ <100%

=79.506%
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Trapezoidal Rule for:

25

Solution (cont)

Table 2: Values obtained using Multiple Segment

1})30();; 0

ol+e
n App\r/cE;)I(llJ Zate E, Et ‘
1 0.681 245.91 99.724%
2 50.535 196.05 79.505%
4 170.61 75.978 30.812%
8 227.04 19.546 7.927%
16 241.70 4.887 1.982%
32 245.37 1.222 0.495%
64 246.28 0.305 0.124%




Error in Multiple Segment
Trapezoidal Rule

The true error for a single segment Trapezoidal rule is given by:

(b- a)

E, = f"(T), a<t<b where T is some pointin la.b.

What is the error, then in the multiple segment Trapezoidal rule? It will
be simply the sum of the errors from each segment, where the error in
each segment is that of the single segment Trapezoidal rule.

The error in each segment is

£y =[(a+}ll;_a]3 J"(C1), a<Cp<a+h

h o
=§f (Cy)
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Trapezoidal Rule

* Error in Multiple Segment

Similarly:

e _ltavin)—(a+(i-Dn)}
L 12

S"(C;), a+(i-1)h<C; <a+ih

P,
= Ef (C;)
It then follows that:

E _[p-fa+(n-0nf}
12

f"(C,), a+(n-1)h<T, <b

n

h3 "
= (8,

27



Trapezoidal Rule

* Error in Multiple Segment

Hence the total error in multiple segment Trapezoidal rule is

b h3§f(z;) teap 2T
=l 1212 n

The term 121 (G is an approximate average value of the f"(x), a<x<b

n

Hence: (b P Ef"(@)

1212 n

28



Error in Multiple Segment
Trapezoidal Rule

30
Below is the table for the integral f(2000 lnl

8

-9. 8tidt

140000 }
)

140000 - 21007

as a function of the number of segments. You can visualize that as the number
of segments are doubled, the true error gets approximately quartered.

n Value E, E,\% E,|%

2 11266 -205 1.854 5.343

4 11113 -51.5 0.4655 0.3594
8 11074 -12.9 0.1165 0.03560
16 11065 -3.22 0.02913 | 0.00401
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Basis of Simpson’s 1/3™ Rule

Trapezoidal rule was based on approximating the integrand by a first
order polynomial, and then integrating the polynomial in the interval of
integration. Simpson’s 1/3rd rule is an extension of Trapezoidal rule
where the integrand is approximated by a second order polynomial.

Hence

b b
I = [ f(x)dx = [ f,(x dx
Where f,(X) isa second order polynomial.

fr(x)=a, +a1x+a2x2

31



* Basis of Simpson’s 1/3™ Rule

32

Choose

a+b a+b\\
(a f(a)),( =, f( s Ap e (bS(B)

as the three points of the function to evaluate a,, a; and a..

f(a)=f2(a)=a0+a1a+a2a2
f(a+b\ fz(a+b\‘— 0 al(a+b>7+a2(a+b\7

f(b)=fy(b)=ay+ab+a,b’



* Basis of Simpson’s 1/3™ Rule

Solving the previous equations for a,, a, and a, give

&> F(b)+abf(b)- 4abf(“ + b) vabf(a)+b>f(a)

a’ —2ab +b*

a+b ) +3af(b)+3bf(a) - 4bf(

a’ —2ab + b?
2(f(a)—2f(" tb >+f(b))

a’ =2ab + b*

dy =

a+b>+bf(b)

af (a)- 4af(

a1=_

a, =

33



* Basis of Simpson’s 1/3™ Rule

Then

= fy(xdx

b
2
=f@0+%x+aﬂ:>k
a

2 390
rata,”
=la.x - M
0 1 2
2 3 )

b* —a’ b’ —a’
=a,(b-a)+a +a
o(b=a)ra” “wa,”

34



* Basis of Simpson’s 1/3™ Rule

Substituting values of a,, a;, a, give

a+b\
2 )

[ fa(x )dx = [f(a) ; 4f( ; f(b)]

