
Practical Numerical
Training UKNum
Random numbers, Monte Carlo methods

H. Klahr

Max Planck Institute for Astronomy, Heidelberg

Program:
1) Random Number Generator
2) Transformation Method
3) Monte Carlo Integration

1.0 Random Numbers

‣Gambling
‣Physics Simulations
‣Monte Carlo Methods
‣Kryptography
‣...

Applications

•Physical Methods (“real” random numbers)
•dice
‣Radioactive decay

(Time between two decay events)
‣Noise

(f.i. radio frequencies in the earth atmosphere)

•Advantage: “really” random
•Drawback: slow, difficult to control systematic
effects.

Generating Random I

•Text
‣Text

text

1955: A Million Random Digits

A page chosen at random from the 1955 book A Million Random Digits.
Photo: Garry McLeod

•Numerical Methods (“Pseudo” R.N.)
‣so called “Pseudo random number generators”
PRNG
‣Algorithms that generate numbers in which there is
apparently no pattern.
‣Start with “seed” to generate sequence of
numbers. Deterministic!
‣Same seed produces same sequence (important
for replicability).
‣After N-steps the sequence will start all over.

Generating Random II

•Advantage: simple and fast.

•Drawback: One has to test the sequence if it really
is “random”.
‣f.i. no correlation between pairs of numbers, no
preferred numbers, etc.
‣Statistical tests.

•Quality of RNG depends on application (f.i. length
of sequence).

Numerical Pseudo-Random-
Numbers

•There are RNGs that fullfill all needs…
•... but also bad ones:
‣Historic bad example:

randu
‣IBM mainframes in the1960s. Widely used.
Result: Many wrong physical results. See
below…

Numerical RNG

1.1 Equal
distributed RNG

Why important

•Based on Uniform Deviates one can generate
all other distributions via Transformation
methods (f.i. normal distribution, Gaussian,
Exponential … etc.).

•“Uniform Deviates”

•Typical uniform rational numbers in the interval
0 to 1 (depending algorithm including or
excluding 0 and 1).

•Available in many languages and libraries.
‣Random class in Java, Apple CarbonLib, glibc (used
by gcc), Microsoft Visual/Quick C/C++, etc.

•Often low (or undefined) Quality.
•Often not portable. -> New platform?

•Better: portable PRNG (written in FORTRAN or
C).

System-Supplied uniform PRNG

http://en.wikipedia.org/wiki/Glibc

•First call
‣Initialisation with arbitrary seed. Depends on
algorithm, sometimes neg. Odd number. For same
seed same sequence. Returns new random number
x and new value for iseed.

•Next call:
‣Use last returned iseed. (!)

Application

7.1 Uniform Deviates 267

S
a

m
p

le
 p

a
g

e
 fro

m
 N

U
M

E
R

IC
A

L
 R

E
C

IP
E

S
 IN

 F
O

R
T

R
A

N
 7

7
: T

H
E

 A
R

T
 O

F
 S

C
IE

N
T

IF
IC

 C
O

M
P

U
T

IN
G

 (IS
B

N
 0

-5
2

1
-4

3
0

6
4

-X
)

C
o

p
y
rig

h
t (C

) 1
9

8
6

-1
9

9
2

 b
y
 C

a
m

b
rid

g
e

 U
n

iv
e

rs
ity

 P
re

s
s
.
P

ro
g

ra
m

s
 C

o
p

y
rig

h
t (C

) 1
9

8
6

-1
9

9
2

 b
y
 N

u
m

e
ric

a
l R

e
c
ip

e
s
 S

o
ftw

a
re

.
P

e
rm

is
s
io

n
 is

 g
ra

n
te

d
 fo

r in
te

rn
e

t u
s
e

rs
 to

 m
a

k
e

 o
n

e
 p

a
p

e
r c

o
p

y
 fo

r th
e

ir o
w

n
 p

e
rs

o
n

a
l u

s
e

. F
u

rth
e
r re

p
ro

d
u

c
tio

n
, o

r a
n

y
 c

o
p

y
in

g
 o

f m
a

c
h

in
e

-
re

a
d

a
b

le
 file

s
 (in

c
lu

d
in

g
 th

is
 o

n
e

) to
 a

n
y
 s

e
rv

e
r

c
o

m
p

u
te

r, is
 s

tric
tly

 p
ro

h
ib

ite
d

. T
o

 o
rd

e
r N

u
m

e
ric

a
l R

e
c
ip

e
s
 b

o
o

k
s

o
r C

D
R

O
M

s
, v

is
it w

e
b

s
ite

h
ttp

://w
w

w
.n

r.c
o

m
 o

r c
a

ll 1
-8

0
0

-8
7

2
-7

4
2

3
 (N

o
rth

 A
m

e
ric

a
 o

n
ly

),
o

r s
e

n
d

 e
m

a
il to

 d
ire

c
tc

u
s
ts

e
rv

@
c
a

m
b

rid
g

e
.o

rg
 (o

u
ts

id
e

 N
o

rth
 A

m
e

ric
a

).

As for references on this subject, the one to turn to first is Knuth [1]. Then

try [2]. Only a few of the standard books on numerical methods [3-4] treat topics

relating to random numbers.

