Practical Numerical Training UKNum Linear Equations

H. Klahr

Max Planck Institute für Astronomie, Heidelberg

Programm:

1) Introduction
2) Gauss elimination
3) Gauss with partial pivoting
4) Determinants
5) LU decomposition
6) Inverse of matrix using LU

Linear Equations

$$
[\mathrm{A}][\mathrm{X}]=[\mathrm{C}]
$$

- Gaussian Elimination
- Gaussian Elimination with Partial Pivoting
- LU Decomposition / QR Decomposition
- Gauss-Seidel Iteration
- Sparce Matrix Solvers (e.g. Cholesky

Decomposition)

Gaussian Elimination

http://numericalmethods.eng.usf.edu

Transforming Numerical Methods Education for STEM Undergraduates

Naïve Gaussian Elimination

A method to solve simultaneous linear equations of the form $[A][X]=[C]$

Two steps

1. Forward Elimination
2. Back Substitution

Forward Elimination

The goal of forward elimination is to transform the coefficient matrix into an upper triangular matrix

$$
\begin{gathered}
{\left[\begin{array}{ccc}
25 & 5 & 1 \\
64 & 8 & 1 \\
144 & 12 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
106.8 \\
177.2 \\
279.2
\end{array}\right]} \\
\downarrow \\
{\left[\begin{array}{ccc}
25 & 5 & 1 \\
0 & -4.8 & -1.56 \\
0 & 0 & 0.7
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
106.8 \\
-96.21 \\
0.735
\end{array}\right]}
\end{gathered}
$$

Forward Elimination

A set of n equations and n unknowns

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\ldots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\ldots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+a_{n 3} x_{3}+\ldots+a_{n n} x_{n}=b_{n}
\end{gathered}
$$

Forward Elimination

Step 1

For Equation 2, divide Equation 1 by a_{11} and multiply by a_{21}.

$$
\begin{aligned}
& {\left[\frac{a_{21}}{a_{11}}\right]\left(a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\ldots+a_{1 n} x_{n}=b_{1}\right)} \\
& a_{21} x_{1}+\frac{a_{21}}{a_{11}} a_{12} x_{2}+\ldots+\frac{a_{21}}{a_{11}} a_{1 n} x_{n}=\frac{a_{21}}{a_{11}} b_{1}
\end{aligned}
$$

Forward Elimination

Subtract the result from Equation 2.

$$
\begin{gathered}
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\ldots+a_{2 n} x_{n}=b_{2} \\
\frac{a_{21} x_{1}+\frac{a_{21}}{a_{11}} a_{12} x_{2}+\ldots+\frac{a_{21}}{a_{11}} a_{1 n} x_{n}=\frac{a_{21}}{a_{11}} b_{1}}{\left(a_{22}-\frac{a_{21}}{a_{11}} a_{12} \frac{1}{j} x_{2}+\ldots+\left(a_{2 n}-\frac{a_{21}}{a_{11}} a_{1 n} \frac{n}{j} x_{n}=b_{2}-\frac{a_{21}}{a_{11}} b_{1}\right.\right.} \\
\text { or } \quad a_{22}^{\prime} x_{2}+\ldots+a_{2 n}^{\prime} x_{n}=b_{2}^{\prime}
\end{gathered}
$$

Forward Elimination

Repeat this procedure for the remaining equations to reduce the set of equations as

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\ldots+a_{1 n} x_{n} & =b_{1} \\
a_{22}^{\prime} x_{2}+a_{23}^{\prime} x_{3}+\ldots+a_{2 n}^{\prime} x_{n} & =b_{2}^{\prime} \\
a_{32}^{\prime} x_{2}+a_{33}^{\prime} x_{3}+\ldots+a_{3 n}^{\prime} x_{n} & =b_{3}^{\prime}
\end{aligned}
$$

$$
a_{n 2}^{\prime} x_{2}+a_{n 3}^{\prime} x_{3}+\ldots+a_{n n}^{\prime} x_{n}=b_{n}^{\prime}
$$

Forward Elimination

Step 2

Repeat the same procedure for the $3^{\text {rd }}$ term of Equation 3.

$$
\begin{array}{r}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\ldots+a_{1 n} x_{n}=b_{1} \\
a_{22}^{\prime} x_{2}+a_{23}^{\prime} x_{3}+\ldots+a_{2 n}^{\prime} x_{n}=b_{2}^{\prime} \\
a_{33}^{\prime \prime} x_{3}+\ldots+a_{3 n}^{\prime \prime} x_{n}=b_{3}^{\prime \prime} \\
\vdots \\
a_{n 3}^{\prime \prime} x_{3}+\ldots+a_{n n}^{\prime \prime} x_{n}=b_{n}^{\prime \prime}
\end{array}
$$

End of Step 2

Forward Elimination

At the end of (n-1) Forward Elimination steps, the system of equations will look like

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\ldots+a_{1 n} x_{n} & =b_{1} \\
a_{22}^{\prime} x_{2}+a_{23}^{\prime} x_{3}+\ldots+a_{2 n}^{\prime} x_{n} & =b_{2}^{\prime} \\
a_{33}^{\prime \prime} x_{3}+\ldots+a_{3 n}^{\prime \prime} x_{n} & =b_{3}^{\prime \prime} \\
\vdots & \vdots \\
a_{n n}^{(n-1)} x_{n} & =b_{n}^{(n-1)}
\end{aligned}
$$

End of Step (n-1)

