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1 Elementary statistics



pasic statistical quantities |

e Study a statistical sample containing n values e.g. measurements.
®\/\\e can characterise the sample by so called moments, I.e. sums of
integer powers of the values.

Mean
Estimates the value around which central clustering occurs

n

Vi
1

y=-=
n

Alternatives are the median or the mode.

Range
v, 1s the maximum of the values of y,, i=12,...,n,

R = Y max Y min y.. 1S the minimum of the values of y,, i=12,...,n..

Problem: outliers



pasic statistical quantities I

Residual

The residual between a data point i and the mean is the residual |

€ =V:=)
The residual can be negative or positive and hence if one calculates the

sum of such differences to find the overall spread, the differences may

simply cancel each other. That is why the sum of the square of the
differences is a better measure.

Summed squared error
St — Z(yi o )7)2
=1

The magnitude of the summed squared error is dependent on the
number of data points. Therefore, we want an average.



pasic statistical quantities Il

Variance

An average value of the summed squared error is the variance

n

s >, -y)

o° = t :i=1

n—1 n—1

The variance is divided by (n —1) and not n because with the use of

the mean in calculating the variance, we lose the independence of one
of the data points. That is, If you know the mean of n data points, then
the value of one of the n data points can be calculated by knowing the

other (n—1) values. N should be used if the mean is known externally
(not calculated from the sample).




pasic statistical quantities |V

Variance continued
There are different ways of writing the variance numerically like

an _
1 _
Var(xl...a?N):N_l (Zx?) — Nz° | ~ 22 — 77
j=1

One which reduces round-off errors (large samples) is the corrected
two pass algorithm. First calculate the mean, then the variance as

Var(a:l...a:N)Nll{Z(mjx)Q;[ Z(xj—f) }

71=1




pasic statistical quantities V

Standard deviation

To bring the variation back to the same level of units as the original data,
the standard deviation is defined as

Coefficient variation

he ratio of the standard deviation to the mean, known as the
coefficient variation is used to normalize the spread of a sample

C.V = g x 100 [9%6)]
Y



Basic statistical quantities VI

Skewness

Also known as the third moment, skewness characterizes the degree of

asymmetry of a distribution around its mean. It is a non-dimensional
number.

1 al Tr; — X
SkeW(xl . = N E J
J=1 = -

Skewness
A positive value signifies a distribution
with an asymmetric tail extending out
«——positive towards more positive x; a negative
value signifies a distribution whose tall
extends out towards more negative X.

- /
negative ——>,

Press et al.



pasic statistical quantities VI

Kurtosis

Also known as the forth moment, the kurtosis characterizes the relative
peakedness of flatness of a distribution. It is a non-dimensional number.

o .. {;Vi{ r} ;

1=1
Kurtosis A distribution with positive kurtosis is
/ positive termed leptokurtic. The Matterhorn is an
negative (leptokurtic) example. A distribution with negative

(platykurtic) ¥ _

- - kurtosis is termed platykurtic. An in-
between distribution is mesokurtic. The
reference is a normal distribution.

High moments (skew, kurt) are less
robust than the mean or std. deviation.

Press et al.



pasic statistical quantities VIl

Median

The median of a probability distribution function p(x) is the value Xmed
for which larger and smaller values of x are equally probable:

/_ : p(x) do = % _ / T () da

med

The median of a sample of values xi,..., XN IS that value xi which has
equal numbers of values above it and below it. Of course, this is not
possible when N is even. In that case it Is conventional to estimate the
median as the mean of the unique two central values. If the values are
sorted into ascending order, then the formula for the median is

- {$(N+1)/27 N odd
e %(ZEN/Q + x(N/QH_l), N even

Press et al.



pasic statistical quantities IX

Mode

The mode of a probability distribution function p(x) is the value of x
where p takes on a maximum value. The mode is useful primarily

when there Is a single, sharp maximum, in which case it estimates
the central value.

Occasionally, a distribution will be bimodal, with two relative
maxima; then one may wish to know the two modes individually.
Note that, in such cases, the mean and median are not very

useful, since they will give only a “compromise” value between the
two peaks.

Press et al.



2 [Regression analysis



Regression analysis

What is regression analysis?

Regression analysis gives quantitative information on the
relationship between a response (dependent) variable and one or
more predictor (independent) variables to the extent that the

necessary information is contained in the data.

What is regression analysis used for?

1. prediction
2. model adaption and
3. parameter estimation.