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1981,Seminumerical Algorithms, 2nd ed., vol. 2 of TheArt of Computer Programming

(Reading, MA: Addison-Wesley), Chapter 3, especially §3.5. [1]

Bratley, P., Fox, B.L., and Schrage, E.L. 1983, A Guide to Simulation (New York: Springer-

Verlag). [2]

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),

Chapter 11. [3]

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical

Computations (Englewood Cliffs, NJ: Prentice-Hall), Chapter 10. [4]

7.1 Uniform Deviates

Uniform deviates are just random numbers that lie within a specified range

(typically 0 to 1), with any one number in the range just as likely as any other. They

are, in other words, what you probably think “random numbers” are. However,

we want to distinguish uniform deviates from other sorts of random numbers, for

example numbers drawn from a normal (Gaussian) distribution of specified mean

and standard deviation. These other sorts of deviates are almost always generated by

performing appropriate operations on one or more uniform deviates, as we will see

in subsequent sections. So, a reliable source of random uniform deviates, the subject

of this section, is an essential building block for any sort of stochastic modeling or

Monte Carlo computer work.

System-Supplied Random Number Generators

Your computer very likely has lurking within it a library routine which is called

a “random number generator.” That routine typically has an unforgettable name like

“ran,” and a calling sequence like

x=ran(iseed) sets x to the next random number and updates iseed

You initialize iseed to a (usually) arbitrary value before the first call to ran.
Each initializing value will typically return a different subsequent random sequence,

or at least a different subsequence of some one enormously long sequence. The same

initializing value of iseed will always return the same random sequence, however.
Now our first, and perhaps most important, lesson in this chapter is: Be very,

very suspicious of a system-supplied ran that resembles the one just described. If all
scientific papers whose results are in doubt because of bad rans were to disappear
from library shelves, there would be a gap on each shelf about as big as your

fist. System-supplied rans are almost always linear congruential generators, which

•Typical Calling Sequence (x: REAL, iseed: INTEGER)

•Middle square method
•Kongruence generator
‣linear
‣multiplicativ

•Mersenne-Twister
•...

PRNG Algorithmen

•One of the first PRNG.
‣1946: John von Neumann.

Middle Square method:

•Only of historic importance:
(Short sequence, crashes at zero, etc.)

•Widely distributed
‣Not perfect but simple, quality depends on used
parameters, can be improved by some tricks to a
useful RNG.

•Very fast.
•Small demand in memory (cache).

Kongruence generator

•Generates sequence of integers: I1, I2, I3 ..., all
between 0 and m-1 with m a “large” number.

Linear Kongruence generator

•Recursive definition:

268 Chapter 7. Random Numbers

S
a

m
p

le
 p

a
g

e
 fro

m
 N

U
M

E
R

IC
A

L
 R

E
C

IP
E

S
 IN

 F
O

R
T

R
A

N
 7

7
: T

H
E

 A
R

T
 O

F
 S

C
IE

N
T

IF
IC

 C
O

M
P

U
T

IN
G

 (IS
B

N
 0

-5
2

1
-4

3
0

6
4

-X
)

C
o

p
y
rig

h
t (C

) 1
9

8
6

-1
9

9
2

 b
y
 C

a
m

b
rid

g
e

 U
n

iv
e

rs
ity

 P
re

s
s
.
P

ro
g

ra
m

s
 C

o
p

y
rig

h
t (C

) 1
9

8
6

-1
9

9
2

 b
y
 N

u
m

e
ric

a
l R

e
c
ip

e
s
 S

o
ftw

a
re

.
P

e
rm

is
s
io

n
 is

 g
ra

n
te

d
 fo

r in
te

rn
e

t u
s
e

rs
 to

 m
a

k
e

 o
n

e
 p

a
p

e
r c

o
p

y
 fo

r th
e

ir o
w

n
 p

e
rs

o
n

a
l u

s
e

. F
u

rth
e

r re
p

ro
d

u
c
tio

n
, o

r a
n

y
 c

o
p

y
in

g
 o

f m
a

c
h

in
e

-
re

a
d

a
b

le
 file

s
 (in

c
lu

d
in

g
 th

is
 o

n
e

) to
 a

n
y
 s

e
rv

e
r

c
o

m
p

u
te

r, is
 s

tric
tly

 p
ro

h
ib

ite
d

. T
o

 o
rd

e
r N

u
m

e
ric

a
l R

e
c
ip

e
s
 b

o
o

k
s

o
r C

D
R

O
M

s
, v

is
it w

e
b

s
ite

h
ttp

://w
w

w
.n

r.c
o

m
 o

r c
a

ll 1
-8

0
0

-8
7

2
-7

4
2

3
 (N

o
rth

 A
m

e
ric

a
 o

n
ly

),
o

r s
e

n
d

 e
m

a
il to

 d
ire

c
tc

u
s
ts

e
rv

@
c
a

m
b

rid
g

e
.o

rg
 (o

u
ts

id
e

 N
o

rth
 A

m
e

ric
a

).

generate a sequence of integers I1, I2, I3, . . . , each between 0 and m − 1 (a large
number) by the recurrence relation

Ij+1 = aIj + c (mod m) (7.1.1)

Herem is called the modulus, and a and c are positive integers called the multiplier
and the increment, respectively. The recurrence (7.1.1) will eventually repeat itself,

with a period that is obviously no greater thanm. Ifm, a, and c are properly chosen,
then the period will be of maximal length, i.e., of lengthm. In that case, all possible
integers between 0 andm− 1 occur at some point, so any initial “seed” choice of I 0

is as good as any other: The sequence just takes off from that point. The real number

between 0 and 1 which is returned is generally Ij+1/m, so that it is strictly less than
1, but occasionally (once in m calls) exactly equal to zero. iseed is set to I j+1 (or

some encoding of it), so that it can be used on the next call to generate I j+2, and so on.