Matrix Form at End of Forward Elimination

$$
\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\
0 & a_{22}^{\prime} & a_{23}^{\prime} & \cdots & a_{2 n}^{\prime} \\
0 & 0 & a_{33}^{\prime \prime} & \cdots & a_{3 n}^{\prime \prime} \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & 0 & 0 & a_{n n}^{(n-1)}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2}^{\prime} \\
b_{3}^{\prime \prime} \\
\vdots \\
b_{n}^{(n-1)}
\end{array}\right]
$$

Back Substitution

Solve each equation starting from the last equation

$$
\left[\begin{array}{ccc}
25 & 5 & 1 \\
0 & -4.8 & -1.56 \\
0 & 0 & 0.7
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
106.8 \\
-96.21 \\
0.735
\end{array}\right]
$$

Example of a system of 3 equations

Back Substitution Starting Eqns

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\ldots+a_{1 n} x_{n} & =b_{1} \\
a_{22}^{\prime} x_{2}+a_{23}^{\prime} x_{3}+\ldots+a_{2 n}^{\prime} x_{n} & =b_{2}^{\prime} \\
a_{33}^{\prime \prime} x_{3}+\ldots+a_{n}^{\prime \prime} x_{n} & =b_{3}^{\prime \prime} \\
\vdots & \\
a_{n n}^{(n-1)} x_{n} & =b_{n}^{(n-1)}
\end{aligned}
$$

Back Substitution

Start with the last equation because it has only one unknown:

$$
x_{n}=\frac{b_{n}^{(n-1)}}{a_{n n}^{(n-1)}}
$$

Back Substitution

$$
\text { start: } \quad x_{n}=\frac{b_{n}^{(n-1)}}{a_{n n}^{(n-1)}}
$$

Then:

$$
\begin{gathered}
x_{i}=\frac{b_{i}^{(i-1)}-a_{i,+1}^{(i-1)} x_{i+1}-a_{i, i+2}^{(i-1)} x_{i+2}-\ldots-a_{i, n}^{(i-1)} x_{n}}{a_{i i}^{(i-1)}} \text { for } i=n-1, \ldots, 1 \\
x_{i}=\frac{b_{i}^{(i-1)}-\sum_{j=i+1}^{n} a_{i j}^{(i-1)} x_{j}}{a_{i i}^{(i-1)}} \text { for } i=n-1, \ldots, 1
\end{gathered}
$$

Naïve Gauss Elimination Pitfalls

Pitfall\#1. Division by zero

Example 1:

$$
\begin{aligned}
& 10 x_{2}-7 x_{3}=3 \\
& 6 x_{1}+2 x_{2}+3 x_{3}=11 \\
& 5 x_{1}-x_{2}+5 x_{3}=9
\end{aligned}
$$

$$
\left[\begin{array}{ccc}
0 & 10 & -7 \\
6 & 2 & 3 \\
5 & -1 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
3 \\
11 \\
9
\end{array}\right]
$$

Is division by zero an issue here?

Example 2:

$$
\begin{aligned}
& 12 x_{1}+10 x_{2}-7 x_{3}=15 \\
& 6 x_{1}+5 x_{2}+3 x_{3}=14 \\
& 5 x_{1}-x_{2}+5 x_{3}=9 \\
& {\left[\begin{array}{ccc}
12 & 10 & -7 \\
6 & 5 & 3 \\
5 & -1 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
15 \\
14 \\
9
\end{array}\right]}
\end{aligned}
$$

Is division by zero an issue here? YES

Example 2:

$$
\begin{aligned}
& 12 x_{1}+10 x_{2}-7 x_{3}=15 \\
& 6 x_{1}+5 x_{2}+3 x_{3}=14 \\
& 24 x_{1}-x_{2}+5 x_{3}=28
\end{aligned}
$$

$$
\left[\begin{array}{ccc}
12 & 10 & -7 \\
6 & 5 & 3 \\
24 & -1 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
15 \\
14 \\
28
\end{array}\right] \longrightarrow\left[\begin{array}{ccc}
12 & 10 & -7 \\
0 & 0 & 6.5 \\
12 & -21 & 19
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
15 \\
6.5 \\
-2
\end{array}\right]
$$

Division by zero is a possibility at any step of forward elimination

Pitfall\#2. Large Round-off Errors

Example:

$$
\left[\begin{array}{ccc}
20 & 15 & 10 \\
-3 & -2.249 & 7 \\
5 & 1 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
45 \\
1.751 \\
9
\end{array}\right]
$$

Exact Solution

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Pitfall\#2. Large Round-off Errors

$$
\left[\begin{array}{ccc}
20 & 15 & 10 \\
-3 & -2.249 & 7 \\
5 & 1 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
45 \\
1.751 \\
9
\end{array}\right]
$$

Solve it on a computer using 6 significant digits with chopping

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
0.9625 \\
1.05 \\
0.999995
\end{array}\right]
$$

Pitfall\#2. Large Round-off Errors

$$
\left[\begin{array}{ccc}
20 & 15 & 10 \\
-3 & -2.249 & 7 \\
5 & 1 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
45 \\
1.751 \\
9
\end{array}\right]
$$

Solve it on a computer using 5 significant digits with chopping

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
0.625 \\
1.5 \\
0.99995
\end{array}\right]
$$

Is there a way to reduce the round off error?

Avoiding Pitfalls

Increase the number of significant digits

- Does decrease round-off error
- Does not avoid division by zero

Avoiding Pitfalls

Gaussian Elimination with Partial Pivoting

- Avoids division by zero
- Reduces round off error

What is Different About Partial Pivoting?