In other words: fitting



[ east squares method

This is the most popular method of parameter estimation for
coefficients of regression models. It has well known probability

distributions and gives unbiased estimators of regression
parameters with the smallest variance.

We wish to predict the response to n data points (x1,y1),(X2,y2),
(Xn,Yn) by a regression model given by

y=f(x)

where the function f (x) has regression constants that need to be
estimated. For example

f(x) = ao + aix is a straight-line regression model with constants ap and a:
f(x) = aoe21* is an exponential model with constants ao and a:
f(x) = ao + a1X + a2 x2is a quadratic model with constants ap , a1 and az




[ east squares method |l

A measure of goodness of fit, that is how the regression model f (x)
predicts the response variable y is the magnitude of the residual, & at
each of the n data points.

E=y—-f(x),i=12,.n

Ideally, If all the residuals Ei are zero, one may have found an equation
iIn which all the points lie on a model.

In the least squares method, estimates of the constants of the
models are chosen such that minimization of the sum of the squared
residuals is achieved, that is minimize

5 2
>F,
i=1

from where the name least squares.



[ east squares method Il

In other words, given n data points  (xi, 1), (x2, y2), ..., (X1, yn)

best fit vy = f(x) tothe data. The best fit is based on
minimizing the sum of the square of the residuals, S .

Residual at a point is
€= yvi— f(xi)

Sum of the square of the
residuals

5, = j(yz- ~ F ()

® (x1,)1)

(x”9 y”)

y=f(x)

Basic model for regression



3 Linear Regression



Linear Regression

Given n data points  (x1, y1), (x2, y2), ..., (xs, y») best fit

y=a, +a,x

to the data.

A
y

lllustration with Mathematica



Parameter determination |

The least squares criterion minimizes the sum of the square of the
residuals in the model, and produces a unique line.

n n 2
= Ve, =Yy )
_Eei _2 i — doy — A1 X;

i=1 =1

Our task is to minimize the sum of the square of the residuals by
determining the best regression (or fit) parameters ap and as.

At a minimum, we must have (using the chain rule):

=_2E(y -a, —a,x, X—l) 0

aao

=_2E(y —-a, —a,x, X—x) 0

8a1



Parameter determination I/

This gives

Noting that Zao =a,+a,+...+a, =na,
i=1

n n
nd, +alzxi :Zyi
i=1 i=1
n n n
QX ta ) xi =)
doy ) X; tdy p X, = ) XV,
i=1 i=1 i=1



Parameter getermination I/

n n
na, + alel. =Zyl.
i=1 i=1
n n n
2 _
aozxi T alzxi _inyi
i=1 i=1

i=1
This later can be understood as a system of two linear equations, which we

can write in a 2 x 2 matrix form as we have seen In the last lecture, with the

unknowns ap and as (all xiand y; are known). For such a small matrix, one
quickly find the result

n n n n n n n
2
PILDRED DAY ORAESRPI]
_ =l i=1 i=1 =l i=1 i=1 i=1

a, =

a, =

2 2
n n n n
2 2
DTN S {3
i=1 i=1 i=1 i=1



Parameter determination |V

Defining Zn:x,- _ Z":yi




Example |

Given the following arbitrary data set, find the best fitting last square model.

0,4000
X y
[ J
0.698132 0.188224 > ¢
g
0.959931 0.209138 ¢
[ J

1.134464 0.230052
1.570796 0.250965

0,1000
1.919862 0.313707 0,5000 2,0000

FIind the constants ap and a+ for the linear model given by

y=a, +ax

16



Example |l

Using the equations described for ag and a1 we rapidly find

ap=1.1767x10""
21=9.6091x107"

0.4r

0.35F

0.3r

025

0.2

0.15r

0.1

! ! ! ! ! ! !
0.6 0.8 1 1.2 1.4 1.6 1.8




4 Non-Linear Regression



Nonlinear Regression

Some popular nonlinear regression models:

1. Exponential model: (v = ae™)
2. Power model: (y =ax")
. ax
3. Saturation growth model: y =
b+x

4. Polynomial model: (y=ao+aix+..+anx")



Nonlinear Regression

Given n data points
to the data, where

A

(x,),) @

(x1, 1), (x2,¥2), ..., (Xn, ¥n) bestfit y = f(x)

f(x) is a nonlinear function of

e (xn’yn)
e

AN

y=f(x)
y - f(x)

L
(xl.,yl.)—-‘x

(x.%)

Figure. Nonlinear regression model for discrete y vs. x data

X



Exponential Model

Given (x,,¥,),(x,,¥,),....,(x,,V )bestfit y=ae™ tothe data.