The linear congruential method has the advantage of being very fast, requiring

only a few operations per call, hence its almost universal use. It has the disadvantage

that it is not free of sequential correlation on successive calls. If k randomnumbers at
a time are used to plot points in k dimensional space (with each coordinate between
0 and 1), then the points will not tend to “fill up” the k-dimensional space, but
rather will lie on (k − 1)-dimensional “planes.” There will be at most about m 1/k

such planes. If the constants m, a, and c are not very carefully chosen, there will
be many fewer than that. The number m is usually close to the machine’s largest

representable integer, e.g., ∼ 232. So, for example, the number of planes on which

triples of points lie in three-dimensional space is usually no greater than about the

cube root of 232, about 1600. You might well be focusing attention on a physical

process that occurs in a small fraction of the total volume, so that the discreteness

of the planes can be very pronounced.

Even worse, you might be using a ran whose choices of m, a, and c have
been botched. One infamous such routine, RANDU, with a = 65539 and m = 2 31,

was widespread on IBM mainframe computers for many years, and widely copied

onto other systems [1]. One of us recalls producing a “random” plot with only 11

planes, and being told by his computer center’s programming consultant that he

had misused the random number generator: “We guarantee that each number is

random individually, but we don’t guarantee that more than one of them is random.”

Figure that out.

Correlation in k-space is not the onlyweakness of linear congruential generators.
Such generators often have their low-order (least significant) bits much less random

than their high-order bits. If you want to generate a random integer between 1 and

10, you should always do it using high-order bits, as in

j=1+int(10.*ran(iseed))

and never by anything resembling

j=1+mod(int(1000000.*ran(iseed)),10)

•m=Modulus (Integer, m>0)
•a=Multiplier/Faktor (Integer, 0< a < m)
•c=Increment (Integer, 0<= c <m)

•Repeats at least after m calls.
‣But for bad parameters even earlier!

•Good parameters: all possible numbers 0 to m-1
will occur once (Pseudo random permutation).
•seed then only determines, where the Sequence
is started!

Linear Kongruence generator II

•Equal distributed between 0 and 1 is then Ij+1/m.
‣All Numbers smaller than 1, but once in m calls gives
0.

•Requirements for m, a, and c (“Satz von Knuth”) for
maximising length of sequence (=m):
‣The Increment c up to modulus m has no common
dividend.
‣All prime factors m divide a-1.
‣If m can be divided by 4 then also a-1.

•Illustration: Mathematica "Linear Congruential Generators" from The Wolfram
Demonstrations Project http://demonstrations.wolfram.com/LinearCongruentialGenerators/ von Joe Bolte

Linear Kongruence generator III

http://demonstrations.wolfram.com/LinearCongruentialGenerators/

•Drawbacks
‣Sequential correlation (relation between RN
pairs), manifested in hyper planes(Satz von
Marsaglia):
Plotting a sequence of k numbers in a k dimensional space (k1,k2,k3),
then the points do not fill the volume, but lie on k-1 dimensional hyper
planes. Maximally m1/k Hyper planes, for “bad” values of m,a and c
even less.

‣Different likelihood for different bits within
numbers…

Linear Kongruence generator IV

Hyper planes

(There planes k=3)

•Aka Park-Miller PRNG.
•Special case: c=0, then:

Multiplicative Kongruence generator

7.1 Uniform Deviates 269

S
a

m
p

le
 p

a
g

e
 fro

m
 N

U
M

E
R

IC
A

L
 R

E
C

IP
E

S
 IN

 F
O

R
T

R
A

N
 7

7
: T

H
E

 A
R

T
 O

F
 S

C
IE

N
T

IF
IC

 C
O

M
P

U
T

IN
G

 (IS
B

N
 0

-5
2

1
-4

3
0

6
4

-X
)