At the beginning of the $\mathrm{k}^{\text {th }}$ step of forward elimination, find the maximum of

$$
\left|a_{k k}\right|,\left|a_{k+1, k}\right|, \ldots \ldots \ldots \ldots \ldots,\left|a_{n k}\right|
$$

If the maximum of the values is $\left|a_{p k}\right|$ in the p th row,

$$
k \leq p \leq n, \text { then switch rows } \mathrm{p} \text { and } \mathrm{k} .
$$

Matrix Form at Beginning of $\mathbf{2}^{\text {nd }}$ Step of Forward Elimination

$$
\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\
0 & a_{22}^{\prime} & a_{23}^{\prime} & \cdots & a_{2 n}^{\prime} \\
0 & a_{32}^{\prime} & a_{33}^{\prime} & \cdots & a_{3 n}^{\prime} \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
0 & a_{n 2}^{\prime} & a_{n 3}^{\prime} & a_{n 4}^{\prime} & a_{n n}^{\prime}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2}^{\prime} \\
b_{3}^{\prime} \\
\vdots \\
b_{n}^{\prime}
\end{array}\right]
$$

Example (2nd step of FE)

$$
\left[\begin{array}{ccccc}
6 & 14 & 5.1 & 3.7 & 6 \\
0 & -7 & 6 & 1 & 2 \\
0 & 4 & 12 & 1 & 11 \\
0 & 9 & 23 & 6 & 8 \\
0 & -17 & 12 & 11 & 43
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
5 \\
-6 \\
8 \\
9 \\
3
\end{array}\right]
$$

Which two rows would you switch?

Example (2nd step of FE)

$$
\left[\begin{array}{ccccc}
6 & 14 & 5.1 & 3.7 & 6 \\
0 & -17 & 12 & 11 & 43 \\
0 & 4 & 12 & 1 & 11 \\
0 & 9 & 23 & 6 & 8 \\
0 & -7 & 6 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
5 \\
3 \\
8 \\
9 \\
-6
\end{array}\right]
$$

Switched Rows

Gaussian Elimination with Partial Pivoting

A method to solve simultaneous linear equations of the form $[A][X]=[C]$

Two steps
1. Forward Elimination
2. Back Substitution

Forward Elimination

Same as naïve Gauss elimination method except that we switch rows before each of the ($n-1$) steps of forward elimination.

Example: Matrix Form at Beginning of 2nd ${ }^{\text {nd }}$ Step of Forward Elimination

$$
\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\
0 & a_{22}^{\prime} & a_{23}^{\prime} & \cdots & a_{2 n}^{\prime} \\
0 & a_{32}^{\prime} & a_{33}^{\prime} & \cdots & a_{3 n}^{\prime} \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
0 & a_{n 2}^{\prime} & a_{n 3}^{\prime} & a_{n 4}^{\prime} & a_{n n}^{\prime}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2}^{\prime} \\
b_{3}^{\prime} \\
\vdots \\
b_{n}^{\prime}
\end{array}\right]
$$

Matrix Form at End of Forward Elimination

$$
\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\
0 & a_{22}^{\prime} & a_{23}^{\prime} & \cdots & a_{2 n}^{\prime} \\
0 & 0 & a_{33}^{\prime \prime} & \cdots & a_{3 n}^{\prime \prime} \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & 0 & 0 & a_{n n}^{(n-1)}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2}^{\prime} \\
b_{3}^{\prime \prime} \\
\vdots \\
b_{n}^{(n-1)}
\end{array}\right]
$$

Back Substitution Starting Eqns

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\ldots+a_{1 n} x_{n} & =b_{1} \\
a_{22}^{\prime} x_{2}+a_{23}^{\prime} x_{3}+\ldots+a_{2 n}^{\prime} x_{n} & =b_{2}^{\prime} \\
a_{33}^{\prime \prime} x_{3}+\ldots+a_{n}^{\prime \prime} x_{n} & =b_{3}^{\prime \prime} \\
\vdots & \\
a_{n n}^{(n-1)} x_{n} & =b_{n}^{(n-1)}
\end{aligned}
$$

Back Substitution

...all the same!

$$
\begin{gathered}
x_{n}=\frac{b_{n}^{(n-1)}}{a_{n n}^{(n-1)}} \\
x_{i}=\frac{b_{i}^{(i-1)}-\sum_{j=i+1}^{n} a_{i j}^{(i-1)} x_{j}}{a_{i i}^{(i-1)}} \text { for } i=n-1, \ldots, 1
\end{gathered}
$$

Example 2

Solve the following set of equations by Gaussian elimination with partial pivoting

$$
\left[\begin{array}{ccc}
25 & 5 & 1 \\
64 & 8 & 1 \\
144 & 12 & 1
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{l}
106.8 \\
177.2 \\
279.2
\end{array}\right]
$$

$$
\left[\begin{array}{ccc}
25 & 5 & 1 \\
64 & 8 & 1 \\
144 & 12 & 1
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{l}
106.8 \\
177.2 \\
279.2
\end{array}\right] \Rightarrow\left[\begin{array}{ccccc}
25 & 5 & 1 & \vdots & 106.8 \\
64 & 8 & 1 & \vdots & 177.2 \\
144 & 12 & 1 & \vdots & 279.2
\end{array}\right]
$$

Forward Elimination
2. Back Substitution

Number of Steps of Forward Elimination

Number of steps of forward elimination is $(n-1)=(3-1)=2$

Forward Elimination: Step 1

- Examine absolute values of first column, first row and below: $|25|,|64|,|144|$
- Largest absolute value is 144 and exists in row 3.
- Switch row 1 and row 3.

$$
\left[\begin{array}{ccccc}
25 & 5 & 1 & \vdots & 106.8 \\
64 & 8 & 1 & \vdots & 177.2 \\
144 & 12 & 1 & \vdots & 279.2
\end{array}\right] \Rightarrow\left[\begin{array}{ccccc}
144 & 12 & 1 & \vdots & 279.2 \\
64 & 8 & 1 & \vdots & 177.2 \\
25 & 5 & 1 & \vdots & 106.8
\end{array}\right]
$$

Forward Elimination: Step 1 (cont.)

