
Practical Numerical 
Training UKNum
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Program: 
1) Introduction 
2) Bisektion 
3) Newton-Raphson 
4) Sekanten 
5) Regula falsi 



1 Introduction



•One of the most important tools in numerics: 
•Solving arbitrary equations. Rewrite as:
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Chapter 9. Root Finding and

Nonlinear Sets of Equations

9.0 Introduction

We now consider that most basic of tasks, solving equations numerically. While

most equations are born with both a right-hand side and a left-hand side, one

traditionally moves all terms to the left, leaving

f(x) = 0 (9.0.1)

whose solution or solutions are desired. When there is only one independent variable,

the problem is one-dimensional, namely to find the root or roots of a function.

With more than one independent variable, more than one equation can be

satisfied simultaneously. You likely once learned the implicit function theorem

which (in this context) gives us the hope of satisfying N equations in N unknowns

simultaneously. Note that we have only hope, not certainty. A nonlinear set of

equations may have no (real) solutions at all. Contrariwise, it may have more than

one solution. The implicit function theorem tells us that “generically” the solutions

will be distinct, pointlike, and separated from each other. If, however, life is so

unkind as to present you with a nongeneric, i.e., degenerate, case, then you can get

a continuous family of solutions. In vector notation, we want to find one or more

N -dimensional solution vectors x such that

f(x) = 0 (9.0.2)

where f is the N -dimensional vector-valued function whose components are the
individual equations to be satisfied simultaneously.

Don’t be fooled by the apparent notational similarity of equations (9.0.2) and

(9.0.1). Simultaneous solution of equations in N dimensions is much more difficult

than finding roots in the one-dimensional case. The principal difference between one

andmany dimensions is that, in one dimension, it is possible to bracket or “trap” a root

between bracketing values, and then hunt it down like a rabbit. In multidimensions,

you can never be sure that the root is there at all until you have found it.

Except in linear problems, root finding invariably proceeds by iteration, and

this is equally true in one or in many dimensions. Starting from some approximate

trial solution, a useful algorithm will improve the solution until some predetermined

convergence criterion is satisfied. For smoothly varying functions, good algorithms

340

•There for called Root Finding: finding the 0. (German: “Nullstelle”) 

•1 independent variable, 1 equation: 1 dimensional problem.  

•N independent variables, N equations: multidimensional problem 
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Chapter 9. Root Finding and

Nonlinear Sets of Equations

9.0 Introduction

We now consider that most basic of tasks, solving equations numerically. While

most equations are born with both a right-hand side and a left-hand side, one

traditionally moves all terms to the left, leaving

f(x) = 0 (9.0.1)

whose solution or solutions are desired. When there is only one independent variable,

the problem is one-dimensional, namely to find the root or roots of a function.

With more than one independent variable, more than one equation can be

satisfied simultaneously. You likely once learned the implicit function theorem

which (in this context) gives us the hope of satisfying N equations in N unknowns

simultaneously. Note that we have only hope, not certainty. A nonlinear set of

equations may have no (real) solutions at all. Contrariwise, it may have more than

one solution. The implicit function theorem tells us that “generically” the solutions

will be distinct, pointlike, and separated from each other. If, however, life is so

unkind as to present you with a nongeneric, i.e., degenerate, case, then you can get

a continuous family of solutions. In vector notation, we want to find one or more

N -dimensional solution vectors x such that

f(x) = 0 (9.0.2)

where f is the N -dimensional vector-valued function whose components are the
individual equations to be satisfied simultaneously.

Don’t be fooled by the apparent notational similarity of equations (9.0.2) and

(9.0.1). Simultaneous solution of equations in N dimensions is much more difficult

than finding roots in the one-dimensional case. The principal difference between one

andmany dimensions is that, in one dimension, it is possible to bracket or “trap” a root

between bracketing values, and then hunt it down like a rabbit. In multidimensions,

you can never be sure that the root is there at all until you have found it.