C
o

p
y
rig

h
t (C

) 1
9

8
6

-1
9

9
2

 b
y
 C

a
m

b
rid

g
e

 U
n

iv
e

rs
ity

 P
re

s
s
.
P

ro
g

ra
m

s
 C

o
p

y
rig

h
t (C

) 1
9

8
6

-1
9

9
2

 b
y
 N

u
m

e
ric

a
l R

e
c
ip

e
s
 S

o
ftw

a
re

.
P

e
rm

is
s
io

n
 is

 g
ra

n
te

d
 fo

r in
te

rn
e

t u
s
e

rs
 to

 m
a

k
e

 o
n

e
 p

a
p

e
r c

o
p

y
 fo

r th
e

ir o
w

n
 p

e
rs

o
n

a
l u

s
e

. F
u

rth
e

r re
p

ro
d

u
c
tio

n
, o

r a
n

y
 c

o
p

y
in

g
 o

f m
a

c
h

in
e

-
re

a
d

a
b

le
 file

s
 (in

c
lu

d
in

g
 th

is
 o

n
e

) to
 a

n
y
 s

e
rv

e
r

c
o

m
p

u
te

r, is
 s

tric
tly

 p
ro

h
ib

ite
d

. T
o

 o
rd

e
r N

u
m

e
ric

a
l R

e
c
ip

e
s
 b

o
o

k
s

o
r C

D
R

O
M

s
, v

is
it w

e
b

s
ite

h
ttp

://w
w

w
.n

r.c
o

m
 o

r c
a

ll 1
-8

0
0

-8
7

2
-7

4
2

3
 (N

o
rth

 A
m

e
ric

a
 o

n
ly

),
o

r s
e

n
d

 e
m

a
il to

 d
ire

c
tc

u
s
ts

e
rv

@
c
a

m
b

rid
g

e
.o

rg
 (o

u
ts

id
e

 N
o

rth
 A

m
e

ric
a

).

(which uses lower-order bits). Similarly you should never try to take apart a

“ran” number into several supposedly random pieces. Instead use separate calls

for every piece.

Portable Random Number Generators

Park and Miller [1] have surveyed a large number of random number generators

that have been used over the last 30 years or more. Along with a good theoretical

review, they present an anecdotal sampling of a number of inadequate generators that

have come into widespread use. The historical record is nothing if not appalling.

There is good evidence, both theoretical and empirical, that the simple multi-

plicative congruential algorithm

Ij+1 = aIj (mod m) (7.1.2)

can be as good as any of the more general linear congruential generators that have

c != 0 (equation 7.1.1) — if the multiplier a and modulus m are chosen exquisitely

carefully. Park and Miller propose a “Minimal Standard” generator based on the

choices

a = 75 = 16807 m = 231 − 1 = 2147483647 (7.1.3)

First proposed by Lewis, Goodman, and Miller in 1969, this generator has in

subsequent years passed all new theoretical tests, and (perhaps more importantly)

has accumulated a large amount of successful use. Park and Miller do not claim that

the generator is “perfect” (we will see below that it is not), but only that it is a good

minimal standard against which other generators should be judged.

It is not possible to implement equations (7.1.2) and (7.1.3) directly in a

high-level language, since the product of a and m − 1 exceeds the maximum value
for a 32-bit integer. Assembly language implementation using a 64-bit product

register is straightforward, but not portable from machine to machine. A trick

due to Schrage [2,3] for multiplying two 32-bit integers modulo a 32-bit constant,

without using any intermediates larger than 32 bits (including a sign bit) is therefore

extremely interesting: It allows the Minimal Standard generator to be implemented

in essentially any programming language on essentially any machine.

Schrage’s algorithm is based on an approximate factorization of m,

m = aq + r, i.e., q = [m/a], r = m mod a (7.1.4)

with square brackets denoting integer part. If r is small, specifically r < q, and
0 < z < m − 1, it can be shown that both a(z mod q) and r[z/q] lie in the range
0, . . . , m − 1, and that

az mod m =
{

a(z mod q) − r[z/q] if it is ≥ 0,
a(z mod q) − r[z/q] + m otherwise

(7.1.5)

The application of Schrage’s algorithm to the constants (7.1.3) uses the values

q = 127773 and r = 2836.
Here is an implementation of the Minimal Standard generator:

•m and a have to be chosen very carefully. Park and
Miller suggest:

7.1 Uniform Deviates 269

S
a

m
p

le
 p

a
g

e
 fro

m
 N

U
M

E
R

IC
A

L
 R

E
C

IP
E

S
 IN

 F
O

R
T

R
A

N
 7

7
: T

H
E

 A
R

T
 O

F
 S

C
IE

N
T

IF
IC

 C
O

M
P

U
T

IN
G

 (IS
B

N
 0

-5
2

1
-4

3
0
6

4
-X

)
C

o
p

y
rig

h
t (C

) 1
9

8
6

-1
9

9
2

 b
y
 C

a
m

b
rid

g
e
 U

n
iv

e
rs

ity
 P

re
s
s
.
P

ro
g
ra

m
s
 C

o
p
y
rig

h
t (C

) 1
9
8
6
-1

9
9
2
 b

y
 N

u
m

e
ric

a
l R

e
c
ip

e
s
 S

o
ftw

a
re

.
P

e
rm

is
s
io

n
 is

 g
ra

n
te

d
 fo

r in
te

rn
e

t u
s
e
rs

 to
 m

a
k
e
 o

n
e
 p

a
p
e
r c

o
p
y
 fo

r th
e
ir o

w
n
 p

e
rs

o
n
a
l u

s
e
. F

u
rth

e
r re

p
ro

d
u
c
tio

n
, o

r a
n
y
 c

o
p
y
in

g
 o

f m
a
c
h
in

e
-

re
a

d
a

b
le

 file
s
 (in

c
lu

d
in

g
 th

is
 o

n
e

) to
 a

n
y
 s

e
rv

e
r

c
o
m

p
u
te

r, is
 s

tric
tly

 p
ro

h
ib

ite
d
. T

o
 o

rd
e
r N

u
m

e
ric

a
l R

e
c
ip

e
s
 b

o
o
k
s

o
r C

D
R

O
M

s
, v

is
it w

e
b
s
ite

h
ttp

://w
w

w
.n

r.c
o

m
 o

r c
a

ll 1
-8

0
0

-8
7

2
-7

4
2

3
 (N

o
rth

 A
m

e
ric

a
 o

n
ly

),
o
r s

e
n
d
 e

m
a
il to

 d
ire

c
tc

u
s
ts

e
rv

@
c
a

m
b
rid

g
e
.o

rg
 (o

u
ts

id
e

 N
o
rth

 A
m

e
ric

a
).

