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1 Elementary statistics



•Study a statistical sample containing n values e.g. measurements. 
•We can characterise the sample by so called moments, i.e. sums of 
integer powers of the values.

Basic statistical quantities I

Mean
Estimates the value around which central clustering occurs
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characteristics) or not.  The arithmetic mean of a sample is a measure of its central tendency 
and is evaluated by dividing the sum of individual data points by the number of points.  
 Consider Table 1 which 14 measurements of the concentration of sodium chlorate 
produced in a chemical reactor operated at a pH of 7.0. 
 
Table 1  Chlorate ion concentration in 3mmol/cm  

12.0 15.0 14.1 15.9 11.5 14.8 11.2 13.7 15.9 12.6 14.3 12.6 12.1 14.8 
   
The arithmetic mean y  is mathematically defined as 
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which is the sum of the individual data points iy  divided by the number of data points n .  
 One of the measures of the spread of the data is the range of the data.  The range R  is 
defined as the difference between the maximum and minimum value of the data as 
 minmax yyR �                     (2) 
where 
 maxy is the maximum of the values of iy , ,,...,2,1 ni   
 miny is the minimum of the values of iy , .,...,2,1 ni  . 
  
 However, range may not give a good idea of the spread of the data as some data 
points may be far away from most other data points (such data points are called outliers).  
That is why the deviation from the average or arithmetic mean is looked as a better way to 
measure the spread.  The residual between the data point and the mean is defined as 
 yye ii �                      (3) 
The difference of each data point from the mean can be negative or positive depending on 
which side of the mean the data point lies (recall the mean is centrally located) and hence if 
one calculates the sum of such differences to find the overall spread, the differences may 
simply cancel each other.  That is why the sum of the square of the differences is considered 
a better measure.  The sum of the squares of the differences, also called summed squared 
error (SSE), tS , is given by 

 � �¦
 

� 
n

i
it yyS

1

2                      (4) 

Since the magnitude of the summed squared error is dependent on the number of data points, 
an average value of the summed squared error is defined as the variance, 2V   
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The variance, 2V  is sometimes written in two different convenient formulas as 

Alternatives are the median or the mode.

Range

06.01.2                                                        Chapter 06.01 

characteristics) or not.  The arithmetic mean of a sample is a measure of its central tendency 
and is evaluated by dividing the sum of individual data points by the number of points.  
 Consider Table 1 which 14 measurements of the concentration of sodium chlorate 
produced in a chemical reactor operated at a pH of 7.0. 
 
Table 1  Chlorate ion concentration in 3mmol/cm  

12.0 15.0 14.1 15.9 11.5 14.8 11.2 13.7 15.9 12.6 14.3 12.6 12.1 14.8 
   
The arithmetic mean y  is mathematically defined as 

 
n

y
y

n

i
i¦

  1                                          (1) 

which is the sum of the individual data points iy  divided by the number of data points n .  
 One of the measures of the spread of the data is the range of the data.  The range R  is 
defined as the difference between the maximum and minimum value of the data as 
 minmax yyR �                     (2) 
where 
 maxy is the maximum of the values of iy , ,,...,2,1 ni   
 miny is the minimum of the values of iy , .,...,2,1 ni  . 
  
 However, range may not give a good idea of the spread of the data as some data 
points may be far away from most other data points (such data points are called outliers).  
That is why the deviation from the average or arithmetic mean is looked as a better way to 
measure the spread.  The residual between the data point and the mean is defined as 
 yye ii �                      (3) 
The difference of each data point from the mean can be negative or positive depending on 
which side of the mean the data point lies (recall the mean is centrally located) and hence if 
one calculates the sum of such differences to find the overall spread, the differences may 
simply cancel each other.  That is why the sum of the square of the differences is considered 
a better measure.  The sum of the squares of the differences, also called summed squared 
error (SSE), tS , is given by 

 � �¦
 

� 
n

i
it yyS

1

2                      (4) 

Since the magnitude of the summed squared error is dependent on the number of data points, 
an average value of the summed squared error is defined as the variance, 2V   

 
� �

11
1

2

2

�

�
 

�
 

¦
 

n

yy

n
S

n

i
i

tV                     (5) 

The variance, 2V  is sometimes written in two different convenient formulas as 

06.01.2                                                        Chapter 06.01 

characteristics) or not.  The arithmetic mean of a sample is a measure of its central tendency 
and is evaluated by dividing the sum of individual data points by the number of points.  
 Consider Table 1 which 14 measurements of the concentration of sodium chlorate 
produced in a chemical reactor operated at a pH of 7.0. 
 
Table 1  Chlorate ion concentration in 3mmol/cm  

12.0 15.0 14.1 15.9 11.5 14.8 11.2 13.7 15.9 12.6 14.3 12.6 12.1 14.8 
   
The arithmetic mean y  is mathematically defined as 

 
n

y
y

n

i
i¦

  1                                          (1) 

which is the sum of the individual data points iy  divided by the number of data points n .  
 One of the measures of the spread of the data is the range of the data.  The range R  is 
defined as the difference between the maximum and minimum value of the data as 
 minmax yyR �                     (2) 
where 
 maxy is the maximum of the values of iy , ,,...,2,1 ni   
 miny is the minimum of the values of iy , .,...,2,1 ni  . 
  