Except in linear problems, root finding invariably proceeds by iteration, and

this is equally true in one or in many dimensions. Starting from some approximate

trial solution, a useful algorithm will improve the solution until some predetermined

convergence criterion is satisfied. For smoothly varying functions, good algorithms
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•Multi dimensional? Too complicated for lecture. Therefore 1D. 



Dispersion relation: Stability analysis



Fundamental Idea:

•iterative solution: 
•Starting from arbitrary guess for a solution, one modifies x 
step by step following an algorithm until |f(x)| is smaller than a 
desired value (criterion for convergence) … (hopefully…).  

•Several different algorithms can be used: 
•Bisektion 
•Regula Falsi 
•Secants 
•Newton-Raphson 
•Or combination methods (e.g. Brent’s Method) 

•Each method comes with different pros and cons.



Warning

•Under certain condition some algorithms can fail! 
•Example will come shortly… 

•Whenever possible:  
•Good estimate for initial x (resp. intervall) 
•And analyse the behaviour of f(x): f.i. plot the funtion 

•One can either optimise for  
•“Safety” (to reliably find the correct root) or 
•“Speed” (necessary number of Iterations).



theorem      (Intermediate value theorem)

•“Nullstellensatz” of Bolzano: Bolzano's theorem 
• If a continuous function f(x) has values of opposite sign 
inside the interval xl und xu, then it has (at least) one root in 
that interval 
• Condition: f(xl) f(xu) <0 (sign change in intervall).  



Bracketing the root

•If f(xl) f(xu) <0 then xl and xu “bracket” the root. 

•First step in root finding is therefor: to find a  xl and xu . 

•Already this step is not necessarily trivial. 



Bracketing the root: Problems I

•“…at least one root…”: multiple roots possible. 
•Not easy to predict which root will be found. 
•Depends f.i. on initial guess.



Bracketing the root: Problems II
•Double root: No change of sign.  
•Condition: f(xl) f(xu) <0 not fulfilled. 



Bracketing the root: Problems III
•Roots only for 1 point: Condition: f(c) f(d) <0 not fulfilled.

•Impossible to determine good bracketing values.
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Chapter 3. Interpolation and

Extrapolation

3.0 Introduction

We sometimes know the value of a function f(x) at a set of pointsx1, x2, . . . , xN

(say, with x1 < . . . < xN ), but we don’t have an analytic expression for f(x) that lets
us calculate its value at an arbitrary point. For example, the f(x i)’s might result from
some physical measurement or from long numerical calculation that cannot be cast

into a simple functional form. Often the xi’s are equally spaced, but not necessarily.

The task now is to estimate f(x) for arbitrary x by, in some sense, drawing a
smooth curve through (and perhaps beyond) the x i. If the desired x is in between the
largest and smallest of the xi’s, the problem is called interpolation; if x is outside
that range, it is called extrapolation, which is considerably more hazardous (as many

former stock-market analysts can attest).

Interpolation and extrapolation schemes must model the function, between or

beyond the known points, by some plausible functional form. The form should

be sufficiently general so as to be able to approximate large classes of functions

which might arise in practice. By far most common among the functional forms

used are polynomials (§3.1). Rational functions (quotients of polynomials) also turn
out to be extremely useful (§3.2). Trigonometric functions, sines and cosines, give
rise to trigonometric interpolation and related Fourier methods, which we defer to

Chapters 12 and 13.

There is an extensive mathematical literature devoted to theorems about what

sort of functions can be well approximated by which interpolating functions. These

theorems are, alas, almost completely useless in day-to-day work: If we know

enough about our function to apply a theorem of any power, we are usually not in

the pitiful state of having to interpolate on a table of its values!

Interpolation is related to, but distinct from, function approximation. That task

consists of finding an approximate (but easily computable) function to use in place

of a more complicated one. In the case of interpolation, you are given the function f
at points not of your own choosing. For the case of function approximation, you are

allowed to compute the function f at any desired points for the purpose of developing
your approximation. We deal with function approximation in Chapter 5.