(which uses lower-order bits). Similarly you should never try to take apart a

“ran” number into several supposedly random pieces. Instead use separate calls

for every piece.

Portable Random Number Generators

Park and Miller [1] have surveyed a large number of random number generators

that have been used over the last 30 years or more. Along with a good theoretical

review, they present an anecdotal sampling of a number of inadequate generators that

have come into widespread use. The historical record is nothing if not appalling.

There is good evidence, both theoretical and empirical, that the simple multi-

plicative congruential algorithm

Ij+1 = aIj (mod m) (7.1.2)

can be as good as any of the more general linear congruential generators that have

c != 0 (equation 7.1.1) — if the multiplier a and modulus m are chosen exquisitely

carefully. Park and Miller propose a “Minimal Standard” generator based on the

choices

a = 75 = 16807 m = 231 − 1 = 2147483647 (7.1.3)

First proposed by Lewis, Goodman, and Miller in 1969, this generator has in

subsequent years passed all new theoretical tests, and (perhaps more importantly)

has accumulated a large amount of successful use. Park and Miller do not claim that

the generator is “perfect” (we will see below that it is not), but only that it is a good

minimal standard against which other generators should be judged.

It is not possible to implement equations (7.1.2) and (7.1.3) directly in a

high-level language, since the product of a and m − 1 exceeds the maximum value
for a 32-bit integer. Assembly language implementation using a 64-bit product

register is straightforward, but not portable from machine to machine. A trick

due to Schrage [2,3] for multiplying two 32-bit integers modulo a 32-bit constant,

without using any intermediates larger than 32 bits (including a sign bit) is therefore

extremely interesting: It allows the Minimal Standard generator to be implemented

in essentially any programming language on essentially any machine.

Schrage’s algorithm is based on an approximate factorization of m,

m = aq + r, i.e., q = [m/a], r = m mod a (7.1.4)

with square brackets denoting integer part. If r is small, specifically r < q, and
0 < z < m − 1, it can be shown that both a(z mod q) and r[z/q] lie in the range
0, . . . , m − 1, and that

az mod m =
{

a(z mod q) − r[z/q] if it is ≥ 0,
a(z mod q) − r[z/q] + m otherwise

(7.1.5)

The application of Schrage’s algorithm to the constants (7.1.3) uses the values

q = 127773 and r = 2836.
Here is an implementation of the Minimal Standard generator:

•So called “Minimal Standard” MINSTD Generator.
•Widely distributed, but should not be used for
professional application.

•Problem: Multiplications of a and Ij lead for some Ij
to Integer > 232 (4 byte=32 bit, standard Fortran
Integer, C long int)
‣Can be remedied with Schrage’s Algorithm for
approximative Factorisation of m.

•Numerical Recipes von Press et al., Cambridge
University Press.
http://www.nrbook.com/a/

Implementation of MINST

http://www.nrbook.com/a/

MINSTD, 64 bit Integers

Press et al.

MINSTD: sample output

 1 7.82636926E-06 16807
 2 0.13153780 282475249

 3 0.75560534 1622650073

 2147483645 0.65550071 1407677000
 2147483646 4.65661287E-10 1
 2147483647 7.82636926E-06 16807

Call No. x idum

231-2

seed =1

•MINSTD Problems:
•Low order serial correlations. Example:
Once in 106 calls, x < 10-6 ausgegeben (which is OK), Once in 106 calls,
x < 10-6 ausgegeben (which is OK), but next number is always < 0.0168,
which is not OK.

231≈2 109

•Simple method after Bays and Durham, to prevent
low order serial correlations:

MINSTD with BD-shuffling

272 Chapter 7. Random Numbers

S
a

m
p

le
 p

a
g

e
 fro

m
 N

U
M

E
R

IC
A

L
 R

E
C

IP
E

S
 IN

 F
O

R
T

R
A

N
 7

7
: T

H
E

 A
R

T
 O

F
 S

C
IE

N
T

IF
IC

 C
O

M
P

U
T

IN
G

 (IS
B

N
 0

-5
2

1
-4

3
0

6
4

-X
)

