Practical Numerical Training UKNum: Sorting

Klahr \& Bitsch

Max Planck Institute for Astronomy, Heidelberg
Program:

1) Bubble Sort
2) Straight insertion
3) Shell Sort
4) Quick Sort
5) Movie 15 ways to sort...

Sorting

- Key operation to arrange large data-sets (e.g. Google)
- Indispensable to find data in data sets (search algorithm assume sorted data)
- Very different algorithms possible
(very slow $\sim \mathrm{N}^{2}$, fast $\mathrm{N} \log (\mathrm{N})$)
- Bubble Sort
- Straight Insertion
- Shell Sort
- Quick Sort
- Heapsort
- ...

Bubble Sort

```
/* bubble sort function, sorts elements v[0..n-1] */
void bubble_sort (float v[], int n) {
    int i, /* array index */
        swapped; /* true if we have swapped */
    do {
        /* we have not swapped yet */
        swapped = 0;
        /* go through array, looking for out of order elements */
        for (i=1; i<n; i++) |OOp OVer entire array !
            /* if v[i-1] and v[i] are out of order... */
            if (v[i-1] > v[i]) {
                            /* swap them */
                            swap (v, i, i-1);
                            /* and remember to go through the loop again */
                            swapped = 1; again if one element was swapped
    } while (swapped);
}
```


Algo ieinythmics Bubble Sort

https://www.youtube.com/watch?v=lyZQPjUT5B4

Bubble Sort

- The best case. In the best case, the array is already sorted and bubble_sort simply checks that it is sorted and exits. This is $n-1=\Omega_{8}(n)$ comparisons.
- The worst case. In the worst case, the element that is supposed to be first is actually last, so that the do/while loop must run n times while the value "bubbles" up to the first array index. Each time through the do/while loop, n - 1 comparisons are done. This is $O(n(n-1))=O\left(n^{2}\right)$ comparisons.
- The average case. This is the average running time, averaged over all possible initial orderings of the array. The analysis is somewhat more complicated, but the result is still $O\left(n^{2}\right)$ comparisons.

Bubble sort is pretty inefficient because of this quadratic running time; we can do a lot better than $O\left(n^{2}\right)$.

If you know what bubble sort is, wipe it from your mind; if you don't know, make a point of never finding out!
Press et al., Numerical Recipes

Straight insertion

"card players method"

$\}=$ compare elements, and exchange them as they are out of order.
= compare elements, and find them in order (no exchange).

Straight insertion

Input: \quad An array A with element type T, and integers p and r with lowerbound $(A) \leq p \leq r \leq$ upperbound (A).

Output: The array A, with $A[p . . r]$ sorted, and any remaining elements of A unchanged.

Algorithm (implemented using exchanges)
void straight_insertion_sort(T[] A, Integer p, Integer r)
for $(i=p+1, p+2, \ldots, r)$
$j=i ; \quad$ // sorted subarray $A[p . . i-1]$.
while ($j>p$ and $A[j-1]>A[j]$) look for the place to insert $\mathrm{A}[\mathrm{i}]$ $\operatorname{swap}(A[j-1], A[j])$; $j=j-1$;

- \#define $\operatorname{SWAP}(\mathrm{a}, \mathrm{b})$ temp=(a);(a)=(b);(b)=temp;

Straight insertion

Scaling: N^{2}

quite slow!

only practicable for small $\mathrm{N}<20$
but scales as $\sim N$ for sorted lists

Shell* Sort

- first sort numbers spaced by increment d using the straight sort algorithm
- reduce increment d until d=1 (diminishing increment method)

Advantage: straight insertion gets pre-sorted lists

Shell Sort

Example: $\mathrm{N}=16$ numbers $\left(n_{1}, n_{2}, \ldots n_{16}\right)$ initial increment $\mathrm{d}=\mathrm{N} / 2=8$
I. sort 8 lists of $2:\left(n_{1}, n_{9}\right),\left(n_{2}, n_{10}\right), \ldots,\left(n_{8}, n_{16}\right)$
2. sort 4 lists of 4 : (halve increment)
$\left(n_{1}, n_{5}, n_{9}, n_{13}\right),\left(n_{2}, n_{6}, n_{10}, n_{14}\right), \ldots,\left(n_{4}, n_{8}, n_{12}, n_{16}\right)$
3. sort 2 lists of 8 : $\left(n_{1}, n_{3}, n_{5}, n_{7}, n_{9}, n_{11}, n_{13}, n_{15}\right), \ldots$
4. sort last list of I6: very much pre-ordered

Shell Sort

- Choice of increments determines speed of method
- Best choice not known
- Much better choice of increments (rather than $\mathrm{N} / 2, \ldots, 8,4,2,1$) is

$$
\left(3^{\mathrm{k}}-1\right) / 2, \ldots, 40,13,4,1
$$

guarantees order $\mathrm{N}^{3 / 2}$ scaling in the worst case and $\mathrm{N}^{1.25}$ scaling on average (Knuth, The Art of Computer Programming)