One can easily find pathological functions that make a mockery of any interpo-

lation scheme. Consider, for example, the function

f(x) = 3x2 +
1
π4

ln
[

(π − x)2
]

+ 1 (3.0.1)

99

•Or in a very small interval

3.10 3.15 3.20

25

26

27

28

29

30

31

f(x)<0 only for π±10-667 (!)
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Figure 9.1.1. Some situations encountered while root finding: (a) shows an isolated root x1 bracketed
by two points a and b at which the function has opposite signs; (b) illustrates that there is not necessarily
a sign change in the function near a double root (in fact, there is not necessarily a root!); (c) is a
pathological function with many roots; in (d) the function has opposite signs at points a and b, but the
points bracket a singularity, not a root.



Bracketing the root: Problems IV

•Function not continuous: Change of sign, but no root:

344 Chapter 9. Root Finding and Nonlinear Sets of Equations
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Figure 9.1.1. Some situations encountered while root finding: (a) shows an isolated root x1 bracketed
by two points a and b at which the function has opposite signs; (b) illustrates that there is not necessarily
a sign change in the function near a double root (in fact, there is not necessarily a root!); (c) is a
pathological function with many roots; in (d) the function has opposite signs at points a and b, but the
points bracket a singularity, not a root.
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9.1 Bracketing and Bisection

We will say that a root is bracketed in the interval (a, b) if f(a) and f(b) have
opposite signs. If the function is continuous, then at least one root must lie in

that interval (the intermediate value theorem). If the function is discontinuous, but

bounded, then instead of a root there might be a step discontinuity which crosses

zero (see Figure 9.1.1). For numerical purposes, that might as well be a root, since

the behavior is indistinguishable from the case of a continuous function whose zero

crossing occurs in between two “adjacent” floating-point numbers in a machine’s

finite-precision representation. Only for functions with singularities is there the

possibility that a bracketed root is not really there, as for example

f(x) =
1

x − c
(9.1.1)

Some root-finding algorithms (e.g., bisection in this section) will readily converge

to c in (9.1.1). Luckily there is not much possibility of your mistaking c, or any
number x close to it, for a root, since mere evaluation of |f(x)| will give a very
large, rather than a very small, result.

If you are given a function in a black box, there is no sure way of bracketing

its roots, or of even determining that it has roots. If you like pathological examples,

think about the problem of locating the two real roots of equation (3.0.1), which dips

below zero only in the ridiculously small interval of about x = π ± 10−667.

In the next chapter we will deal with the related problem of bracketing a

function’s minimum. There it is possible to give a procedure that always succeeds;

in essence, “Go downhill, taking steps of increasing size, until your function starts

back uphill.” There is no analogous procedure for roots. The procedure “go downhill

until your function changes sign,” can be foiled by a function that has a simple

extremum. Nevertheless, if you are prepared to deal with a “failure” outcome, this

procedure is often a good first start; success is usual if your function has opposite

signs in the limit x → ±∞.

Bisektion would converge to x = c  as “root”.



Bracketing the root: Problems V
•Some more pathologic cases:

-0.10 -0.05 0.05 0.10

-1.0

-0.5

0.5

1.0

f (x) = sin(1/x)



2 Bisektion



•Bisektion=”cutting in two” 
•Algorithm (schematic)

Algorithm 

•Most primitiv method (slow, but very stable). 



Step 1: Bracketing

• Choose xl and xu  that f(xl) f(xu) <0. (Bracketing) 

•If xl < xu.



Step 2: Middle point
•Guess: f(x) = 0 be at xm half way between xl and xu. 



Step 3: divide interval
•Test: 

a) If                       , then root 
between xl und xm;        
New xl = xl ; xu = xm. 

b) If                      , the root 
between xm and xu;          
Set xl = xm;  xu = xu. 

c) If                      ; then xm is 
the root. Stop the algorithm. Case b
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Step 4

Find the new estimate of the root

Find the absolute relative approximate error

where



                                           http://
numericalmethods.eng.usf.edu12

Step 5

Is            ? 
 

Yes

No

Go to Step 2 using new 
upper and lower 

guesses.