C
o

p
y
rig

h
t (C

) 1
9

8
6

-1
9

9
2

 b
y
 C

a
m

b
rid

g
e

 U
n

iv
e

rs
ity

 P
re

s
s
.
P

ro
g

ra
m

s
 C

o
p

y
rig

h
t (C

) 1
9

8
6

-1
9

9
2

 b
y
 N

u
m

e
ric

a
l R

e
c
ip

e
s
 S

o
ftw

a
re

.
P

e
rm

is
s
io

n
 is

 g
ra

n
te

d
 fo

r in
te

rn
e

t u
s
e

rs
 to

 m
a

k
e

 o
n

e
 p

a
p

e
r c

o
p

y
 fo

r th
e

ir o
w

n
 p

e
rs

o
n

a
l u

s
e

. F
u

rth
e

r re
p

ro
d

u
c
tio

n
, o

r a
n

y
 c

o
p

y
in

g
 o

f m
a

c
h

in
e

-
re

a
d

a
b

le
 file

s
 (in

c
lu

d
in

g
 th

is
 o

n
e

) to
 a

n
y
 s

e
rv

e
r

c
o

m
p

u
te

r, is
 s

tric
tly

 p
ro

h
ib

ite
d

. T
o

 o
rd

e
r N

u
m

e
ric

a
l R

e
c
ip

e
s
 b

o
o

k
s

o
r C

D
R

O
M

s
, v

is
it w

e
b

s
ite

h
ttp

://w
w

w
.n

r.c
o

m
 o

r c
a

ll 1
-8

0
0

-8
7

2
-7

4
2

3
 (N

o
rth

 A
m

e
ric

a
 o

n
ly

),
o

r s
e

n
d

 e
m

a
il to

 d
ire

c
tc

u
s
ts

e
rv

@
c
a

m
b

rid
g

e
.o

rg
 (o

u
ts

id
e

 N
o

rth
 A

m
e

ric
a

).
OUTPUT

RAN

1

3
2

iy

iv1

iv32

Figure 7.1.1. Shuffling procedure used in ran1 to break up sequential correlations in the Minimal
Standard generator. Circled numbers indicate the sequence of events: On each call, the random number
in iy is used to choose a random element in the array iv. That element becomes the output random
number, and also is the next iy. Its spot in iv is refilled from the Minimal Standard routine.

Combining the two generators breaks up serial correlations to a considerable

extent. We nevertheless recommend the additional shuffle that is implemented in

the following routine, ran2. We think that, within the limits of its floating-point
precision, ran2 provides perfect random numbers; a practical definition of “perfect”
is that we will pay $1000 to the first reader who convinces us otherwise (by finding a
statistical test that ran2 fails in a nontrivial way, excluding the ordinary limitations
of a machine’s floating-point representation).

FUNCTION ran2(idum)
INTEGER idum,IM1,IM2,IMM1,IA1,IA2,IQ1,IQ2,IR1,IR2,NTAB,NDIV
REAL ran2,AM,EPS,RNMX
PARAMETER (IM1=2147483563,IM2=2147483399,AM=1./IM1,IMM1=IM1-1,

* IA1=40014,IA2=40692,IQ1=53668,IQ2=52774,IR1=12211,
* IR2=3791,NTAB=32,NDIV=1+IMM1/NTAB,EPS=1.2e-7,RNMX=1.-EPS)

Long period (> 2× 1018) random number generator of L’Ecuyer with Bays-Durham shuffle
and added safeguards. Returns a uniform random deviate between 0.0 and 1.0 (exclusive
of the endpoint values). Call with idum a negative integer to initialize; thereafter, do not
alter idum between successive deviates in a sequence. RNMX should approximate the largest
floating value that is less than 1.

INTEGER idum2,j,k,iv(NTAB),iy
SAVE iv,iy,idum2
DATA idum2/123456789/, iv/NTAB*0/, iy/0/
if (idum.le.0) then Initialize.

idum=max(-idum,1) Be sure to prevent idum = 0.
idum2=idum
do 11 j=NTAB+8,1,-1 Load the shuffle table (after 8 warm-ups).

k=idum/IQ1

RN: Ij, generatend at
position j in sequence,
is not directly used but
randomly after, on
average, (j+32) calls
later.

Press et al.

MINSTD mit BD-shuffling7.1 Uniform Deviates 271

S
a

m
p

le
 p

a
g

e
 fro

m
 N

U
M

E
R

IC
A

L
 R

E
C

IP
E

S
 IN

 F
O

R
T

R
A

N
 7

7
: T

H
E

 A
R

T
 O

F
 S

C
IE

N
T

IF
IC

 C
O

M
P

U
T

IN
G

 (IS
B

N
 0

-5
2

1
-4

3
0

6
4

-X
)

C
o

p
y
rig

h
t (C

) 1
9

8
6

-1
9

9
2

 b
y
 C

a
m

b
rid

g
e

 U
n

iv
e

rs
ity

 P
re

s
s
.
P

ro
g

ra
m

s
 C

o
p

y
rig

h
t (C

) 1
9

8
6

-1
9

9
2

 b
y
 N

u
m

e
ric

a
l R

e
c
ip

e
s
 S

o
ftw

a
re

.
P

e
rm

is
s
io

n
 is

 g
ra

n
te

d
 fo

r in
te

rn
e

t u
s
e

rs
 to

 m
a

k
e

 o
n

e
 p

a
p

e
r c

o
p

y
 fo

r th
e

ir o
w

n
 p

e
rs

o
n

a
l u

s
e

. F
u

rth
e

r re
p

ro
d

u
c
tio

n
, o

r a
n

y
 c

o
p

y
in

g
 o

f m
a

c
h

in
e

-
re

a
d

a
b

le
 file

s
 (in

c
lu

d
in

g
 th

is
 o

n
e

) to
 a

n
y
 s

e
rv

e
r

c
o

m
p

u
te

r, is
 s

tric
tly

 p
ro

h
ib

ite
d

. T
o

 o
rd

e
r N

u
m

e
ric

a
l R

e
c
ip

e
s
 b

o
o

k
s

o
r C

D
R

O
M

s
, v

is
it w

e
b

s
ite

h
ttp

://w
w

w
.n

r.c
o

m
 o

r c
a

ll 1
-8

0
0

-8
7

2
-7

4
2

3
 (N

o
rth

 A
m

e
ric

a
 o

n
ly

),
o

r s
e

n
d

 e
m

a
il to

 d
ire

c
tc

u
s
ts

e
rv

@
c
a

m
b

rid
g

e
.o

rg
 (o

u
ts

id
e

 N
o

rth
 A

m
e

ric
a

).