\(\left[\begin{array}{ccccc}144 \& 12 \& 1 \& \vdots \& 279.2

64 \& 8 \& 1 \& \vdots \& 177.2

25 \& 5 \& 1 \& \vdots \& 106.8\end{array}\right] \quad\)| Divide Equation 1 by 144 and |
| :---: |
| multiply it by 64, |
| $\frac{64}{144}=0.4444$ |

$$
\left[\begin{array}{lllll}
144 & 12 & 1 & \vdots & 279.2
\end{array}\right] \times 0.4444=\left[\begin{array}{llllll}
63.99 & 5.333 & 0.4444 & \vdots & 124.1
\end{array}\right]
$$

Subtract the result from Equation $\left.2 \begin{array}{llrrll}{[64} & 8 & 1 & \vdots & 177.2\end{array}\right]$
Substitute new equation for Equation $2\left[\begin{array}{ccccc}144 & 12 & 1 & \vdots & 279.2 \\ 0 & 2.667 & 0.5556 & \vdots & 53.10 \\ 25 & 5 & 1 & \vdots & 106.8\end{array}\right]$

Forward Elimination: Step 1 (cont.)

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
144 & 12 & 1 & \vdots & 279.2 \\
0 & 2.667 & 0.5556 & \vdots & 53.10 \\
25 & 5 & 1 & \vdots & 106.8
\end{array}\right] \quad \begin{array}{r}
\text { Divide Equation } 1 \text { by } 144 \text { and } \\
\text { multiply it by } 25, \frac{25}{144}=0.1736
\end{array}} \\
& {\left[\begin{array}{lllll}
144 & 12 & 1 & \vdots & 279.2
\end{array}\right] \times 0.1736=\left[\begin{array}{lllll}
25.00 & 2.083 & 0.1736 & \vdots & 48.47
\end{array}\right]} \\
& \text { Subtract the result from }
\end{aligned}
$$

Substitute new equation for Equation 3
$\left[\begin{array}{ccccc}144 & 12 & 1 & \vdots & 279.2 \\ 0 & 2.667 & 0.5556 & \vdots & 53.10 \\ 0 & 2.917 & 0.8264 & \vdots & 58.33\end{array}\right]$

Forward Elimination: Step 2

- Examine absolute values of second column, second row and below. $\quad|2.667,|, 2.917|$
- Largest absolute value is 2.917 and exists in row 3.
- Switch row 2 and row 3.

$$
\left[\begin{array}{ccccc}
144 & 12 & 1 & \vdots & 279.2 \\
0 & 2.667 & 0.5556 & \vdots & 53.10 \\
0 & 2.917 & 0.8264 & \vdots & 58.33
\end{array}\right] \Rightarrow\left[\begin{array}{ccccc}
144 & 12 & 1 & \vdots & 279.2 \\
0 & 2.917 & 0.8264 & \vdots & 58.33 \\
0 & 2.667 & 0.5556 & \vdots & 53.10
\end{array}\right]
$$

Forward Elimination: Step 2 (cont.)

$\left[\begin{array}{ccccc}144 & 12 & 1 & \vdots & 279.2 \\ 0 & 2.917 & 0.8264 & \vdots & 58.33 \\ 0 & 2.667 & 0.5556 & \vdots & 53.10\end{array}\right]$

Divide Equation 2 by 2.917 and multiply it by $2.667, \frac{2.667}{2.917}=0.9143$.
$\left[\begin{array}{lllll}0 & 2.917 & 0.8264 & \vdots & 58.33\end{array}\right] \times 0.9143=\left[\begin{array}{llll}0 & 2.667 & 0.7556 & \vdots \\ 53.33\end{array}\right]$

Subtract the result from Equation 3

$$
\begin{array}{r}
{\left[\begin{array}{ccccc}
0 & 2.667 & 0.5556 & \vdots & 53.10
\end{array}\right]} \\
-\left[\begin{array}{lllll}
0 & 2.667 & 0.7556 & \vdots & 53.33]
\end{array}\right. \\
\hline[0
\end{array}
$$

Substitute new equation for Equation 3

$$
\left[\begin{array}{ccccc}
144 & 12 & 1 & \vdots & 279.2 \\
0 & 2.917 & 0.8264 & \vdots & 58.33 \\
0 & 0 & -0.2 & \vdots & -0.23
\end{array}\right]
$$

Back Substitution

$$
\left[\begin{array}{ccccc}
144 & 12 & 1 & \vdots & 279.2 \\
0 & 2.917 & 0.8264 & \vdots & 58.33 \\
0 & 0 & -0.2 & \vdots & -0.23
\end{array}\right] \Rightarrow\left[\begin{array}{ccc}
144 & 12 & 1 \\
0 & 2.917 & 0.8264 \\
0 & 0 & -0.2
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{c}
279.2 \\
58.33 \\
-0.23
\end{array}\right]
$$