Stop the algorithm

Compare the absolute relative approximate error       with 
the pre-specified error tolerance     .

Note one should also check whether the number of 
iterations is more than the maximum number of iterations 
allowed. If so, one needs to terminate the algorithm and 
notify the user about it.
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Example 1
 You are working for ‘DOWN THE TOILET COMPANY’ that 

makes floats for ABC commodes.  The floating ball has a 
specific gravity of 0.6 and has a radius of 5.5 cm.  You 
are asked to find the depth to which the ball is 
submerged when floating in water.

Figure 6 Diagram of the floating ball
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Example 1 Cont.
 The equation that gives the depth x to which the ball is 

submerged under water is given by 
  

a) Use the bisection method of finding roots of equations to 
find the depth x to which the ball is submerged under 
water. Conduct three iterations to estimate the root of 
the above equation.  

b) Find the absolute relative approximate error at the end 
of each iteration, and the number of significant digits at 
least correct at the end of each iteration.
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Example 1 Cont.
 From the physics of the problem, the ball would be 

submerged between x = 0 and x = 2R,  
  where R = radius of the ball, 
 that is

Figure 6 Diagram of the floating ball



To aid in the understanding 
of how this method works to 
find the root of an equation, 
the graph of f(x) is shown to 
the right,  

where

                                           http://
numericalmethods.eng.usf.edu16

Example 1 Cont. 

Figure 7 Graph of the function f(x) 

Solution
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Example 1 Cont.
Let us assume

Check if the function changes sign between x� and xu .

Hence

So there is at least on root between x� and xu, that is between 0 and 0.11
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Example 1 Cont.

Figure 8 Graph demonstrating sign change between initial limits
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Example 1 Cont.
Iteration 1 
The estimate of the root is

Hence the root is bracketed between xm and xu, that is, between 0.055 
and 0.11. So, the lower and upper limits of the new bracket are 

At this point, the absolute relative approximate error        cannot be 
calculated as we do not have a previous approximation.
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Example 1 Cont.

Figure 9 Estimate of the root for Iteration 1
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Example 1 Cont.
Iteration 2 
The estimate of the root is

Hence the root is bracketed between x��and xm, that is, between 0.055 
and 0.0825. So, the lower and upper limits of the new bracket are
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Example 1 Cont.

Figure 10 Estimate of the root for Iteration 2
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Example 1 Cont.
The absolute relative approximate error       at the end of Iteration 2 is

None of the significant digits are at least correct in the estimate root of xm 
= 0.0825 because the absolute relative approximate error is greater than 
5%.
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Example 1 Cont.
Iteration 3 
The estimate of the root is

Hence the root is bracketed between x��and xm, that is, between 0.055 
and 0.06875. So, the lower and upper limits of the new bracket are
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Example 1 Cont.

Figure 11 Estimate of the root for Iteration 3
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Example 1 Cont.
The absolute relative approximate error       at the end of Iteration 3 is

Still none of the significant digits are at least correct in the estimated root 
of the equation as the absolute relative approximate error is greater than 
5%. 
Seven more iterations were conducted and these iterations are shown in 
Table 1.
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Table 1 Cont.
Table 1 Root of f(x)=0 as function of number of iterations for bisection 
method.
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Advantages

! Always convergent 
! The root bracket gets halved with each 

iteration - guaranteed.
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Drawbacks

! Slow convergence 
! If one of the initial guesses is close to the 

root, the convergence is slower



                                           http://
numericalmethods.eng.usf.edu31

Drawbacks (continued)
! If a function f(x) is such that it just touches 

the x-axis it will be unable to find the lower 
and upper guesses.
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Drawbacks (continued)
! Function changes sign but root does not 

exist



Newton-Raphson Method 
 
     
 

http://numericalmethods.eng.usf.edu 
 

http://numericalmethods.eng.usf.edu/


Newton-Raphson Method

Figure 1 Geometrical illustration of the Newton-Raphson method.
http://numericalmethods.eng.usf.edu3



Algorithm for Newton-Raphson 
Method

5 http://numericalmethods.eng.usf.edu



Step 1

Evaluate symbolically.

http://numericalmethods.eng.usf.edu6



Step 2

Use an initial guess of the root,    , to estimate the new 
value of the root,      , as

http://numericalmethods.eng.usf.edu7



Step 3

Find the absolute relative approximate error        as

http://numericalmethods.eng.usf.edu8



Step 4

 Compare the absolute relative approximate error  
with the pre-specified relative error tolerance     .   