FUNCTION ran1(idum)
INTEGER idum,IA,IM,IQ,IR,NTAB,NDIV
REAL ran1,AM,EPS,RNMX
PARAMETER (IA=16807,IM=2147483647,AM=1./IM,IQ=127773,IR=2836,

* NTAB=32,NDIV=1+(IM-1)/NTAB,EPS=1.2e-7,RNMX=1.-EPS)
“Minimal” random number generator of Park and Miller with Bays-Durham shuffle and
added safeguards. Returns a uniform random deviate between 0.0 and 1.0 (exclusive of
the endpoint values). Call with idum a negative integer to initialize; thereafter, do not
alter idum between successive deviates in a sequence. RNMX should approximate the largest
floating value that is less than 1.

INTEGER j,k,iv(NTAB),iy
SAVE iv,iy
DATA iv /NTAB*0/, iy /0/
if (idum.le.0.or.iy.eq.0) then Initialize.

idum=max(-idum,1) Be sure to prevent idum = 0.
do 11 j=NTAB+8,1,-1 Load the shuffle table (after 8 warm-ups).

k=idum/IQ
idum=IA*(idum-k*IQ)-IR*k
if (idum.lt.0) idum=idum+IM
if (j.le.NTAB) iv(j)=idum

enddo 11

iy=iv(1)
endif
k=idum/IQ Start here when not initializing.
idum=IA*(idum-k*IQ)-IR*k Compute idum=mod(IA*idum,IM) without overflows by

Schrage’s method.if (idum.lt.0) idum=idum+IM
j=1+iy/NDIV Will be in the range 1:NTAB.
iy=iv(j) Output previously stored value and refill the shuffle ta-

ble.iv(j)=idum
ran1=min(AM*iy,RNMX) Because users don’t expect endpoint values.
return
END

The routine ran1 passes those statistical tests that ran0 is known to fail. In
fact, we do not know of any statistical test that ran1 fails to pass, except when the
number of calls starts to become on the order of the periodm, say > 10 8 ≈ m/20.

For situations when even longer random sequences are needed, L’Ecuyer [6] has

given a good way of combining two different sequences with different periods so

as to obtain a new sequence whose period is the least common multiple of the two

periods. The basic idea is simply to add the two sequences, modulo the modulus of

either of them (call it m). A trick to avoid an intermediate value that overflows the
integer wordsize is to subtract rather than add, and then add back the constantm− 1
if the result is ≤ 0, so as to wrap around into the desired interval 0, . . . , m − 1.

Notice that it is not necessary that this wrapped subtraction be able to reach

all values 0, . . . , m − 1 from every value of the first sequence. Consider the absurd

extreme case where the value subtracted was only between 1 and 10: The resulting

sequence would still be no less random than the first sequence by itself. As a

practical matter it is only necessary that the second sequence have a range covering

substantially all of the range of the first. L’Ecuyer recommends the use of the two

generators m1 = 2147483563 (with a1 = 40014, q1 = 53668, r1 = 12211) and
m2 = 2147483399 (with a2 = 40692, q2 = 52774, r2 = 3791). Both moduli
are slightly less than 231. The periods m1 − 1 = 2 × 3 × 7 × 631 × 81031 and
m2 − 1 = 2 × 19 × 31 × 1019 × 1789 share only the factor 2, so the period of
the combined generator is ≈ 2.3 × 1018. For present computers, period exhaustion

is a practical impossibility.

Press et al.

•Perfect up to m/20 (about: 108 calls).

•Longer Sequences need PRNGs that combine
multiple Sequences with different length. Then even
a sequence of 2.3 x 1018

MINSTD with BD-shuffling

•Multiplicativ Kongruence-generator. Recursion:

randu

With V0 odd
•Range [1:231-1]
•Rational number in range]0,1[

•Chosen parameters (with 32 bit Integer) thus mod
231 and also multiplication with 65539=216+3 is fast
from the hardware side.

Vj+1 = 65539 · Vj mod 231

Xj =
Vj

231

•Problem: follow 3 steps (mod 231)

randu - continued II

As 232 mod 231 = 0

•Then

Oops!!!

xk+2 = (216 + 3)xk+1 = (216 + 3)2xk

xk+2 = (232 + 6 · 216 + 9)xk = [6 · (216 + 3)� 9]xk

xk+2 = 6xk+1 � 9xk

2. Non equal RNG:
Transformation Method

•X is given via (cumulative distribution function,
CDF) F(x) beschrieben.
•Then F(x) is probability, that X has value between
-∞ and x:

Statistical Distribution

C h a p t er 3

Population Synthesis

The methods we developed, and the results we obtained with the population synthesis calcu-
lations are presented in detail in Paper I and II. The reader is advised to first study these two
publications, which form the central part of this thesis, before considering this chapter.