Shell Sort

```
void shell(unsigned long n, float a[])
Sorts an array a [1..n] into ascending numerical order by Shell's method (diminishing increment
sort). n is input; a is replaced on output by its sorted rearrangement.
{
        unsigned long i,j,inc;
        float v;
        inc=1;
        do {
            inc *= 3;
            inc++;
        } while (inc <= n);
        do {
            inc /= 3;
            for (i=inc+1;i<=n;i++) { Outer loop of straight insertion.
                v=a[i];
                j=i;
                while (a[j-inc] > v) { Inner loop of straight insertion.
                a[j]=a[j-inc];
                j -= inc;
                if (j <= inc) break;
                }
                a[j]=v;
    }
    } while (inc > 1);
}

\section*{Quicksort}

\author{
by C.A.R. Hoare
}
on average the fastest sorting algorithm

\section*{partition-exchange sorting method}
I. select a partition (pivot) element a is from the list
2. pairwise exchange of elements lead to two lists \(\mathbf{a}\) is in its final position in the list all elements in the left sub-list are \(\leq \mathbf{a}\) all elements in the right sub-list are \(\geq \mathbf{a}\)
3. repeat partitioning on both lists independently

\section*{Quicksort}

Swap pivot element with leftmost element. lo=left 1 ; hi=right;


Move \(h i\) left and \(l o\) right as far as we can; then swap \(A[l o]\) and \(A[h i]\), and move \(h i\) and lo one more position.

Repeat above


Repeat above until \(h i\) and lo cross; then \(h i\) is the final position of the pivot element, so swap \(A[h i]\) and \(A[l e f t]\).


Partitioning complete; return value of \(h i\).
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 14 & 58 & 22 & 48 & 13 & 38 & 45 & 69 & 93 & 81 & 79 & 72 \\
\hline
\end{tabular}

\section*{Quicksort}

Swap pivot element with leftmost element. \(l o=l e f t+1 ; h i=r i g h t ;\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline left & left +1 & & & & & & & & & & right \\
\hline 38 & 81 & 22 & 48 & 13 & 69 & 93 & 14 & 45 & 58 & 79 & 72 \\
\hline
\end{tabular}

Move \(h i\) left and \(l o\) right as far as we can; then swap \(A[l o]\) and \(A[h i]\), and move \(h i\) and lo one more position.


Repeat above
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\multicolumn{7}{c|}{\(l o \rightarrow l o \rightarrow l o \rightarrow l o \rightarrow l o\)} \\
\hline 69 & 58 & \(22^{*}\) & \(48^{*}\) & \(13^{*}\) & \(38^{*}\) & \(93^{*}\) & 14 & \(45^{*}\) & 81 & 79 & 72 \\
\hline
\end{tabular}

Repeat above until \(h i\) and \(l o\) cross; then \(h i\) is the final position of the pivot element, so swap \(A[h i]\) and \(A[l e f f]\).

Partitioning complete; return value of \(h i\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{\[
\begin{aligned}
& h i \\
& l o \cdots l o
\end{aligned}
\]} \\
\hline 69 & 58 & 22 & 48 & 13 & 38 & 45 & 14** & 93* & 81 & 79 & 72 \\
\hline \multicolumn{12}{|l|}{} \\
\hline \multicolumn{12}{|c|}{hi} \\
\hline 14 & 58 & 22 & 48 & 13 & 38 & 45 & 69 & 93 & 81 & 79 & 72 \\
\hline
\end{tabular}
divides the input list into two sub-arrays where \(\mathrm{A}[\) list1] \(\leq \mathrm{a} \leq \mathrm{A}\) [list2]
\(\mathbf{a}=\) pivot element

\section*{Quicksort}
```

Integer partition(T[] A, Integer left, Integer right)
m=\left+right \rfloor/ 2;
swap(A[left], A[m]);
pivot = A[left];
lo = left+1; hi = right;
while (lo \leqhi)
while (A[hi] > pivot)
hi=hi-1;
while (lo \leqhi and A[lo]\ pivot)
lo = lo + 1;
if (loshi)
swap(A[lo], A[hi]);
lo=lo + 1; hi=hi-1;
swap(A[left], A[hi]);
return hi

```
void quicksort( T[]\(A\), Integer left, Integer right)
if ( left < right)
\(q=\operatorname{partition}(A\), left, right \()\);
quicksort ( \(A\), left, \(q-1\) );
quicksort ( \(A, q+1\), right);
quicksort(A, left, right) sorts A[left, ..., right] by using partition() to partition \(A\), and then calling itself recursively twice to sort the two sub-arrays.
partition( \(A\), left, right) rarranges \(A[\) left ..right \(]\) and finds and returns an integer \(q\), such that
\[
A[l e f t], \ldots, A[q-1] \lesssim \text { pivot }, A[q]=\text { pivot }, A[q+1], \ldots, A[\text { right }]>\text { pivot },
\]
where pivot is the middle element of \(a[\) left..right \(]\), before partitioning. (To choose the pivot element differently, simply modify the assignment to \(m\).)

\section*{Algo à̉̉ythmics Quick Sort}
https://www.youtube.com/watch?v=ywWBy6J5gz8

\section*{Quicksort}
```