 Also, check if the number of iterations has exceeded 
the maximum number of iterations allowed. If so, 
one needs to terminate the algorithm and notify the 
user.

Is            ? 
 

Yes

No

Go to Step 2 using new 
estimate of the root.

Stop the algorithm

http://numericalmethods.eng.usf.edu9



Example 1

 You are working for ‘DOWN THE TOILET COMPANY’ that 
makes floats for ABC commodes.  The floating ball has a 
specific gravity of 0.6 and has a radius of 5.5 cm.  You 
are asked to find the depth to which the ball is 
submerged when floating in water.

Figure 3 Floating ball problem.
http://numericalmethods.eng.usf.edu10



Example 1 Cont.

 The equation that gives the depth x in meters 
to which the ball is submerged under water is 
given by 

Use the Newton’s method of finding roots of equations to find  
a)the depth ‘x’ to which the ball is submerged under water.  Conduct three 
iterations to estimate the root of the above equation.  
b)The absolute relative approximate error at the end of each iteration, and 
c)The number of significant digits at least correct at the end of each iteration.

http://numericalmethods.eng.usf.edu11

Figure 3 Floating ball problem.



Example 1 Cont.

12 http://numericalmethods.eng.usf.edu

To aid in the understanding 
of how this method works to 
find the root of an equation, 
the graph of f(x) is shown to 
the right,  

where

Solution

Figure 4 Graph of the function f(x)



Example 1 Cont.

13 http://numericalmethods.eng.usf.edu

Let us assume the initial guess of the root of               
is                  . This is a reasonable guess (discuss why  
          and                 are not good choices) as the 
extreme values of the depth x  would be 0 and the 
diameter (0.11 m) of the ball.

Solve for 



Example 1 Cont.

14 http://numericalmethods.eng.usf.edu

Iteration 1 
The estimate of the root is



Example 1 Cont. 

15 http://numericalmethods.eng.usf.edu

Figure 5 Estimate of the root for the first iteration. 



Example 1 Cont.

16 http://numericalmethods.eng.usf.edu

The absolute relative approximate error        at the end of Iteration 1 is

The number of significant digits at least correct is 0, as you need an 
absolute relative approximate error of 5% or less for at least one 
significant digits to be correct in your result.



Example 1 Cont.

17 http://numericalmethods.eng.usf.edu

Iteration 2 
The estimate of the root is



Example 1 Cont.

18 http://numericalmethods.eng.usf.edu

Figure 6 Estimate of the root for the Iteration 2. 



Example 1 Cont.

19 http://numericalmethods.eng.usf.edu

The absolute relative approximate error        at the end of Iteration 2 is

The maximum value of m  for which                              is 2.844. 
Hence, the number of significant digits at least correct in the answer 
is 2.



Example 1 Cont.
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Iteration 3 
The estimate of the root is



Example 1 Cont.

21 http://numericalmethods.eng.usf.edu

Figure 7 Estimate of the root for the Iteration 3. 



Example 1 Cont.

22 http://numericalmethods.eng.usf.edu

The absolute relative approximate error        at the end of Iteration 3 is

The number of significant digits at least correct is 4, as only 4 
significant digits are carried through all the calculations.



Advantages and Drawbacks 
of Newton Raphson Method 

 
 

http://numericalmethods.eng.usf.edu
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Advantages

! Converges fast (quadratic convergence), if it 
converges.   

! Requires only one guess

24 http://numericalmethods.eng.usf.edu



Drawbacks

25 http://numericalmethods.eng.usf.edu

1. Divergence at inflection points 
 Selection of the initial guess or an iteration value of the root that is 

close to the inflection point of the function         may start diverging 
away from the root in ther Newton-Raphson method. 