 However, range may not give a good idea of the spread of the data as some data 
points may be far away from most other data points (such data points are called outliers).  
That is why the deviation from the average or arithmetic mean is looked as a better way to 
measure the spread.  The residual between the data point and the mean is defined as 
 yye ii �                      (3) 
The difference of each data point from the mean can be negative or positive depending on 
which side of the mean the data point lies (recall the mean is centrally located) and hence if 
one calculates the sum of such differences to find the overall spread, the differences may 
simply cancel each other.  That is why the sum of the square of the differences is considered 
a better measure.  The sum of the squares of the differences, also called summed squared 
error (SSE), tS , is given by 

 � �¦
 

� 
n

i
it yyS

1

2                      (4) 

Since the magnitude of the summed squared error is dependent on the number of data points, 
an average value of the summed squared error is defined as the variance, 2V   

 
� �

11
1

2

2

�

�
 

�
 

¦
 

n

yy

n
S

n

i
i

tV                     (5) 

The variance, 2V  is sometimes written in two different convenient formulas as 

Problem: outliers



Basic statistical quantities II
Residual
The residual between a data point i and the mean is the residual i
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The variance, 2V  is sometimes written in two different convenient formulas as 

The residual can be negative or positive and hence if one calculates the 
sum of such differences to find the overall spread, the differences may 
simply cancel each other. That is why the sum of the square of the 
differences is a better measure.

Summed squared error 
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The variance, 2V  is sometimes written in two different convenient formulas as 

The magnitude of the summed squared error is dependent on the 
number of data points. Therefore, we want an average.



Basic statistical quantities III
Variance
An average value of the summed squared error is the variance
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The variance, 2V  is sometimes written in two different convenient formulas as The variance is divided by (n −1) and not n because with the use of 
the mean in calculating the variance, we lose the independence of one 
of the data points. That is, if you know the mean of n data points, then 
the value of one of the n data points can be calculated by knowing the 
other (n−1) values. N should be used if the mean is known externally 
(not calculated from the sample).



Basic statistical quantities IV
Variance continued
There are different ways of writing the variance numerically like
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where the −3 term makes the value zero for a normal distribution.

The standard deviation of (14.1.6) as an estimator of the kurtosis of an underlying
normal distribution is

√

96/N when σ is the true standard deviation, and
√

24/N
when it is the sample estimate (14.1.3). However, the kurtosis depends on such
a high moment that there are many real-life distributions for which the standard
deviation of (14.1.6) as an estimator is effectively infinite.

Calculation of the quantities defined in this section is perfectly straightforward.
Many textbooks use the binomial theorem to expand out the definitions into sums
of various powers of the data, e.g., the familiar
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but this can magnify the roundoff error by a large factor and is generally unjustifiable
in terms of computing speed. A clever way to minimize roundoff error, especially
for large samples, is to use the corrected two-pass algorithm [1]: First calculate x,
then calculate Var(x1 . . . xN ) by
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The second sum would be zero if x were exact, but otherwise it does a good job of
correcting the roundoff error in the first term.

SUBROUTINE moment(data,n,ave,adev,sdev,var,skew,curt)
INTEGER n
REAL adev,ave,curt,sdev,skew,var,data(n)

Given an array of data(1:n), this routine returns its mean ave, average deviation adev,
standard deviation sdev, variance var, skewness skew, and kurtosis curt.

INTEGER j
REAL p,s,ep
if(n.le.1)pause ’n must be at least 2 in moment’
s=0. First pass to get the mean.
do 11 j=1,n

s=s+data(j)
enddo 11

ave=s/n
adev=0. Second pass to get the first (absolute), second, third, and fourth

moments of the deviation from the mean.var=0.
skew=0.
curt=0.
ep=0.
do 12 j=1,n

s=data(j)-ave
ep=ep+s
adev=adev+abs(s)
p=s*s
var=var+p
p=p*s
skew=skew+p
p=p*s
curt=curt+p

enddo 12

One which reduces round-off errors (large samples) is the corrected 
two pass algorithm. First calculate the mean, then the variance as
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Basic statistical quantities V
Standard deviation
To bring the variation back to the same level of units as the original data, 
the standard deviation is defined as
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 However, why is the variance divided by )1( �n  and not n  as we have n  data points?  
This is because with the use of the mean in calculating the variance, we lose the 
independence of one of the data points.  That is, if you know the mean of n  data points, then 
the value of one of the n  data points can be calculated by knowing the other )1( �n  data 
points.  
 To bring the variation back to the same level of units as the original data, a new term 
called standard deviation, V , is defined as 
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 Furthermore, the ratio of the standard deviation to the mean, known as the coefficient 
variation vc.  is also used to normalize the spread of a sample.  

 
100. u 

y
vc V

          (9) 
Example 1 
Use the data in Table 1 to calculate the 

a) mean chlorate concentration, 
b) range of data, 
c) residual of each data point, 
d) sum of the square of the residuals. 
e) sample standard deviation, 
f) variance, and  
g) coefficient of variation. 

 
Solution 
Set up a table (see Table 2) containing the data, the residual for each data point and the 
square of the residuals. 
 
Table 2 Data and data summations for statistical calculations. 

i  iy  2
iy  yyi �  � �2yyi �  

1 12 144 -1.6071 2.5829 
2 15 225 1.3929 1.9401 
3 14.1 198.81 0.4929 0.24291 

Coefficient variation
The ratio of the standard deviation to the mean, known as the 
coefficient variation is used to normalize the spread of a sample 
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Basic statistical quantities VI
Skewness
Also known as the third moment, skewness characterizes the degree of 
asymmetry of a distribution around its mean. It is a non-dimensional 
number. 

606 Chapter 14. Statistical Description of Data
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(b)(a)

Skewness

negative positive
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Figure 14.1.1. Distributions whose third and fourth moments are significantly different from a normal
(Gaussian) distribution. (a) Skewness or third moment. (b) Kurtosis or fourth moment.