Since for Simpson’s 1/3rd Rule, the interval [a, b] is broken

into 2 segments, the segment width

h=

2
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* Basis of Simpson’s 1/3™ Rule

Hence

a+b\
2 )

[ fa(x )dx = 'f(a)+4f( +f(b)}

Because the above form has 1/3 in its formula, it is called Simpson’s 1/3rd Rule.
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Example 1

The distance covered by a rocket from t=8 to t=30 is given by

— 9.8t\—.dt
)

a) Use Simpson’s 1/3rd Rule to find the approximate value of x

30
x = f(20001n[ 140009 ]
8

140000 - 2100z

b) Find the true error, £,

c) Find the absolute relative true error, }Er‘

37



* Solution

a) 10
x=ff(t)df

ve (Mo s ar (5 r0n)|

)
- (306‘8>,{f(8)+4f(19)+f(30)]

_ ( 262}[177.2667 + 4(484.7455 ) + 901.6740]

=11065.72 m

38



* Solution (cont)

b) The exact value of the above integral is

- 9.8t\—.dt

)

30
x = [ 20000n] 140099
: 140000 — 2100

=11061.34 m

True Error

E =11061.34-11065.72
= —-4.38 m

39



* Solution (cont)

c) Absolute relative true error,

11061.34 -11065.72
11061.34

x100%

‘t‘=

=0.0396%

40



+

Multiple Segment Simpson’s
1/3rd Rule

41



Multiple Segment Simpson'’s 1/3™
Rule

Just like in multiple segment Trapezoidal Rule, one can subdivide the interval

[@, b] into n segments and apply Simpson’s 1/3rd Rule repeatedly over
every two segments. Note that n needs to be even. Divide interval
[@, b] into equal segments, hence the segment width

- [ (x)dx = [ f(x)dx

where

42



Multiple Segment Simpson'’s 1/3™

* Rule
i) T

}f(x)dX=?f(x)dx+?f(x)dx+ ..... ﬁ\//

....+xnfzf(x)dx+ xfnf(x)dx

Apply Simpson’s 1/3rd Rule over each interval,

}f(x)dx=(x2 —xo)[f(x0)+4fgxl)+f(x2)] +...

f(x2)+4f(x3)+f(x4)] .
6

+( X, _xz)[

43



Multiple Segment Simpson'’s 1/3™

* Rule

(X _xn_4)lf(xn-4)+4f(gn-3)+f(xn-z)] b

O

6

Since

44



Multiple Segment Simpson'’s 1/3™
Rule

+

Then
}f(x)dx=2h
+2h[f(x2)+4fgx3)+f(x4)}_l_m

flx)+4f(x)+ f(x,)],
S )

» h[f(xn_u 4 (5 f(xn_z)] n

+2h[f(xn—2)+4fgxn_1)+f(xn)]

45



Multiple Segment Simpson'’s 1/3™

* Rule

FrCends =21 Cx )+ 400 ) f(x) b S x b

201 () + f(x) + ot [(x, )+ f(x)}]

Fr)+4 () +2 5700+ S (x,)

i=odd I=even

Fr)+4 S ()42 S )+ (x,)

i=odd i=even

46



Example 2

Use 4-segment Simpson’s 1/3rd Rule to approximate the distance

covered by a rocket from t= 8 to t=30 as given by

30
X = f 20001n 140000 —9.8t\-.dt
3 140000 - 2100z ),
a) Use four segment Simpson’s 1/3rd Rule to find the approximate

value of x.
b)  Find the true errorf: for part (a).
c) Find the absolute relative true error,
47

e | for part (a).



* Solution

a) Using n segment Simpson'’s 1/3rd Rule,
30-8
h = =35.5
4

O f(ty) = £(8)
f(t)=f(@8+5.5) = 1 (13.5)

f(t,)= f(13.5+55)=/f(19)
f(t) = f(19+5.5) = f(24.5)

f(,) = f(30)
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* Solution (cont.)