A

« (X.,7)
e
(x.7)® . \
B N
. y - f(x)
(x %)

Figure. Exponential model of nonlinear regression for y vs. x data



Finding Constants of Exponential Moadel |

The sum of the square of the residuals is defined as
n

Sr = E(yi —ae™ )2

i=1
Differentiate with respect to a and b

S, < X, x,
aa” —ZZ(yi —aeb’)(—eb’) = ()

a;; = ZZ(yi —ae” )(—axiebx") =()




Finding Constants of Exponential Moadel I

Rewriting the equations, we obtain

l

n n
=1 =1



/

~Inding constants of Exponential Model Il

Solving the first equation for a yields

n
bx;
PR
_ =1
a=—,
Eebei

=1

Substituting a back into the previous equation

n
n Eyiein n
Eyixiein _ i=r} Exieszi —0
i=1 E p2bxi =1

i=1
The constant b can be found through numerical methods such as
bisection method. Once it is found, we can also calculate a.




Example - Exponential Model |

Many patients get concerned when a test involves injection of a
radioactive material. For example for scanning a gallbladder, a few
drops of Technetium-99m isotope is used. Half of the
Technetium-99m would be gone in about 6 hours. It however takes
about 24 hours for the radiation levels to reach what we are exposed
to in day-to-day activities. Below is given the relative intensity of
radiation as a function of time.

Relative intensity of radiation as a function of time.

t(hrs) 0 1 3 5 7 9
Y 1.000 | 0.891 | 0.708 | 0.562 | 0.447 | 0.355




Example - Exponential Model Il

The relative intensity is related to time by the equation Y = AeM

Find:  a) The value of the regression constants 4 and A
b) The half-life of Technetium-99m

c) Radiation intensity after 24 hours

Data
1@

0.8}

>~ 00671

0.4}

o 2 4 6
Time (hrs)

8 10



Constants of the Model

v = LM
The value of A Is found by solving the nonlinear equation

n

X

f()") = E)/itie)wi i EtieMti =0
i=1

=1

At;
Once it is found, zyie
: . A — =1
A IS given as n



Solving the non-linear equation

L Iy
, N DV e n
fO)= Sy e"t - E——3 1" = 0
i=1 &L Oht i=l
Ye
i=1
o The value of A can now
1] - be calculated also:
> | °
< At
E PXE
3| =]
A - l 6 —_ 0.9998
| | M1,
3.5 0.3 0.1 26
Iy i=1

A =-0.1151



Plot of data and regression curve

Y =O9998 e—O.llSlt

Actual curve

0 1|2 2|4
Time (hrs)



Relative Intensity After 24 hrs

The relative intensity of radiation after 24 hours

v =0.9998 x ¢ *!15102)
= 6.3160x107

This result implies that only

6.316x107°
0.9998

radioactive intensity Is left after 24 hours.

x 100 =6.317%




[ inearization of data |

To find the constants of many nonlinear models, it results in solving
simultaneous nonlinear equations. For mathematical convenience, some of
the data for such models can be linearized. For example, the data for an
exponential model can be linearized.

As shown In the previous example, many chemical and physical processes are
governed by the equation,

y _ aebx
Taking the natural log of both sides yields,

Iny=Ina +bx

Let z=Iny and aq, =lna

We now have a linear regression model where
Z=a,+ax

(implying) a =e® with a, =b



[ iInearization of gdata |l

Using linear model regression methods,




Example - Linearization of data |

Same example of radioactive decay as

1,000 e

before

o
~
a
S

t(hrs) 0 1 3 5 7 9
Y 1.000 0.891 |0.708 | 0.562 | 0.447 | 0.355

0,250

Relative intensity of radiation, y
o
(&)
o
o

0,000
0 2 5

Time t, (hours)

Exponential model given as,
Y =Ae7\.l‘

ln(y )= 1n(A)+ At

Assuming z =Iny, 4, = ln(A) and a, = A we obtain

z=a +at
0 1

This is a linear relationship between z and ¢



Example - Linearization of aata Il

Using this linear relationship, we can calculate

n n n
nztizi - ztizzi
_ -l =l __i=l

a, =

n n 2
2
Si-[3
i=1 i=1

Table. Summation data for linearization of data model

and

2
l ! Y; |z =Iny tiZi L
l 1

1 0 1 0.00000 0.0000 0.0000
2 1 0.891 | —0.11541 | —0.11541 | 1.0000
3 3 0.708 | —0.34531 | —1.0359 9.0000
4 5 0.562 | —0.57625 | —2.8813 25.000
5 7 0.447 | -0.80520 | —5.6364 49.000
6 9 0355 | —1.0356 -9.3207 81.000
E 25.000 28778 ~18.990 165.00

a,,a, where

a,=z-at
A =a
|
A=e"
With 7 =6
6
2 t. =25.000
=6
E z =-2.8778
=1
6
E tz =-18.990
=1
t> =165.00