That being the case, the skewness or third moment, and the kurtosis or fourth
moment should be used with caution or, better yet, not at all.

The skewness characterizes the degree of asymmetry of a distribution around its
mean. While the mean, standard deviation, and average deviation are dimensional
quantities, that is, have the same units as the measured quantities xj , the skewness
is conventionally defined in such a way as to make it nondimensional. It is a pure
number that characterizes only the shape of the distribution. The usual definition is

Skew(x1 . . . xN ) =
1
N

N
∑

j=1

[

xj − x

σ

]3

(14.1.5)

where σ = σ(x1 . . . xN ) is the distribution’s standard deviation (14.1.3). A positive
value of skewness signifies a distribution with an asymmetric tail extending out
towards more positive x; a negative value signifies a distribution whose tail extends
out towards more negative x (see Figure 14.1.1).

Of course, any set of N measured values is likely to give a nonzero value for
(14.1.5), even if the underlying distribution is in fact symmetrical (has zero skewness).
For (14.1.5) to be meaningful, we need to have some idea of its standard deviation
as an estimator of the skewness of the underlying distribution. Unfortunately, that
depends on the shape of the underlying distribution, and rather critically on its tails!
For the idealized case of a normal (Gaussian) distribution, the standard deviation of
(14.1.5) is approximately

√

15/N when x is the true mean, and
√

6/N when it is
estimated by the sample mean, (14.1.1). In real life it is good practice to believe in
skewnesses only when they are several or many times as large as this.

The kurtosis is also a nondimensional quantity. It measures the relative
peakedness or flatness of a distribution. Relative to what? A normal distribution,
what else! A distribution with positive kurtosis is termed leptokurtic; the outline
of the Matterhorn is an example. A distribution with negative kurtosis is termed
platykurtic; the outline of a loaf of bread is an example. (See Figure 14.1.1.) And,
as you no doubt expect, an in-between distribution is termed mesokurtic.

The conventional definition of the kurtosis is

Kurt(x1 . . . xN ) =







1
N

N
∑

j=1

[

xj − x

σ

]4






− 3 (14.1.6)

606 Chapter 14. Statistical Description of Data

Sam
ple page from

 NUM
ERICAL RECIPES IN FO

RTRAN 77: THE ART O
F SCIENTIFIC CO

M
PUTING

 (ISBN 0-521-43064-X)
Copyright (C) 1986-1992 by Cam

bridge University Press.Program
s Copyright (C) 1986-1992 by Num

erical Recipes Software. 
Perm

ission is granted for internet users to m
ake one paper copy for their own personal use. Further reproduction, or any copying of m

achine-
readable files (including this one) to any servercom

puter, is strictly prohibited. To order Num
erical Recipes books

or CDRO
M

s, visit website
http://www.nr.com

 or call 1-800-872-7423 (North Am
erica only),or send em

ail to directcustserv@
cam

bridge.org (outside North Am
erica).

(b)(a)

Skewness

negative positive

positive
(leptokurtic)negative

(platykurtic)

Kurtosis

Figure 14.1.1. Distributions whose third and fourth moments are significantly different from a normal
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That being the case, the skewness or third moment, and the kurtosis or fourth
moment should be used with caution or, better yet, not at all.

The skewness characterizes the degree of asymmetry of a distribution around its
mean. While the mean, standard deviation, and average deviation are dimensional
quantities, that is, have the same units as the measured quantities xj , the skewness
is conventionally defined in such a way as to make it nondimensional. It is a pure
number that characterizes only the shape of the distribution. The usual definition is

Skew(x1 . . . xN ) =
1
N

N
∑

j=1

[

xj − x

σ

]3

(14.1.5)

where σ = σ(x1 . . . xN ) is the distribution’s standard deviation (14.1.3). A positive
value of skewness signifies a distribution with an asymmetric tail extending out
towards more positive x; a negative value signifies a distribution whose tail extends
out towards more negative x (see Figure 14.1.1).

Of course, any set of N measured values is likely to give a nonzero value for
(14.1.5), even if the underlying distribution is in fact symmetrical (has zero skewness).
For (14.1.5) to be meaningful, we need to have some idea of its standard deviation
as an estimator of the skewness of the underlying distribution. Unfortunately, that
depends on the shape of the underlying distribution, and rather critically on its tails!
For the idealized case of a normal (Gaussian) distribution, the standard deviation of
(14.1.5) is approximately

√

15/N when x is the true mean, and
√

6/N when it is
estimated by the sample mean, (14.1.1). In real life it is good practice to believe in
skewnesses only when they are several or many times as large as this.

The kurtosis is also a nondimensional quantity. It measures the relative
peakedness or flatness of a distribution. Relative to what? A normal distribution,
what else! A distribution with positive kurtosis is termed leptokurtic; the outline
of the Matterhorn is an example. A distribution with negative kurtosis is termed
platykurtic; the outline of a loaf of bread is an example. (See Figure 14.1.1.) And,
as you no doubt expect, an in-between distribution is termed mesokurtic.

The conventional definition of the kurtosis is

Kurt(x1 . . . xN ) =







1
N

N
∑

j=1

[

xj − x

σ

]4






− 3 (14.1.6)

A positive value signifies a distribution 
with an asymmetric tail extending out 
towards more positive x; a negative 
value signifies a distribution whose tail 
extends out towards more negative x.

Press et al.



Basic statistical quantities VII
Kurtosis
Also known as the forth moment, the kurtosis characterizes the relative 
peakedness of flatness of a distribution. It is a non-dimensional number. 

Press et al.
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That being the case, the skewness or third moment, and the kurtosis or fourth
moment should be used with caution or, better yet, not at all.