For example, to find the root of the equation                                   . 

The Newton-Raphson method reduces to                                       . 

Table 1 shows the iterated values of the root of the equation. 

The root starts to diverge at Iteration 6 because the previous estimate of 
0.92589 is close to the inflection point of         .  

Eventually after 12 more iterations the root converges to the exact value 
of 



Drawbacks – Inflection Points

Iteration 
Number

xi 

0 5.0000

1 3.6560

2 2.7465

3 2.1084

4 1.6000

5 0.92589

6 −30.119

7 −19.746

... ...

18 0.2000

26 http://numericalmethods.eng.usf.edu

Figure 8 Divergence at inflection point for

Table 1 Divergence near inflection point.



2. Division by zero 
 For the equation 

  
 the Newton-Raphson method 

reduces to 

 For                            , the 
denominator will equal zero. 

Drawbacks – Division by Zero

27 http://numericalmethods.eng.usf.edu

Figure 9 Pitfall of division by zero 
or near a zero number



Results obtained from the Newton-Raphson method may oscillate 
about the local maximum  or minimum without converging on a 
root but converging on the local maximum or minimum.  

Eventually, it may lead to division by a number close to zero and 
may diverge. 

For example  for                          the equation has no real roots.

Drawbacks – Oscillations near local 
maximum and minimum

28 http://numericalmethods.eng.usf.edu

3. Oscillations near local maximum and minimum



Drawbacks – Oscillations near local 
maximum and minimum

29 http://numericalmethods.eng.usf.edu

Figure 10 Oscillations around local   
minima for                  .

Table 3 Oscillations near local maxima and 
mimima in Newton-Raphson method.

Iteration  
Number

0 
1 
2 
3 
4 
5 
6 
7 
8 
9

–1.0000 
  0.5 
–1.75 
–0.30357 
 3.1423 
 1.2529 
–0.17166 
 5.7395 
 2.6955  
 0.97678

3.00 
2.25 
5.063  
2.092 
11.874 
3.570 
2.029 
34.942 
9.266 
2.954 

300.00 
128.571 
 476.47 
109.66 
150.80 
829.88 
102.99 
112.93 
175.96



4. Root Jumping 
In some cases where the function          is oscillating and has a number of 
roots, one may choose an initial guess close to a root. However, the guesses 
may jump and converge to some other root. 

For example  

Choose  

It will converge to 
  
instead of 

Drawbacks – Root Jumping

30 http://numericalmethods.eng.usf.edu

Figure 11 Root jumping from intended 
location of root for                  .



Additional Resources
For all resources on this topic such as digital audiovisual 
lectures, primers, textbook chapters, multiple-choice 
tests, worksheets in MATLAB, MATHEMATICA, MathCad 
and MAPLE, blogs, related physical problems, please 
visit 

http://numericalmethods.eng.usf.edu/topics/
newton_raphson.html

http://numericalmethods.eng.usf.edu/topics/newton_raphson.html
http://numericalmethods.eng.usf.edu/topics/newton_raphson.html


THE END 
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Secant Method

Major: All Engineering Majors 

Authors: Autar Kaw, Jai Paul 

http://numericalmethods.eng.usf.edu 
Transforming Numerical Methods Education for STEM 

Undergraduates

http://numericalmethods.eng.usf.edu/


Secant Method 
 
     
 

http://numericalmethods.eng.usf.edu 
 

http://numericalmethods.eng.usf.edu/
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Secant Method – Derivation
Newton’s Method

Approximate the derivative

Substituting Equation (2) 
into Equation (1) gives the 
Secant method

(1)

(2)

Figure 1 Geometrical illustration of  
the Newton-Raphson method.
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Algorithm for Secant Method
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Step 1
Calculate the next estimate of the root from two initial guesses

Find the absolute relative approximate error
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Step 2

 Find if the absolute relative approximate error  is greater 
than the prespecified relative error tolerance.   