Solving for a_{3}

$$
\begin{aligned}
-0.2 a_{3} & =-0.23 \\
a_{3} & =\frac{-0.23}{-0.2} \\
& =1.15
\end{aligned}
$$

Back Substitution (cont.)

$$
\left[\begin{array}{ccc}
144 & 12 & 1 \\
0 & 2.917 & 0.8264 \\
0 & 0 & -0.2
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{c}
279.2 \\
58.33 \\
-0.23
\end{array}\right]
$$

Solving for a_{2}

$$
\begin{aligned}
2.917 a_{2}+0.8264 a_{3} & =58.33 \\
a_{2} & =\frac{58.33-0.8264 a_{3}}{2.917} \\
& =\frac{58.33-0.8264 \times 1.15}{2.917} \\
& =19.67
\end{aligned}
$$

Back Substitution (cont.)

$$
\begin{gathered}
{\left[\begin{array}{ccc}
144 & 12 & 1 \\
0 & 2.917 & 0.8264 \\
0 & 0 & -0.2
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{c}
279.2 \\
58.33 \\
-0.23
\end{array}\right]} \\
\text { Solving for } a_{1}
\end{gathered}
$$

$$
\begin{aligned}
144 a_{1}+12 a_{2}+a_{3} & =279.2 \\
a_{1} & =\frac{279.2-12 a_{2}-a_{3}}{144} \\
& =\frac{279.2-12 \times 19.67-1.15}{144} \\
& =0.2917
\end{aligned}
$$

Gaussian Elimination with Partial Pivoting Solution

$$
\begin{gathered}
{\left[\begin{array}{ccc}
25 & 5 & 1 \\
64 & 8 & 1 \\
144 & 12 & 1
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{l}
106.8 \\
177.2 \\
279.2
\end{array}\right]} \\
{\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{c}
0.2917 \\
19.67 \\
1.15
\end{array}\right]}
\end{gathered}
$$

Theorem of Determinants

If a multiple of one row of $[A]_{\mathrm{nxn}}$ is added or subtracted to another row of $[A]_{n \times n}$ to result in $[B]_{n \times n}$ then $\operatorname{det}(A)=\operatorname{det}(B)$

Theorem of Determinants

The determinant of an upper triangular matrix $[\mathrm{A}]_{\mathrm{nxn}}$ is given by

$$
\begin{aligned}
\operatorname{det}(\mathrm{A})= & a_{11} \times a_{22} \times \ldots \times a_{i i} \times \ldots \times a_{n n} \\
& =\prod_{i=1}^{n} a_{i i}
\end{aligned}
$$

Forward Elimination of a Square Matrix

Using forward elimination to transform $[\mathrm{A}]_{\mathrm{nxn}}$ to an upper triangular matrix, $[\mathrm{U}]_{\mathrm{nxn}}$.

$$
\begin{aligned}
& {[A]_{\times n} \rightarrow[U]_{n \times n}} \\
& \operatorname{det}(A)=\operatorname{det}(U)
\end{aligned}
$$

Example

Using naïve Gaussian elimination find the determinant of the following square matrix.

$$
\left[\begin{array}{ccc}
25 & 5 & 1 \\
64 & 8 & 1 \\
144 & 12 & 1
\end{array}\right]
$$

Forward elimination...

Finding the Determinant

After forward elimination

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
25 & 5 & 1 \\
64 & 8 & 1 \\
144 & 12 & 1
\end{array}\right] } \\
&\left.\begin{array}{rlc}
\operatorname{det}(\mathrm{A}) & =u_{11} \times u_{22} \times u_{33} \\
0 & 5 & 1 \\
0 & -4.8 & -1.56 \\
0 & 0.7
\end{array}\right] \\
&=25 \times(-4.8) \times 0.7 \\
&=-84.00
\end{aligned}
$$

Determinants and Pivoting?

What to do if division by zero may occur?

You can do pivoting, but be careful! The determinant may change sign!

Theorem 3
$[A]_{n \times n}$ is a $n \times n$ matrix. If $[B]_{n \times n}$ is a matrix created by switching collumns or rows in $[A]_{\mathrm{nxn}}$, then $\operatorname{det}(\mathrm{A})=-\operatorname{det}(\mathrm{B})$.

LU Decomposition

http://numericalmethods.eng.usf.edu

Transforming Numerical Methods Education for STEM Undergraduates

LU Decomposition

LU Decomposition is another method to solve a set of simultaneous linear equations

Which is better, Gauss Elimination or LU Decomposition?

To answer this, a closer look at LU decomposition is needed.