The skewness characterizes the degree of asymmetry of a distribution around its
mean. While the mean, standard deviation, and average deviation are dimensional
quantities, that is, have the same units as the measured quantities xj , the skewness
is conventionally defined in such a way as to make it nondimensional. It is a pure
number that characterizes only the shape of the distribution. The usual definition is

Skew(x1 . . . xN ) =
1
N

N
∑

j=1
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xj − x

σ

]3

(14.1.5)

where σ = σ(x1 . . . xN ) is the distribution’s standard deviation (14.1.3). A positive
value of skewness signifies a distribution with an asymmetric tail extending out
towards more positive x; a negative value signifies a distribution whose tail extends
out towards more negative x (see Figure 14.1.1).

Of course, any set of N measured values is likely to give a nonzero value for
(14.1.5), even if the underlying distribution is in fact symmetrical (has zero skewness).
For (14.1.5) to be meaningful, we need to have some idea of its standard deviation
as an estimator of the skewness of the underlying distribution. Unfortunately, that
depends on the shape of the underlying distribution, and rather critically on its tails!
For the idealized case of a normal (Gaussian) distribution, the standard deviation of
(14.1.5) is approximately

√

15/N when x is the true mean, and
√

6/N when it is
estimated by the sample mean, (14.1.1). In real life it is good practice to believe in
skewnesses only when they are several or many times as large as this.

The kurtosis is also a nondimensional quantity. It measures the relative
peakedness or flatness of a distribution. Relative to what? A normal distribution,
what else! A distribution with positive kurtosis is termed leptokurtic; the outline
of the Matterhorn is an example. A distribution with negative kurtosis is termed
platykurtic; the outline of a loaf of bread is an example. (See Figure 14.1.1.) And,
as you no doubt expect, an in-between distribution is termed mesokurtic.

The conventional definition of the kurtosis is

Kurt(x1 . . . xN ) =







1
N

N
∑

j=1

[

xj − x

σ

]4






− 3 (14.1.6)

606 Chapter 14. Statistical Description of Data

Sam
ple page from

 N
U

M
ER

IC
AL R

EC
IPES IN

 FO
R

TR
AN

 77: TH
E AR

T O
F SC

IEN
TIFIC

 C
O

M
PU

TIN
G

 (ISBN
 0-521-43064-X)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity Press.Program

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes Softw

are. 
Perm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. Further reproduction, or any copying of m
achine-

readable files (including this one) to any servercom
puter, is strictly prohibited. To order N

um
erical R

ecipes books
or C

D
R

O
M

s, visit w
ebsite

http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth Am

erica only),or send em
ail to directcustserv@

cam
bridge.org (outside N

orth Am
erica).

(b)(a)

Skewness

negative positive

positive
(leptokurtic)negative

(platykurtic)

Kurtosis

Figure 14.1.1. Distributions whose third and fourth moments are significantly different from a normal
(Gaussian) distribution. (a) Skewness or third moment. (b) Kurtosis or fourth moment.

That being the case, the skewness or third moment, and the kurtosis or fourth
moment should be used with caution or, better yet, not at all.

The skewness characterizes the degree of asymmetry of a distribution around its
mean. While the mean, standard deviation, and average deviation are dimensional
quantities, that is, have the same units as the measured quantities xj , the skewness
is conventionally defined in such a way as to make it nondimensional. It is a pure
number that characterizes only the shape of the distribution. The usual definition is

Skew(x1 . . . xN ) =
1
N

N
∑

j=1

[

xj − x

σ

]3

(14.1.5)

where σ = σ(x1 . . . xN ) is the distribution’s standard deviation (14.1.3). A positive
value of skewness signifies a distribution with an asymmetric tail extending out
towards more positive x; a negative value signifies a distribution whose tail extends
out towards more negative x (see Figure 14.1.1).

Of course, any set of N measured values is likely to give a nonzero value for
(14.1.5), even if the underlying distribution is in fact symmetrical (has zero skewness).
For (14.1.5) to be meaningful, we need to have some idea of its standard deviation
as an estimator of the skewness of the underlying distribution. Unfortunately, that
depends on the shape of the underlying distribution, and rather critically on its tails!
For the idealized case of a normal (Gaussian) distribution, the standard deviation of
(14.1.5) is approximately

√

15/N when x is the true mean, and
√

6/N when it is
estimated by the sample mean, (14.1.1). In real life it is good practice to believe in
skewnesses only when they are several or many times as large as this.

The kurtosis is also a nondimensional quantity. It measures the relative
peakedness or flatness of a distribution. Relative to what? A normal distribution,
what else! A distribution with positive kurtosis is termed leptokurtic; the outline
of the Matterhorn is an example. A distribution with negative kurtosis is termed
platykurtic; the outline of a loaf of bread is an example. (See Figure 14.1.1.) And,
as you no doubt expect, an in-between distribution is termed mesokurtic.

The conventional definition of the kurtosis is

Kurt(x1 . . . xN ) =
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∑
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xj − x
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]4
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A distribution with positive kurtosis is 
termed leptokurtic. The Matterhorn is an 
example. A distribution with negative 
kurtosis is termed platykurtic. An in-
between distribution is mesokurtic. The 
reference is a normal distribution.

High moments (skew, kurt) are less 
robust than the mean or std. deviation.



Basic statistical quantities VIII
Median

Press et al.