=T )+ 4 S @) +2 S @) £ )
30 -8 -

= | 7O+ 5@)+2 51+ GO

i=odd i=even

_ %U(S) FAL(1) + 41 (6)+ 21 () + £(30)]

49



* Solution (cont.)

cont.

%U(S) +4/(13.5)+47(24.5)+2/(19)+ f(30)}
= %[1 77.2667 + 4(320.2469) + 4(676.0501) + 2(484.7455) + 901 .6740]

=11061.64 m

50



Solution (cont.)

b) In this case, the true error is

E, =11061.34-11061.64 =-0.30 m

c)  The absolute relative true error

S

~11061.34 -11001.64
11061.34

x100%

= 0.0027%
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Solution (cont.)

Table 1: Values of Simpson’s 1/3rd Rule for Example 2 with multiple segments

n Approximate Value E, 1€, |

2 11065.72 4.38 0.0396%
4 11061.64 0.30 0.0027%
6 11061.40 0.06 0.0005%
8 11061.35 0.01 0.0001%
10 11061.34 0.00 0.0000%
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Error in the Multiple Segment
Simpson’s 1/3" Rule

The true error in a single application of Simpson’s 1/3rd Rule is given as

__(-a) <7 <
Et - 7880 f (C)a a Z b

In Multiple Segment Simpson’s 1/3rd Rule, the error is the sum of the errors

in each application of Simpson’s 1/3rd Rule. The error in n segment Simpson’s

1/3rd Rule is given by

(%=X ey R ) o
E, = 1380 f(C,) 90f (C,), X C, <x,

(= x) =_h_5 (4) r -
Ez = 1880 f (Cz) 90f (2;2 )) Xy 2;2 Xy

53



Simpson’s 1/37 Rule

* Error in the Multiple Segment

(X,

R T

a2 (4)
2880 %f (Ci)’ Xociz1) < Z;i < Xy;




Error in the Multiple Segment
Simpson’s 1/3" Rule

+

Hence, the total error in Multiple Segment Simpson’s 1/3rd Rule is

Z 52 b - 4
Et=21Ei zo§f<4>@) = ( a) Ef()@)

(b a) Ef(4)(§ )
90n* n

55



Error in the Multiple Segment
Simpson’s 1/3" Rule

+

SO,
The term i=1 is an approximate average value of
n
P x),a<x<b
Hence
5 (b - a)5 —(4)
t 4 f
90n
where 2 4
Ly 2D
="

n
56
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Basis of the Gaussian

* Quadrature Rule

Previously, the Trapezoidal Rule was developed by the method

of undetermined coefficients. The result of that development is
summarized below.

Jf(x)dx=c f(a)+c,f(D)

=4 )+ P peb)

2 2

59
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Basis of the Gaussian
Quadrature Rule

The two-point Gauss Quadrature Rule is an extension of the
Trapezoidal Rule approximation where the arguments of the
function are not predetermined as a and b but as unknowns
X; and X,. In the two-point Gauss Quadrature Rule, the

integral is approximated as

[=}f(x)dx ~c f(x )+ f(xy)



Basis of the Gaussian
Quadrature Rule

The four unknowns x;, X,, ¢, and ¢, are found by assuming that

the formula gives exact results for integratinzg a gen3era| third
order polynomial, f(x)=a,+a,x+a,x" +a;x".
Hence

b b
ff(x)dx=f(a0 +a,X+a,x° +a3x3)z’x

2 3 4 b
+ax+ax+ax
=la.x — — —
0 1 2 3
2 3 4a

2 2 33 4 4
=a,(b-a)+a, b -a \z+a2 b"~a \z+a3 b -a
2 3 ) 4

61
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Basis of the Gaussian
Quadrature Rule

It follows that

g 2 3 2 30
[f(x)dx =c\\ay +a;x; +a,x;” +asx;” jre,\gy +aix, +a,x," +azx,”
a

Equating Equations the two previous two expressions yield

b*> —a’) b’ —a’ (b4—a4\
a,\b—-a)+a, ++ a, ++ a, +
0= ( 2 ) ( 3 ) /

2 3 2 3
= C; @0 +a, X, +a,x;, +a;x,; )'I- C, Qlo +a,x, +da,x, +d;Xx, ,

= a,( )+ a, (c,x, + )+Q2+ 2)+(€3+ 3
=dy\C; +Cy )+ a)\C1X| +Cr X, )+ A, 1 X T X, aA; \C1 X TCXy
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Basis of the Gaussian
Quadrature Rule