LU Decomposition

Method
For most non-singular matrix [A] that one could conduct Naïve Gauss Elimination forward elimination steps, one can always write it as

$$
[A]=[L][U]
$$

where
$[L]=$ lower triangular matrix
$[U]=$ upper triangular matrix

How does LU Decomposition work?

$$
\begin{array}{rll}
\text { If solving a set of linear equations } & {[A][X]=[C]} \\
\text { If }[A]=[L][U] \text { then } & {[L][U][X]=[C]} \\
\text { Multiply by } & {[L]^{-1}} \\
\text { Which gives } & {[L]^{-1}[L][U][X]=[L]^{-1}[C]} \\
\text { Remember }[L]^{-1}[L]=[I] \text { which leads to } & {[I][U][X]=[L]^{-1}[C]} \\
\text { Now, if }[I][U]=[U] \text { then } & {[U][X]=[L]^{-1}[C]} \\
\text { Now, let } & {[L]^{-1}[C]=[Z]} \\
\text { Which ends with } & {[L][Z]=[C]} & \text { (1) } \\
\text { and } & {[U][X]=[Z]} & \text { (2) }
\end{array}
$$

LU Decomposition

How can this be used?

$$
\begin{aligned}
& \text { Given }[A][X]=[C] \\
& \text { 1.Decompose }[A] \text { into }[L] \text { and }[U] \\
& \text { 2.Solve }[L][Z]=[C] \text { for }[Z] \\
& \text { 3.Solve }[U][X]=[Z] \text { for }[X]
\end{aligned}
$$

When is LU Decomposition better than Gaussian Elimination?

To solve $[A][X]=[B]$
Table. Time taken by methods

Gaussian Elimination	LU Decomposition
$T\left(\frac{8 n^{3}}{3}+12 n^{2}+\frac{4 n}{3} \frac{\overline{\dot{\dot{C}}}}{\bar{j}}\right.$	$T\left(\frac{8 n^{3}}{3}+12 n^{2}+\frac{4 n}{3} \frac{\overline{\dot{\dot{j}}}}{}\right.$

where $\mathrm{T}=$ clock cycle time and $\mathrm{n}=$ size of the matrix

So both methods are equally efficient.

To find inverse of [A]

Time taken by Gaussian Elimination

$$
\begin{aligned}
& =n\left(\left.C T\right|_{F E}+\left.C T\right|_{B S}\right) \\
& =T\left(\frac{8 n^{4}}{3}+12 n^{3}+\frac{4 n^{2}}{3} \frac{)}{\dot{\dot{j}}}\right.
\end{aligned}
$$

Time taken by LU Decomposition

$$
\begin{aligned}
& =\left.C T\right|_{L U}+n \times\left. C T\right|_{F S}+n \times\left. C T\right|_{B S} \\
& =T\left(\frac{32 n^{3}}{3}+12 n^{2}+\frac{20 n}{3} \frac{1}{\dot{j}}\right.
\end{aligned}
$$

Table 1 Comparing computational times of finding inverse of a matrix using
LU decomposition and Gaussian elimination.

n	10	100	1000	10000
$\left.\mathrm{CT}\right\|_{\text {inverse GE }} /\left.\mathrm{CT}\right\|_{\text {inverse LU }}$	3.28	25.83	250.8	2501

Method: [A] Decompose to [L] and [U]

$[A]=[L] U]=\left[\begin{array}{ccc}1 & 0 & 0 \\ \ell_{21} & 1 & 0 \\ \ell_{31} & \ell_{32} & 1\end{array}\right]\left[\begin{array}{ccc}u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33}\end{array}\right]$
$[U]$ is the same as the coefficient matrix at the end of the forward elimination step.
$[L]$ is obtained using the multipliers that were used in the forward elimination process

Finding the [U$]$ matrix

Using the Forward Elimination Procedure of Gauss Elimination

$$
\left[\begin{array}{ccc}
25 & 5 & 1 \\
64 & 8 & 1 \\
144 & 12 & 1
\end{array}\right]
$$

Step 1:

$$
\begin{aligned}
& \frac{64}{25}=2.56 ; \quad \text { Row } 2-\operatorname{Row} 1(2.56)=\left[\begin{array}{ccc}
25 & 5 & 1 \\
0 & -4.8 & -1.56 \\
144 & 12 & 1
\end{array}\right] \\
& \frac{144}{25}=5.76 ; \quad \operatorname{Row} 3-\operatorname{Row}(5.76)=\left[\begin{array}{ccc}
25 & 5 & 1 \\
0 & -4.8 & -1.56 \\
0 & -16.8 & -4.76
\end{array}\right]
\end{aligned}
$$

Finding the [U] Matrix

$$
\begin{gathered}
\text { Matrix after Step 1: }\left[\begin{array}{ccc}
25 & 5 & 1 \\
0 & -4.8 & -1.56 \\
0 & -16.8 & -4.76
\end{array}\right] \\
\text { Step 2: } \frac{-16.8}{-4.8}=3.5 ; \quad \text { Row3 }- \text { Row } 2(3.5)=\left[\begin{array}{ccc}
25 & 5 & 1 \\
0 & -4.8 & -1.56 \\
0 & 0 & 0.7
\end{array}\right] \\
{[U]=\left[\begin{array}{ccc}
25 & 5 & 1 \\
0 & -4.8 & -1.56 \\
0 & 0 & 0.7
\end{array}\right]}
\end{gathered}
$$

Finding the [L] matrix

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
\ell_{21} & 1 & 0 \\
\ell_{31} & \ell_{32} & 1
\end{array}\right]
$$

Using the multipliers used during the Forward Elimination Procedure From the first step
of forward elimination

$$
\left[\begin{array}{ccc}
25 & 5 & 1 \\
64 & 8 & 1 \\
144 & 12 & 1
\end{array}\right] \quad \begin{aligned}
& \ell_{21}=\frac{a_{21}}{a_{11}}=\frac{64}{25}=2.56 \\
& \ell_{31}=\frac{a_{31}}{a_{11}}=\frac{144}{25}=5.76
\end{aligned}
$$