The median of a probability distribution function p(x) is the value xmed 
for which larger and smaller values of x are equally probable:
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adev=adev/n Put the pieces together according to the conventional definitions.
var=(var-ep**2/n)/(n-1) Corrected two-pass formula.
sdev=sqrt(var)
if(var.ne.0.)then

skew=skew/(n*sdev**3)
curt=curt/(n*var**2)-3.

else
pause ’no skew or kurtosis when zero variance in moment’

endif
return
END

Semi-Invariants
The mean and variance of independent random variables are additive: If x and y are

drawn independently from two, possibly different, probability distributions, then

(x + y) = x + y Var(x + y) = Var(x) + Var(x) (14.1.9)

Higher moments are not, in general, additive. However, certain combinations of them,
called semi-invariants, are in fact additive. If the centered moments of a distribution are
denoted Mk ,

Mk ≡
〈

(xi − x)k
〉

(14.1.10)

so that, e.g., M2 = Var(x), then the first few semi-invariants, denoted Ik are given by

I2 = M2 I3 = M3 I4 = M4 − 3M2
2

I5 = M5 − 10M2M3 I6 = M6 − 15M2M4 − 10M2
3 + 30M3

2

(14.1.11)

Notice that the skewness and kurtosis, equations (14.1.5) and (14.1.6) are simple powers
of the semi-invariants,

Skew(x) = I3/I3/2
2 Kurt(x) = I4/I2

2 (14.1.12)

A Gaussian distribution has all its semi-invariants higher than I2 equal to zero. A Poisson
distribution has all of its semi-invariants equal to its mean. For more details, see [2].

Median and Mode

The median of a probability distribution function p(x) is the value xmed for
which larger and smaller values of x are equally probable:

∫ xmed

−∞
p(x) dx =

1
2

=
∫ ∞

xmed

p(x) dx (14.1.13)

The median of a distribution is estimated from a sample of values x1, . . . ,
xN by finding that value xi which has equal numbers of values above it and below
it. Of course, this is not possible when N is even. In that case it is conventional
to estimate the median as the mean of the unique two central values. If the values
xj j = 1, . . . , N are sorted into ascending (or, for that matter, descending) order,
then the formula for the median is

xmed =
{x(N+1)/2, N odd

1
2 (xN/2 + x(N/2)+1), N even

(14.1.14)

The median of a sample of values x1,..., xN is that value xi which has 
equal numbers of values above it and below it. Of course, this is not 
possible when N is even. In that case it is conventional to estimate the 
median as the mean of the unique two central values. If the values are 
sorted into ascending order, then the formula for the median is
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adev=adev/n Put the pieces together according to the conventional definitions.
var=(var-ep**2/n)/(n-1) Corrected two-pass formula.
sdev=sqrt(var)
if(var.ne.0.)then

skew=skew/(n*sdev**3)
curt=curt/(n*var**2)-3.

else
pause ’no skew or kurtosis when zero variance in moment’

endif
return
END

Semi-Invariants
The mean and variance of independent random variables are additive: If x and y are

drawn independently from two, possibly different, probability distributions, then

(x + y) = x + y Var(x + y) = Var(x) + Var(x) (14.1.9)

Higher moments are not, in general, additive. However, certain combinations of them,
called semi-invariants, are in fact additive. If the centered moments of a distribution are
denoted Mk ,

Mk ≡
〈

(xi − x)k
〉

(14.1.10)

so that, e.g., M2 = Var(x), then the first few semi-invariants, denoted Ik are given by

I2 = M2 I3 = M3 I4 = M4 − 3M2
2

I5 = M5 − 10M2M3 I6 = M6 − 15M2M4 − 10M2
3 + 30M3

2

(14.1.11)

Notice that the skewness and kurtosis, equations (14.1.5) and (14.1.6) are simple powers
of the semi-invariants,

Skew(x) = I3/I3/2
2 Kurt(x) = I4/I2

2 (14.1.12)

A Gaussian distribution has all its semi-invariants higher than I2 equal to zero. A Poisson
distribution has all of its semi-invariants equal to its mean. For more details, see [2].

Median and Mode

The median of a probability distribution function p(x) is the value xmed for
which larger and smaller values of x are equally probable:

∫ xmed

−∞
p(x) dx =

1
2

=
∫ ∞

xmed

p(x) dx (14.1.13)

The median of a distribution is estimated from a sample of values x1, . . . ,
xN by finding that value xi which has equal numbers of values above it and below
it. Of course, this is not possible when N is even. In that case it is conventional
to estimate the median as the mean of the unique two central values. If the values
xj j = 1, . . . , N are sorted into ascending (or, for that matter, descending) order,
then the formula for the median is

xmed =
{x(N+1)/2, N odd

1
2 (xN/2 + x(N/2)+1), N even

(14.1.14)



Basic statistical quantities IX
Mode

Press et al.

The mode of a probability distribution function p(x) is the value of x 
where p takes on a maximum value. The mode is useful primarily 
when there is a single, sharp maximum, in which case it estimates 
the central value.  

Occasionally, a distribution will be bimodal, with two relative 
maxima; then one may wish to know the two modes individually. 
Note that, in such cases, the mean and median are not very 
useful, since they will give only a “compromise” value between the 
two peaks.



2 Regression analysis



Regression analysis
What is regression analysis? 
Regression analysis gives quantitative information on the 
relationship between a response (dependent) variable and one or 
more predictor (independent) variables to the extent that the 
necessary information is contained in the data. 

What is regression analysis used for? 

1. prediction 
2. model adaption and 
3. parameter estimation.

In other words: fitting



Least squares method
This is the most popular method of parameter estimation for 
coefficients of regression models. It has well known probability 
distributions and gives unbiased estimators of regression 
parameters with the smallest variance.