+

Since the constants a,, a,, a,, a5 are arbitrary

63



* Basis of Gauss Quadrature

The previous four simultaneous nonlinear Equations have
only one acceptable solution,

_(b-a) 1\b+a X (b a\l\b+a
xl_(z}ﬁjz T2 BT 2

S~
I
Q
S~
|
Q

O
|
(\)
(\O)

64



* Basis of Gauss Quadrature

Hence Two-Point Gaussian Quadrature Rule

j‘f(x)dx s clf(xl)+ sz(xz)

_b-a, b—a(_ 1 )+b+a Joma b—a( 1 )+b+a
2 2 3 2 2 2 ({3 2
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Higher Point Gaussian Quadrature
Formulas

[f(x)dx=c f(x )+c,f(x,)+c30(x5)

is called the three-point Gauss Quadrature Rule.
The coefficients c;, ¢,, and c;, and the functional arguments X;, X,, and X;

are calculated by assuming the formula gives exact expressions for
integrating a fifth order polynomial

b
2 3 4 5
f(a0+a1x+a2x +a;X" +a,x +dasx )bc

a

General n-point rules would approximate the integral

[f(x)dx=c f(x;)+cf(x,)+. . ... +c, f(x,)

67



Arguments and Weighing Factors
for n-point Gauss Quadrature
Formulas

Table 1: Weighting factors c and function

- arguments x used in Gauss Quadrature
In handbooks, coefficients and Formulas.

arguments given for n-point Points Weighting Function

Gauss Quadrature Rule are Factors Arguments
2 ¢, = 1.000000000 | X, = -0.577350269

¢, = 1.000000000 | x, = 0.577350269

given for integrals

1 n 3 |, =0.555555556 | X, =-0.774596669
fg(x)dx =Y cg(x;) c, = 0.888888889 | X, = 0.000000000
o1 i=1 c, = 0.555555556 | x, = 0.774596669

_ 4 |c, =0.347854845 | x, = -0.861136312
as shown in Table 1. ¢, = 0.652145155 | x, = -0.339981044

c, = 0.652145155 | x, = 0.339981044
c, = 0.347854845 | x, = 0.861136312
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Arguments and Weighing Factors
for n-point Gauss Quadrature
Formulas

Table 1 (cont.) : Weighting factors c and function arguments x used in
Gauss Quadrature Formulas.

Points Weighting Function
Factors Arguments

5 ¢, = 0.236926885 X, = -0.906179846
¢, = 0.478628670 X, = -0.538469310

c; = 0.568888889 X; = 0.000000000
c, = 0.478628670 X, = 0.538469310
¢ = 0.236926885 Xs = 0.906179846

6 |c, =0.171324492 | x,
¢, = 0.360761573 x2
¢, = 0.467913935
c, = 0.467913935
¢, = 0.360761573
¢, = 0.171324492

-0.932469514
-0.661209386
-0.2386191860
0.2386191860
0.661209386
0.932469514




Arguments and Weighing Factors
for n-point Gauss Quadrature
* Formulas

1
So if the table is given for f g(x )dx integrals, how does one solve

b -1
ff(x)dx ? The answer lies in that any integral with limits of |_a, bj

can be converted into an integral with limits |_— 1, lj Let

XxX=mt+c

If x=q, then ¢=-1
Such that:

If x=pb, then f= 1

b-a
2

nm =

70



Arguments and Weighing Factors
for n-point Gauss Quadrature
* Formulas

Then b+a Hence
2

b—at b+a dx=b_adt
y) y) 2

Substituting our values of x, and dx into the integral gives us

b-a b+a\b—a
X +

d— —dx
2 2}2

[ f(x )dx = flf(

71



Example 1

b
For an integral i f(x)dx, derive the one-point Gaussian Quadrature

a

Rule.
Solution
The one-point Gaussian Quadrature Rule is

[f(x)dx =c f(x)

72



Solution

Assuming the formula gives exact values for integrals

1 1
i ldx, and i xdx,
2 7

b b b2_a2
fldx=b—a=cl fde=T=C1xl

Since ¢, =b—a, the other equation becomes

b* -a’ b+a
(b_a)xl= 9 X = 7

73



Solution (cont.)