 If so, replace xi with the newly calculated value xi+1, go 
back to step 1, else stop the algorithm. 

 Also check if the number of iterations has exceeded the 
maximum number of iterations.
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Example 1
 You are working for ‘DOWN THE TOILET COMPANY’ that 

makes floats for ABC commodes.  The floating ball has a 
specific gravity of 0.6 and has a radius of 5.5 cm.  You 
are asked to find the depth to which the ball is 
submerged when floating in water.

Figure 3 Floating Ball Problem.
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Example 1 Cont.

Use the Secant method of finding roots of equations to 
find the depth x to which the ball is submerged under 
water.   
•  Conduct three iterations to estimate the root of the 
above equation.  
•  Find the absolute relative approximate error and the 
number of significant digits at least correct at the end of 
each iteration.

 The equation that gives the depth x to which the ball 
is submerged under water is given by 
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Example 1 Cont.

To aid in the understanding 
of how this method works to 
find the root of an equation, 
the graph of f(x) is shown to 
the right,  

where

Solution

Figure 4 Graph of the function f(x).
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Example 1 Cont.
Let us assume the initial guesses of the root of   
as                 and              

Iteration 1 
The estimate of the root is
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Example 1 Cont.
The absolute relative approximate error      at the end of 
Iteration 1 is

The number of significant digits at least correct is 0, as you 
need an absolute relative approximate error of 5% or less for 
one significant digits to be correct in your result.
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Example 1 Cont.

Figure 5 Graph of results of Iteration 1.
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Example 1 Cont.

Iteration 2 
The estimate of the root is
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Example 1 Cont.
The absolute relative approximate error       at the end of 
Iteration 2 is

The number of significant digits at least correct is 1, as you 
need an absolute relative approximate error of 5% or less.
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Example 1 Cont.

Figure 6 Graph of results of Iteration 2.
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Example 1 Cont.

Iteration 3 
The estimate of the root is
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Example 1 Cont.
The absolute relative approximate error       at the end of 
Iteration 3 is

The number of significant digits at least correct is 5, as you 
need an absolute relative approximate error of 0.5% or less.



                                           http://
numericalmethods.eng.usf.edu19

Iteration #3

Figure 7 Graph of results of Iteration 3.



                                           http://
numericalmethods.eng.usf.edu20

Advantages

! Converges fast, if it converges 
! Requires two guesses that do not need to 

bracket the root
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Drawbacks

Division by zero
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Drawbacks (continued)

Root Jumping



Additional Resources
For all resources on this topic such as digital audiovisual 
lectures, primers, textbook chapters, multiple-choice 
tests, worksheets in MATLAB, MATHEMATICA, MathCad 
and MAPLE, blogs, related physical problems, please 
visit 

http://numericalmethods.eng.usf.edu/topics/
secant_method.html

http://numericalmethods.eng.usf.edu/topics/secant_method.html
http://numericalmethods.eng.usf.edu/topics/secant_method.html


THE END 
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Regula Falsi 
(False Postion Method)

• similar to secant method (linear approximation) 

• keeps the point xi of prior estimate to estimate the 
new value with opposite sign (secant method: uses 
newly evaluted xi+1) 

• brackets the root 



02/08/10

Regula Falsi 
(False Postion)

Secant Method Regula falsi
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Algorithm for Regula Falsi 
Method

Step 0

choose two inital guesses x-1 and x0 bracketing the root 
assume  

f(x-1) < f(x0)
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Step 1
Calculate the next estimate of the root from two initial guesses

if  f(xi+1) > 0 then xi = xi+1  

else replace appropriete limits
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Step 2

If the absolute relative approximate error is greater than  
the prespecified relative error tolerance go back to step 1  
else stop.   

 Also check if the number of iterations has exceeded the 
maximum number of iterations.