We wish to predict the response to n data points (x1,y1),(x2,y2),......,
(xn,yn) by a regression model given by

Introduction to Regression Analysis                                                                                06.02.5 
  

study carried out about the behavior of men might have inadvertently restricted the survey to 
Caucasian men only.  Shall we then generalize the result as the attributes of all men 
irrespective of race?  Such use of regression equation is an abuse since the limitations 
imposed by the data restrict the use of the prediction equations to Caucasian men. 
 
Misidentification 
 Finally, misidentification of causation is a classic abuse of regression analysis 
equations.  Regression analysis can only aid in the confirmation or refutation of a causal 
model - the model must however have a theoretical basis.  In a chemical reacting system in 
which two species react to form a product, the amount of product formed or amount of 
reacting species vary with time.  Although a regression equation of species concentration and 
time can be obtained, one cannot attribute time as the causal agent for the varying species 
concentration.  Regression analysis cannot prove causality, rather it can only substantiate or 
contradict causal assumptions.  Anything outside this is an abuse of regression analysis 
method. 
 
Least Squares Methods 
 This is the most popular method of parameter estimation for coefficients of regression 
models. It has well known probability distributions and gives unbiased estimators of 
regression parameters with the smallest variance.   
 We wish to predict the response to n  data points ),(),......,,(),,( 2211 nn yxyxyx  by a 
regression model given by 
 )(xfy           (6) 
where, the function )(xf  has regression constants that need to be estimated.   
 For example  
 xaaxf 10)( �  is a straight-line regression model with constants 0a and 1a  

xaeaxf 1
0)(  is an exponential model with constants 0a and 1a  

 2
210)( xaxaaxf �� is a quadratic model with constants 0a , 1a  and 2a  

 A measure of goodness of fit, that is how the regression model )(xf  predicts the 
response variable y  is the magnitude of the residual, iE  at each of the n  data points. 
 nixfyE iii ,....2,1),(  �                    (7) 
Ideally, if all the residuals iE  are zero, one may have found an equation in which 
all the points lie on a model. Thus, minimization of the residual is an objective of obtaining 
regression coefficients.  In the least squares method, estimates of the constants of the models 
are chosen such that minimization of the sum of the squared residuals is achieved, that is 

minimize ¦
 

n

i
iE

1

2 .  

 
Why minimize the sum of the square of the residuals?  

where the function f (x) has regression constants that need to be 
estimated. For example 

f(x) = a0 + a1x is a straight-line regression model with constants a0 and a1 
f(x) = a0ea1x is an exponential model with constants a0 and a1 
f(x) = a0 + a1x + a2 x2 is a quadratic model with constants a0 , a1 and a2



Least squares method II
A measure of goodness of fit, that is how the regression model f (x) 
predicts the response variable y is the magnitude of the residual, Ei at 
each of the n data points.

Introduction to Regression Analysis                                                                                06.02.5 
  

study carried out about the behavior of men might have inadvertently restricted the survey to 
Caucasian men only.  Shall we then generalize the result as the attributes of all men 
irrespective of race?  Such use of regression equation is an abuse since the limitations 
imposed by the data restrict the use of the prediction equations to Caucasian men. 
 
Misidentification 
 Finally, misidentification of causation is a classic abuse of regression analysis 
equations.  Regression analysis can only aid in the confirmation or refutation of a causal 
model - the model must however have a theoretical basis.  In a chemical reacting system in 
which two species react to form a product, the amount of product formed or amount of 
reacting species vary with time.  Although a regression equation of species concentration and 
time can be obtained, one cannot attribute time as the causal agent for the varying species 
concentration.  Regression analysis cannot prove causality, rather it can only substantiate or 
contradict causal assumptions.  Anything outside this is an abuse of regression analysis 
method. 
 
Least Squares Methods 
 This is the most popular method of parameter estimation for coefficients of regression 
models. It has well known probability distributions and gives unbiased estimators of 
regression parameters with the smallest variance.   
 We wish to predict the response to n  data points ),(),......,,(),,( 2211 nn yxyxyx  by a 
regression model given by 
 )(xfy           (6) 
where, the function )(xf  has regression constants that need to be estimated.   
 For example  
 xaaxf 10)( �  is a straight-line regression model with constants 0a and 1a  

xaeaxf 1
0)(  is an exponential model with constants 0a and 1a  

 2
210)( xaxaaxf �� is a quadratic model with constants 0a , 1a  and 2a  

 A measure of goodness of fit, that is how the regression model )(xf  predicts the 
response variable y  is the magnitude of the residual, iE  at each of the n  data points. 
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Ideally, if all the residuals iE  are zero, one may have found an equation in which 
all the points lie on a model. Thus, minimization of the residual is an objective of obtaining 
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from where the name least squares.



Least squares method III
In other words, given n data points 
best fit to the data.  The best fit is based on
minimizing the sum of the square of the residuals, 

Residual at a point is 

 Basic model for regression

Sum of the square of the 
residuals 

.



3 Linear Regression



Linear Regression
Given n data points best fit

to the data.

x

y

Illustration with Mathematica



Parameter determination I
The least squares criterion minimizes the sum of the square of the 
residuals in the model, and produces a unique line.

Our task is to minimize the sum of the square of the residuals by 
determining the best regression (or fit) parameters a0 and a1.

At a minimum, we must have (using the chain rule):
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Figure 3 Linear regression of y  vs. x  data showing residuals and square of residual at a 
typical point, ix . 
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This later can be understood as a system of two linear equations, which we 
can write in a 2 x 2 matrix form as we have seen in the last lecture, with the 
unknowns a0 and a1 (all xi and yi are known). For such a small matrix, one 
quickly find the result 
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Parameter determination IV
Defining
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Example 1 
The torque T  needed to turn the torsional spring of a mousetrap through an angle, T  is given 
below 
   Table 5 Torque versus angle for a torsion spring. 