\#define M 7
\#define NSTACK 50
Here M is the size of subarrays sorted by straight insertion and NSTACK is the required auxiliary
storage.
void sort(unsigned long n, float arr[])
Sorts an array arr [1..n] into ascending numerical order using the Quicksort algorithm. n is
input; arr is replaced on output by its sorted rearrangement.
{
unsigned long i,ir=n,j,k,l=1,*istack;
int jstack=0;
float a,temp;
istack=lvector(1,NSTACK);
for (;;) { Insertion sort when subarray small enough.
if (ir-l < M) {
for (j=l+1;j<=ir;j++) {
a=arr[j];
for (i=j-1;i>=1;i--) {
if (arr[i] <= a) break;
arr[i+1]=arr[i];
}
arr[i+1]=a;
}
if (jstack == 0) break;
ir=istack[jstack--];
l=istack[jstack--];
} else {

```

Quicksort
\(\mathrm{k}=(\mathrm{l}+\mathrm{ir}) \gg 1\);
SWAP (arr [k], arr [1+1])
if (arr[l] > arr[ir]) \{
SWAP (arr [1], arr[ir])
cont.
\}
if (arr[1+1] > arr[ir]) \{

Choose median of left, center, and right elements as partitioning element a. Also rearrange so that \(\mathrm{a}[1] \leq \mathrm{a}[1+1] \leq \mathrm{a}[\mathrm{ir}]\).

SWAP (arr [1+1], arr[ir])
\}
if (arr [l] > arr [l+1]) \{
SWAP (arr [1] , arr [1+1])
\}
\(\mathrm{i}=1+1\); Initialize pointers for partitioning.
j=ir;
\(\mathrm{a}=\mathrm{arr}[1+1]\); Partitioning element.
for (; ; ) \{
Beginning of innermost loop.
do i++; while (arr[i] < a); Scan up to find element >a.
do j--; while (arr \([j]>a)\); \(\quad\) Scan down to find element \(<a\).
if ( \(\mathrm{j}<\mathrm{i}\) ) break; Pointers crossed. Partitioning complete.
SWAP (arr [i] , arr \([j]\) ); Exchange elements.
\}
End of innermost loop.
\(\operatorname{arr}[1+1]=\operatorname{arr}[j] ; \quad\) Insert partitioning element.
\(\operatorname{arr}[j]=a\);
jstack += 2;
Push pointers to larger subarray on stack, process smaller subarray immediately.
if (jstack > NSTACK) nrerror("NSTACK too small in sort.");
if (ir-i+1 >= j-l) \{
istack[jstack]=ir;
istack[jstack-1]=i;
ir=j-1;
\} else \{
istack[jstack]=j-1;
istack[jstack-1] \(=1\);
l=i;
\}
\}
\}
free_lvector(istack,1,NSTACK);

\section*{Quicksort}

\section*{on average the fastest sorting algorithm}
- scales as \(\sim \mathrm{N} \log (\mathrm{N})\) on average
- but \(\sim \mathrm{N}^{2}\) in the worst case: on sorted lists

\section*{Return Feb. 28, 9:15 a.m.}

\section*{Free Training}
- Write routines using the
1. straight insertion
2. Shell's
3. quicksort
algorithms presented in the lecture \({ }^{1}\). Use the following array to test your routines
\[
[7,5,3,1,9,6,10,2,8,4] .
\]

\section*{Assignment for Afternoon/Home Work, 20 Points}
- Exercise 6.1, 5 points: Varification

Varify that your algorithms work using the above list and another list of 10 random number. Print out the lists before and after sorting.
- Exercise 6.2, 10 points: Timing on unsorted lists

Measure the runtime \({ }^{2}\) of your algorithms for unsorted lists \({ }^{3}\) of the length \(N=10^{n}\) with \(n=[2,3, \ldots, 8]\), if feasible. Discuss the occured and possible problems. Plot the results in a double-logarithmic diagram. What are the scaling properties?
- Exercise 6.3, 5 points: Timing on sorted lists

Do the same (Ex. 6.2) for perfectly sorted lists (i.e. \(A=[1,2,3, \ldots, N]\) ).

\section*{15 Sorting Algorithms in 6 Minutes... turn off sound?}

https://www.youtube.com/watch?v=kPRAOWIkECg```