Find the absolute relative approximate error
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Advantages

! always converges (unlike secant method)
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Disvantages

! root must be bracketed in the initial guess 
! converges slower than Secant method



Resources 
•Based on: http://numericalmethods.eng.usf.edu 

von Autar Kaw, Jai Paul 

•Recommended: 
Numerical Recipes (2nd/3rd Edition). Press et al., 
Cambridge University Press 
http://www.nr.com/oldverswitcher.html 

http://numericalmethods.eng.usf.edu
http://www.nr.com/oldverswitcher.html


Numerisches Praktikum – Numerical Practical Training

PD. Dr. Hubert Klahr, Dr. Christoph Mordasini

Root finding

Return by 9:15 a.m. tomorrow

Free Training

• Write a program code to calculate the root x? (i.e., with f(x?) = 0) of some given
function f(x) using the four methods presented in the lecture:

1. Bisection method

2. Regula falsi (Interpolation)

3. Newton-Raphson

4. Secant method

• Solve the quadratic equation x2 + x � 1 = 0 using these four methods. Plot the
graph first to find proper starting values for the iteration.

Assignment for the Afternoon / Homework

• Exercise 1, 8 points: Convergence (I).
Solve the equation f(x) = cos(x)� 1

4 with your program using xa = 0 and xb = ⇡/2
(for methods 1, 2 and 4) and xa = ⇡/2 (for Newton-Raphson) as initial values.
Calculate and write out both the absolute true error (|en| = |xn � x⇤|) and the
absolute true relative error |fn| = |xn � x⇤|/|x⇤| for the first 20 iterations.

• Exercise 2, 6 points: Convergence (II).
Plot |en/e0|, where e0 is the error for n = 0, versus the iteration step n from the data
in Ex. 1 in a logarithmic plot. Compare your results to the expected convergence
behaviour of these methods.

• Exercise 3, 6 points: Double-well potential
f(x) = 0.1 x4� 4 x2� 10. Double-well potentials play an important role in quantum
mechanics and molecular dynamics to describe the motion of a particle in the force
field of two others. Determine the root of f(x) with the four root-finding methods.
Start the iteration with the initial values xa = 2.5 and xb = 7.0 (use xa = 2.5 for
the Newton-Raphson algorithm). Discuss the results of the four methods in terms of
their convergence behaviour. Give an example in which the bisection method cannot
be applied or would give a wrong result (i.e., not converge to a root of f(x)).



Numerisches Praktikum – Numerical Practical Training

PD. Dr. Hubert Klahr, Dr. Christoph Mordasini

Root finding

Return by 9:15 a.m. tomorrow

Free Training

• Write a program code to calculate the root x? (i.e., with f(x?) = 0) of some given
function f(x) using the four methods presented in the lecture:

1. Bisection method

2. Regula falsi (Interpolation)

3. Newton-Raphson

4. Secant method

• Solve the quadratic equation x2 + x � 1 = 0 using these four methods. Plot the
graph first to find proper starting values for the iteration.

Assignment for the Afternoon / Homework

• Exercise 1, 8 points: Convergence (I).
Solve the equation f(x) = cos(x)� 1

4 with your program using xa = 0 and xb = ⇡/2
(for methods 1, 2 and 4) and xa = ⇡/2 (for Newton-Raphson) as initial values.
Calculate and write out both the absolute true error (|en| = |xn � x⇤|) and the
absolute true relative error |fn| = |xn � x⇤|/|x⇤| for the first 20 iterations.

• Exercise 2, 6 points: Convergence (II).
Plot |en/e0|, where e0 is the error for n = 0, versus the iteration step n from the data
in Ex. 1 in a logarithmic plot. Compare your results to the expected convergence
behaviour of these methods.

• Exercise 3, 6 points: Double-well potential
f(x) = 0.1 x4� 4 x2� 10. Double-well potentials play an important role in quantum
mechanics and molecular dynamics to describe the motion of a particle in the force
field of two others. Determine the root of f(x) with the four root-finding methods.
Start the iteration with the initial values xa = 2.5 and xb = 7.0 (use xa = 2.5 for
the Newton-Raphson algorithm). Discuss the results of the four methods in terms of
their convergence behaviour. Give an example in which the bisection method cannot
be applied or would give a wrong result (i.e., not converge to a root of f(x)).