Angle, T  
Radians 

Torque, T  
mN �  

0.698132 0.188224 
0.959931 0.209138 
1.134464 0.230052 
1.570796 0.250965 
1.919862 0.313707 

 
Find the constants 1k  and 2k  of the regression model  
 T21 kkT �  
 
Solution 
Table 6 shows the summations needed for the calculation of the constants of the regression 
model. 
   
Table 6 Tabulation of data for calculation of needed summations. 

i T  T  2T  TT  
1 radians mN �  radians 2  mN �  
2 0.698132 0.188224 11087388.4 �u  11031405.1 �u  
3 0.959931 0.209138 11021468.9 �u  11000758.2 �u  
4 1.134464 0.230052 1.2870 11060986.2 �u  
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we can write the least squares linear fit parameters as
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Example I

x y

0.698132 0.188224

0.959931 0.209138

1.134464 0.230052

1.570796 0.250965

1.919862 0.313707

Find the constants a0 and a1 for the linear model given by

y 

0,1000

0,4000

X
0,5000 2,0000

Given the following arbitrary data set, find the best fitting last square model.



Example II
Using the equations described for a0 and a1 we rapidly find

a0

a1

      x        

   
   

y 
   

   
  



4 Non-Linear Regression



Nonlinear Regression

Some popular nonlinear regression models:

1. Exponential model:

2. Power model:

3. Saturation growth model:

4. Polynomial model:

3



Nonlinear Regression

Given n data points best fit 
to the data, where is a nonlinear function of .

Figure. Nonlinear regression model for discrete y vs. x data

4



Exponential Model

Given best fit to the data.

Figure. Exponential model of nonlinear regression for y vs. x data



Finding Constants of Exponential Model I

The sum of the square of the residuals is defined as

Differentiate with respect to a and b

€ 

Sr = yi − ae
bxi( )2

i=1

n

∑

€ 

∂Sr
∂a

= 2 yi − ae
bxi( )

i=1

n

∑ −ebxi( ) = 0

€ 

∂Sr
∂b

= 2 yi − ae
bxi( )

i=1

n

∑ −axie
bxi( ) = 0



Finding Constants of Exponential Model II

Rewriting the equations, we obtain



Finding constants of Exponential Model III

Substituting a back into the previous equation

The constant b can be found through numerical methods such as 
bisection method. Once it is found, we can also calculate a.

Solving the first equation for a yields

€ 

a =

yie
bxi

i=1

n

∑

e2bxi
i=1

n

∑

€ 

yi
i=1

n

∑ xie
bxi −

yi
i=1

n

∑ ebxi

e2bxi
i=1

n

∑
xie

2bxi

i=1

n

∑ = 0



Example - Exponential Model I

t(hrs) 0 1 3 5 7 9
1.000 0.891 0.708 0.562 0.447 0.355

Many patients get concerned when a test involves injection of a 
radioactive material.  For example for scanning a gallbladder, a few 
drops of Technetium-99m isotope is used.  Half of the 
Technetium-99m would be gone in about 6 hours.  It however takes 
about 24 hours for the radiation levels to reach what we are exposed 
to in day-to-day activities.  Below is given the relative intensity of 
radiation as a function of time.

 Relative intensity of radiation as a function of time. 



Example - Exponential Model II

Find: a) The value of the regression constants and
b) The half-life of Technetium-99m
c) Radiation intensity after 24 hours

The relative intensity is related to time by the equation



Constants of the Model

The value of λ is found by solving the nonlinear equation

Once it is found, 
A is given as€ 

f λ( ) = γ i
i=1

n

∑ tie
λti −

γ ie
λti

i=1

n

∑

e2λti
i=1

n

∑
tie

2λti

i=1

n

∑ = 0

€ 

A =

γ ie
λti

i=1

n

∑

e2λti
i=1

n

∑



Solving the non-linear equation

The value of A can now 
be calculated also:

€ 

A =

γ ie
λti

i=1

6

∑

e2λti
i=1

6

∑



Plot of data and regression curve



Relative Intensity After 24 hrs

The relative intensity of radiation after 24 hours  

This result implies that only

radioactive intensity is left after 24 hours.



Linearization of data I

To find the constants of many nonlinear models, it results in solving 
simultaneous nonlinear equations.  For mathematical convenience, some of 
the data for such models can be linearized.  For example, the data for an 
exponential model can be linearized.

As shown in the previous example, many chemical and physical processes are 
governed by the equation, 

Taking the natural log of both sides yields,

Let and

(implying) with

We now have a linear regression model where 



Linearization of data II
Using linear model regression methods,

Once are found, the original constants of the model are found as
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Example - Linearization of data I

t(hrs) 0 1 3 5 7 9

1.000 0.891 0.708 0.562 0.447 0.355

R
el

at
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ns

ity
 o

f r
ad

ia
tio

n,
 γ

0,000

0,250

0,500

0,750

1,000

Time  t, (hours)
0 2 5 7 9

Same example of radioactive decay as 
before

Exponential model given as,

Assuming , and we obtain

This is a linear relationship between and



Example - Linearization of data II

Using this linear relationship, we can calculate

and

where

1 

2 

3 

4 

5 

6

0 

1 

3 

5 

7 

9

1 

0.891 

0.708 

0.562 

0.447 

0.355

0.00000 

−0.11541 

−0.34531 

−0.57625 

−0.80520 

−1.0356

0.0000 

−0.11541 

−1.0359 

−2.8813 

−5.6364 

−9.3207

0.0000 

1.0000 

9.0000 

25.000 

49.000 

81.000

25.000 −2.8778 −18.990 165.00

Table. Summation data for linearization of data model

With
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Example - Linearization of Data III