I=



-xample - Linearization of Data [l

Calculating a,,q,
_ 6(-18.990)- (25)- 2.8778)

a =-0.11505
1 6(165.00)- (25
a = 228178 (L0.11505)22 = -2.6150x10"
6 6
Since
ag =In(4) also
A=e" M =a, =-0.11505
4
_ e—2.6150x10 ~ 0.99974

1 4

vy =0.99974 x ¢ 1130
—0.11505¢

Resulting model is y =0.99974 x e

Relative
Intensity

of
Radiation,

0 5 10
Time, t (hrs)




-xample - Linearization of Data IV

The regression formula is vy =0.99974 x ™%

1

The Half life of Technetium 99 is when Y = EY
t=0

0.99974x e-0115050 _ L (0.99974 )p~0115050)
2

—0.11508¢
e =0.5

~0.11505¢ = In(0.5)
t =6.0248 hours

Literature value: 6.01 hours



Comparison

Comparison of exponential model with and without data linearization:

With data linearization Without data linearization
A 0.99974 0.99983
A —0.11505 —0.11508
Half-Life (hrs) 6.0248 6.0232
Relative intensity _2 L
after 24 hrs. 6.3200x10 6.3160%x10

The values are very similar so data linearization was suitable to find the
constants of the nonlinear exponential model in this case.
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Statistics and Fitting

Return by 9:15 a.m. tomorrow

Assignment for the Afternoon / Homework
N 2

All data files required for this exercise sheet can be downloaded from the UKNum home-

bage https://www2.mpia-hd.mpg.de/~klahr/lUKNUM?2022.html

e Exercise 1, 4 points: Statistics (I).
The data in the file dice.dat (available on the UKNum homepage) represent the
results of experiments rolling two dice and adding the pips (“Augenzahl”). The first
and second column in the file give the number of the experiment and the result,
respectively. (a) Write a program code which reads in the data file and calculates
the mean, the median and the standard deviation of the data. What is the relative
difference between the mean and the median?

e Exercise 2, 6 points: Statistics (II).

The data in the file grades.dat represents the grades of an exam (with results
between 0 (worst) and 100 (best). The number in the first column stands for the
student’s number, with his grade given in the second column. (a) Find the mean, the
median and the standard deviation of the data. (b) What is the relative difference
between the mean and the median? How does it compare to the result from 17
What does it tell you about the symmetry of the underlying parent distribution of
the data?


https://www2.mpia-hd.mpg.de/~klahr/UKNUM2022.html

e Exercise 3, 10 points: Least-Squares Fit to a Line
A student has measured the potential difference (in volts) along a conducting nickel-
silver wire using an analog voltmeter. The voltage is measured between the negative
end of the wire and various positions along the wire (in ¢cm). Uncertainties in the
positions are less than 1 mm and can be neglected. Assume the the uncertainty
in the voltage measurement to be the same for each measurement (i.e., set o;,=
1.0). (a) Write a program code to read in the data in the file datal.dat and fit a
line f(x) = a + bx through the data using a Least-Squares Fit as presented in the
Lecture. (b) Estimate the standard deviation of an individual measurement using

1
02N82:m (yz—a—bx2)2

Continued on next page/backside



e Optional Task: Least-Squares Fit to an Exponential

The file data2.dat contains the measurements of an exponential decay, e.g., of a
radioactive element (in some arbitrary units). The last column gives the (constant)
uncertainty in each measurement. Fit an exponential function f(z) = aexp(br) to
the data using (a) the direct exponential fit as presented in the Lecture. Use a
bracketing root-finding algorithm, e.g., bisection. In the current case, initial guesses
of by = —1 and by = 0 do bracket the root b,. (b) Fit a straight line to the linearized
equation using a least-squares fit. Compare the result to the exponential fit in (a).
Plot the results of (a) and (b) on linear and on logarithmic scale (logy vs. x)
including the errorbars.