Finding the [L] Matrix

From the second
step of forward
elimination

$$
\left[\begin{array}{ccc}
25 & 5 & 1 \\
0 & -4.8 & -1.56 \\
0 & -16.8 & -4.76
\end{array}\right] \quad \ell_{32}=\frac{a_{32}}{a_{22}}=\frac{-16.8}{-4.8}=3.5
$$

$$
[L]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2.56 & 1 & 0 \\
5.76 & 3.5 & 1
\end{array}\right]
$$

Does $[\mathrm{L}][\mathrm{U}]=[\mathrm{A}]$?

$$
[L T U]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2.56 & 1 & 0 \\
5.76 & 3.5 & 1
\end{array}\right]\left[\begin{array}{ccc}
25 & 5 & 1 \\
0 & -4.8 & -1.56 \\
0 & 0 & 0.7
\end{array}\right]=?
$$

Using LU Decomposition to solve SLEs

Solve the following set of linear equations using LU

Decomposition

$$
\left[\begin{array}{ccc}
25 & 5 & 1 \\
64 & 8 & 1 \\
144 & 12 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
106.8 \\
177.2 \\
279.2
\end{array}\right]
$$

Using the procedure for finding the $[L]$ and $[U]$ matrices

$$
[A]=[L I U]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2.56 & 1 & 0 \\
5.76 & 3.5 & 1
\end{array}\right]\left[\begin{array}{ccc}
25 & 5 & 1 \\
0 & -4.8 & -1.56 \\
0 & 0 & 0.7
\end{array}\right]
$$

Example

Set $[L][Z]=[C]$

Solve for [Z]

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
2.56 & 1 & 0 \\
5.76 & 3.5 & 1
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right]=\left[\begin{array}{l}
106.8 \\
177.2 \\
279.2
\end{array}\right]
$$

$$
\begin{aligned}
& z_{1}=106.8 \\
& 2.56 z_{1}+z_{2}=177.2 \\
& 5.76 z_{1}+3.5 z_{2}+z_{3}=279.2
\end{aligned}
$$

Example

Complete the forward substitution to solve for $[Z]$

$$
\begin{aligned}
z_{1} & =106.8 \\
z_{2} & =177.2-2.56 z_{1} \\
& =177.2-2.56(106.8) \\
& =-96.2 \\
z_{3} & =279.2-5.76 z_{1}-3.5 z_{2} \\
& =279.2-5.76(106.8)-3.5(-96.21) \\
& =0.735
\end{aligned}
$$

Example

$$
\text { Set }[U][X]=[Z] \quad\left[\begin{array}{ccc}
25 & 5 & 1 \\
0 & -4.8 & -1.56 \\
0 & 0 & 0.7
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
106.8 \\
-96.21 \\
0.735
\end{array}\right]
$$

Solve for $[X]$
The 3 equations become

$$
\begin{aligned}
25 a_{1}+5 a_{2}+a_{3} & =106.8 \\
-4.8 a_{2}-1.56 a_{3} & =-96.21 \\
0.7 a_{3} & =0.735
\end{aligned}
$$

Example

From the 3 rd equation
Substituting in a_{3} and using the second equation

$$
\begin{aligned}
0.7 a_{3}=0.735 & -4.8 a_{2}-1.56 a_{3}=-96.21 \\
a_{3}=\frac{0.735}{0.7} & a_{2}=\frac{-96.21+1.56 a_{3}}{-4.8} \\
a_{3}=1.050 & a_{2}=\frac{-96.21+1.56(1.050)}{-4.8} \\
& a_{2}=19.70
\end{aligned}
$$

Example

Substituting in a_{3} and a_{2} using the first equation

$$
\begin{aligned}
& 25 a_{1}+5 a_{2}+a_{3}=106.8 \\
& a_{1}=\frac{106.8-5 a_{2}-a_{3}}{25} \\
&=\frac{106.8-5(19.70)-1.050}{25} \\
&=0.2900
\end{aligned}
$$

Hence the Solution Vector is:

$$
\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{c}
0.2900 \\
19.70 \\
1.050
\end{array}\right]
$$

Finding the inverse of a square matrix

The inverse $[B]$ of a square matrix $[A]$ is defined as

$$
[A][B]=[I]=[B][A]
$$

Finding the inverse of a square matrix

How can LU Decomposition be used to find the inverse?
Assume the first column of $[B]$ to be $\left[\begin{array}{llll}b_{11} & b_{12} & \ldots & b_{n 1}\end{array}\right]^{T}$
Using this and the definition of matrix multiplication

First column of $[B]$

Second column of $[B]$
$[A]\left[\begin{array}{c}b_{12} \\ b_{22} \\ \vdots \\ b_{n 2}\end{array}\right]=\left[\begin{array}{c}0 \\ 1 \\ \vdots \\ 0\end{array}\right]$

The remaining columns in $[B]$ can be found in the same manner

Example: Inverse of a Matrix

Find the inverse of a square matrix $[A]$

$$
[A]=\left[\begin{array}{ccc}
25 & 5 & 1 \\
64 & 8 & 1 \\
144 & 12 & 1
\end{array}\right]
$$

Using the decomposition procedure, the [L] and [U] matrices are found to be

$$
[A]=[L \mathbf{I} U]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2.56 & 1 & 0 \\
5.76 & 3.5 & 1
\end{array}\right]\left[\begin{array}{ccc}
25 & 5 & 1 \\
0 & -4.8 & -1.56 \\
0 & 0 & 0.7
\end{array}\right]
$$