+

Therefore, one-point Gauss Quadrature Rule can be expressed as

b+a\
2 )

ff(x)dx ~(b- a)f(

74



b)

Example 2

Use two-point Gauss Quadrature Rule to approximate the distance

covered by a rocket from t=8 to t=30 as given by

30 14
x= 2000/n 0000 —9.8t\—.dt
3 140000 — 2100¢ ),
Find the true error, £, for part (a).
Also, find the absolute relative true error, [€.| for part (a).

75



Solution

First, change the limits of integration from [8,30] to [-1,1]

by previous relations as follows

3f0f(t)dt—30 g ! ( 0-8 3048

2 )

=11}f(11x+19)dx
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* Solution (cont)

Next, get weighting factors and function argument values from Table 1

for the two point rule,

1.000000000

o
[

x, = -0.577350269
1.000000000

)
)
Il

0.577350269

=
o
[
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* Solution (cont.)

Now we can use the Gauss Quadrature formula

1
11f/(1Lx +19)dx =11c, f(11x; +19)+11c, f(11x, +19)
-1

=11/(11(=0.5773503 ) +19)+11£(11(0.5773503 ) +19)

= 11£(12.64915) +11£(25.35085)
= 11(296.8317 ) +11(708.4811)
= 11058.44 m
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* Solution (cont)

since

140000
140000 - 2100(12.64915 )

£(12.64915 ) = ZOOOln[ }—9.8(12.64915)

=296.8317

140000
140000 — 2100(25.35085 )

£(25.35085) = 20001}1[ } ~9.8(25.35085)

=708.4811
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Solution (cont)

b) Thetrueerror, E , is
E = True Value — Approximate Value

=11061.34-11058.44
=2.9000 m

C) The absolute relative true error, Er , IS (Exact value = 11061.34m)

~11061.34 -11058.44
11061.34

x100%

S

=0.0262%
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Exercise 5 (Feb. 24)

Return Feb. 27, 9:15 a.m.

Free Training

e Write a program code for numerically computing a definite integral, using multiple
segments (free parameters are: number of segments n, lower and upper bound a and
b, step size h = (b — a)/n). Prepare the following three methods:

1. Trapezium Rule
2. Simpson 1/3 Rule

3. Gaussian Two-Point Quadrature

Test your programm for f(z) =z (a = 0, b = 2) and f(z) = 2% — 3z (a = -3,
b=6)
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Assignment for Afternoon/Home Work, 20 Points

e Exercise 5.1, 5 points: Trapezium Rule.
Integrate numerically the definite integral

2
/ (2 + cos(2y/T))dz (0.1)
0

using the Trapezium rule. Use n = 2,10, 100, 1000, 10000, print the result.

e Exercise 5.2, 5 points: Simpson 1/3 rule.
Integrate the definite integral of 5.1 using Simpson’s 1/3 rule, for n =
2,10, 100, 1000, 10000, print the results,

e Exercise 5.3, 5 points: Gaussian two point quadrature.
Integrate the definite integral of 5.1 using the Gaussian two point quadrature, for
n = 2,10, 100, 1000, 10000 intervals of [a, b], print the results.
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e Exercise 5.4, 5 points: Accuracy and Errors.
Evaluate the integral of 5.1 analytically. Compute the true error (absolute and
relative) of the numerically computed integral for Trapezium, Simpson 1/3 rule
and Gaussian two-point quadrature (for the n = 2, 10, 100, 1000, 10000) values. Put
all results in a double logarithmic plot of error against n. What scaling of the error
do you find?
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