Calculating 

Since

also

Resulting model is



Example - Linearization of Data IV

The regression formula is

The Half life of Technetium 99 is when

Literature value: 6.01 hours



Comparison 

Comparison of exponential model with and without data linearization:

With data linearization Without data linearization 

A 0.99974 0.99983

λ −0.11505 −0.11508

Half-Life (hrs) 6.0248 6.0232

Relative intensity 
after 24 hrs. 6.3200×10−2 6.3160×10−2

The values are very similar so data linearization was suitable to find the 
constants of the nonlinear exponential model in this case.
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Numerisches Praktikum – Numerical Practical Training

PD. Dr. Hubert Klahr, Dr. Christoph Mordasini

Statistics and Fitting

Return by 9:15 a.m. tomorrow

Assignment for the Afternoon / Homework

All data files required for this exercise sheet can be downloaded from the UKNum home-

page http://www.mpia.de/homes/klahr/UKNUM 2015.html.

• Exercise 1, 4 points: Statistics (I).
The data in the file dice.dat (available on the UKNum homepage) represent the

results of experiments rolling two dice and adding the pips (“Augenzahl”). The first

and second column in the file give the number of the experiment and the result,

respectively. (a) Write a program code which reads in the data file and calculates

the mean, the median and the standard deviation of the data. What is the relative

di↵erence between the mean and the median?

• Exercise 2, 6 points: Statistics (II).
The data in the file grades.dat represents the grades of an exam (with results

between 0 (worst) and 100 (best). The number in the first column stands for the

student’s number, with his grade given in the second column. (a) Find the mean, the

median and the standard deviation of the data. (b) What is the relative di↵erence

between the mean and the median? How does it compare to the result from 1?

What does it tell you about the symmetry of the underlying parent distribution of

the data?

• Exercise 3, 10 points: Least-Squares Fit to a Line

A student has measured the potential di↵erence (in volts) along a conducting nickel-

silver wire using an analog voltmeter. The voltage is measured between the negative

end of the wire and various positions along the wire (in cm). Uncertainties in the

positions are less than 1 mm and can be neglected. Assume the the uncertainty

in the voltage measurement to be the same for each measurement (i.e., set �i=

1.0). (a) Write a program code to read in the data in the file data1.dat and fit a

line f(x) = a + bx through the data using a Least-Squares Fit as presented in the

Lecture. (b) Estimate the standard deviation of an individual measurement using

�2 ⇠ s2 =
1

N � 2

X
(yi � a� bxi)

2.

Continued on next page/backside

https://www2.mpia-hd.mpg.de/~klahr/UKNUM2022.html

https://www2.mpia-hd.mpg.de/~klahr/UKNUM2022.html


Numerisches Praktikum – Numerical Practical Training

PD. Dr. Hubert Klahr, Dr. Christoph Mordasini

Statistics and Fitting

Return by 9:15 a.m. tomorrow

Assignment for the Afternoon / Homework

All data files required for this exercise sheet can be downloaded from the UKNum home-

page http://www.mpia.de/homes/klahr/UKNUM 2015.html.

• Exercise 1, 4 points: Statistics (I).
The data in the file dice.dat (available on the UKNum homepage) represent the

results of experiments rolling two dice and adding the pips (“Augenzahl”). The first

and second column in the file give the number of the experiment and the result,

respectively. (a) Write a program code which reads in the data file and calculates

the mean, the median and the standard deviation of the data. What is the relative

di↵erence between the mean and the median?

• Exercise 2, 6 points: Statistics (II).
The data in the file grades.dat represents the grades of an exam (with results

between 0 (worst) and 100 (best). The number in the first column stands for the

student’s number, with his grade given in the second column. (a) Find the mean, the

median and the standard deviation of the data. (b) What is the relative di↵erence

between the mean and the median? How does it compare to the result from 1?

What does it tell you about the symmetry of the underlying parent distribution of

the data?

• Exercise 3, 10 points: Least-Squares Fit to a Line

A student has measured the potential di↵erence (in volts) along a conducting nickel-

silver wire using an analog voltmeter. The voltage is measured between the negative

end of the wire and various positions along the wire (in cm). Uncertainties in the

positions are less than 1 mm and can be neglected. Assume the the uncertainty

in the voltage measurement to be the same for each measurement (i.e., set �i=

1.0). (a) Write a program code to read in the data in the file data1.dat and fit a

line f(x) = a + bx through the data using a Least-Squares Fit as presented in the

Lecture. (b) Estimate the standard deviation of an individual measurement using

�2 ⇠ s2 =
1

N � 2

X
(yi � a� bxi)

2.

Continued on next page/backside



• Optional Task: Least-Squares Fit to an Exponential

The file data2.dat contains the measurements of an exponential decay, e.g., of a

radioactive element (in some arbitrary units). The last column gives the (constant)

uncertainty in each measurement. Fit an exponential function f(x) = a exp(bx) to
the data using (a) the direct exponential fit as presented in the Lecture. Use a

bracketing root-finding algorithm, e.g., bisection. In the current case, initial guesses

of b1 = �1 and b2 = 0 do bracket the root b?. (b) Fit a straight line to the linearized

equation using a least-squares fit. Compare the result to the exponential fit in (a).

Plot the results of (a) and (b) on linear and on logarithmic scale (log y vs. x)
including the errorbars.