Example: Inverse of a Matrix

Solving for the each column of $[B]$ requires two steps
1)Solve $[L][Z]=[C]$ for [Z]
2)Solve $[U][X]=[Z]$ for $[X]$

$$
\text { Step 1: } \quad[L][Z]=[C] \rightarrow\left[\begin{array}{ccc}
1 & 0 & 0 \\
2.56 & 1 & 0 \\
5.76 & 3.5 & 1
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

This generates the equations:

$$
z_{1}=1
$$

$$
\begin{array}{r}
2.56 z_{1}+z_{2}=0 \\
5.76 z_{1}+3.5 z_{2}+z_{3}=0
\end{array}
$$

Example: Inverse of a Matrix

Solving for [Z]

$$
\begin{aligned}
z_{1} & =1 \\
z_{2} & =0-2.56 z_{1} \\
& =0-2.56(1) \\
& =-2.56 \\
z_{3} & =0-5.76 z_{1}-3.5 z_{2} \\
& =0-5.76(1)-3.5(-2.56) \\
& =3.2
\end{aligned}
$$

Example: Inverse of a Matrix

$$
\begin{aligned}
& \text { Solving }[U][X]=[Z] \text { for }[X] \quad\left[\begin{array}{ccc}
25 & 5 & 1 \\
0 & -4.8 & -1.56 \\
0 & 0 & 0.7
\end{array}\right]\left[\begin{array}{l}
b_{11} \\
b_{21} \\
b_{31}
\end{array}\right]=\left[\begin{array}{c}
1 \\
-2.56 \\
3.2
\end{array}\right] \\
& 25 b_{11}+5 b_{21}+b_{31}=1 \\
& -4.8 b_{21}-1.56 b_{31}=-2.56 \\
& 0.7 b_{31}
\end{aligned}=3.25
$$

Example: Inverse of a Matrix

Using Backward Substitution

$$
\begin{aligned}
b_{31} & =\frac{3.2}{0.7}=4.571 \\
b_{21} & =\frac{-2.56+1.560 b_{31}}{-4.8} \\
& =\frac{-2.56+1.560(4.571)}{-4.8}=-0.9524 \\
b_{11} & =\frac{1-5 b_{21}-b_{31}}{25} \\
& =\frac{1-5(-0.9524)-4.571}{25}=0.04762
\end{aligned}
$$

So the first column of the inverse of $[A]$ is:
$\left[\begin{array}{l}b_{11} \\ b_{21} \\ b_{31}\end{array}\right]=\left[\begin{array}{c}0.04762 \\ -0.9524 \\ 4.571\end{array}\right]$

Example: Inverse of a Matrix

Repeating for the second and third columns of the inverse
Second Column
Third Column

$$
\begin{array}{lc}
{\left[\begin{array}{ccc}
25 & 5 & 1 \\
64 & 8 & 1 \\
144 & 12 & 1
\end{array}\right]\left[\begin{array}{l}
b_{12} \\
b_{22} \\
b_{32}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]} & {\left[\begin{array}{ccc}
25 & 5 & 1 \\
64 & 8 & 1 \\
144 & 12 & 1
\end{array}\right]\left[\begin{array}{l}
b_{13} \\
b_{23} \\
b_{33}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]} \\
{\left[\begin{array}{l}
b_{12} \\
b_{22} \\
b_{32}
\end{array}\right]=\left[\begin{array}{c}
-0.08333 \\
1.417 \\
-5.000
\end{array}\right]} & {\left[\begin{array}{l}
b_{13} \\
b_{23} \\
b_{33}
\end{array}\right]=\left[\begin{array}{c}
0.03571 \\
-0.4643 \\
1.429
\end{array}\right]}
\end{array}
$$

Example: Inverse of a Matrix

The inverse of $[A]$ is

$$
[A]^{-1}=\left[\begin{array}{ccc}
0.04762 & -0.08333 & 0.03571 \\
-0.9524 & 1.417 & -0.4643 \\
4.571 & -5.000 & 1.429
\end{array}\right]
$$

To check your work do the following operation

$$
[A][A]^{-1}=[I]=[A]^{-1}[A]
$$

Additional Resources

For all resources on this topic such as digital audiovisual lectures, primers, textbook chapters, multiple-choice tests, worksheets in MATLAB, MATHEMATICA, MathCad and MAPLE, blogs, related physical problems, please visit
http://numericalmethods.eng.usf.edu/topics/gauss seidel.html

Free Training

- Start writing routines using the

1. Naive Gaussian Elimination Method and
2. Naive Gaussian Elimination with Partial Pivoting.
3. Think how to implement the LU decomposition of a matrix A
to solve the following set of linear equations:

$$
\mathbf{A} \cdot \mathbf{x}=\mathbf{b}
$$

where

$$
\mathbf{A}=\left(\begin{array}{rrrr}
13 & 4 & 7 & 9 \\
10 & 6 & 5 & 12 \\
1 & 8 & 2 & 16 \\
3 & 14 & 15 & 11
\end{array}\right), \quad \mathbf{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{c}
111 \\
118 \\
114 \\
163
\end{array}\right)
$$

Assignment for the Afternoon / Homework, 20 Points

- Exercise 1, 10 points: Print the upper triangular matrix and the new b-vector after the forward Gaussian elimination and show the solution of \mathbf{x}. Also, use the method to calculate the determinant of matrix \mathbf{A}.
- Exercise 2, 10 points: Write a routine which does the LU decomposition on a square matrix. Use the above matrix A to test your program.
- Print out the L and U parts of the matrix A.
- Solve the above equation.
- Optional: Compute the inverse of the matrix A.