But even if the two mentioned publications, thanks to their considerable length, o✓er a
quite comprehensive view on the work done, a number of points concerning the populations
synthesis method could not be presented there, because they are either of a too technical or
general nature, or because they are not yet suitable for publication.

A subset of these points are therefore presented in this chapter. Some of them represent
results which might be worth publication in future, others explain some general or technical
aspect.

3.1 Probability distributions

An essential step for population synthesis calculations is the generation of initial conditions ac-
cording to given probability distributions, as explained in the introduction to Paper I (chapter
5). Here we give a short overview on probability distributions in general.

A random deviate X is described with the cumulative distribution function (CDF) F (x)
which gives the probability that the random deviate X takes a values between �⇤ and x, i.e.

F (x) = P (X ⇥ x) for �⇤ < x <⇤ (3.1)

The CDF must fulfill an number of requirements, namely (1) F (�⇤) = 0, (2) F (⇤) = 1, (3)
F (x) must be monotonically increasing, and (4) F (x) must rightwards continuous from the
right.

The probability that a continuous random deviate takes a given value xi is zero. Therefore,
the probability density function (PDF) f(x) is used which states that the probability for X
to lie in the infinitesimal interval dx is given as f(x)dx. The PDF is related to the CDF as

F (x) = P (X ⇥ x) =
� x

�⇥
f(x)dx, (3.2)

so that f(x) is the derivative of F (x). The geometrical interpretation is of course simply that
F (x) is the area under the curve given by f(x) to the left of x. Similarly is the probability

•Requirement for CDF:
•F(-∞)=0, F(∞)=1
•Monotonically raising
•Continuous

•Probably for X to be exactly xi is 0.
• probability density function PDF: f(x) means therefor
that X is in the infinitesimal interval of dx: f(x)dx.

Statistical Distribution

C h a p t er 3

Population Synthesis

The methods we developed, and the results we obtained with the population synthesis calcu-
lations are presented in detail in Paper I and II. The reader is advised to first study these two
publications, which form the central part of this thesis, before considering this chapter.

But even if the two mentioned publications, thanks to their considerable length, o✓er a
quite comprehensive view on the work done, a number of points concerning the populations
synthesis method could not be presented there, because they are either of a too technical or
general nature, or because they are not yet suitable for publication.

A subset of these points are therefore presented in this chapter. Some of them represent
results which might be worth publication in future, others explain some general or technical
aspect.

3.1 Probability distributions

An essential step for population synthesis calculations is the generation of initial conditions ac-
cording to given probability distributions, as explained in the introduction to Paper I (chapter
5). Here we give a short overview on probability distributions in general.

A random deviate X is described with the cumulative distribution function (CDF) F (x)
which gives the probability that the random deviate X takes a values between �⇤ and x, i.e.

F (x) = P (X ⇥ x) for �⇤ < x <⇤ (3.1)

The CDF must fulfill an number of requirements, namely (1) F (�⇤) = 0, (2) F (⇤) = 1, (3)
F (x) must be monotonically increasing, and (4) F (x) must rightwards continuous from the
right.

The probability that a continuous random deviate takes a given value xi is zero. Therefore,
the probability density function (PDF) f(x) is used which states that the probability for X
to lie in the infinitesimal interval dx is given as f(x)dx. The PDF is related to the CDF as

F (x) = P (X ⇥ x) =
� x

�⇥
f(x)dx, (3.2)

so that f(x) is the derivative of F (x). The geometrical interpretation is of course simply that
F (x) is the area under the curve given by f(x) to the left of x. Similarly is the probability

•f(x) thus is derivative of F(x).

•Probability for X in [a,b] is

Statistical Distribution 30 Population Synthesis

for X to be in the interval [a, b] given as

P (a ⇥ X ⇥ b) =
⇧ b

a
f(x)dx. (3.3)

If g(x) is a bijective function of the random deviate X, then it is itself a random deviate.
For a continuous random deviate the expectation value of g(X), E(g(x)) is then given as

E(g(X)) =
⇧ ⇥

�⇥
g(x)f(x)dx. (3.4)

A particular case is the expectation value of X itself, which is

E(X) .= µx =
⇧ ⇥

�⇥
xf(x)dx. (3.5)

This quantity is also called the first moment, or the mean µ. From this equation it follows that
E(aX + b) is simply given as aµx + b. Higher moments of the degree n are defined as E(Xn).
Another important quantity are the central moments of degree n, defined as E((X � µx)n).
The case n = 2 is particularly important, as it is the variance,

E((X � µx)2) .= D2(X) .= ⇥2
x =

⇧ ⇥

�⇥
(x� µx)2f(x)dx. (3.6)

⇥ is called the standard deviation. The equation above shows that D2(X) = ⇥2
x = E(X2)�µ2

x.

3.1.1 Generic distributions

The program exostat which was written for this research project generates the initial condi-
tions for the populations synthesis calculations (it is also used for the statistical comparison
with the observational data once the synthetic planets were calculated). In this program, a
number of important generic probability distributions were implemented.

Uniform deviate in [a, b]

This simplest probability function has a CDF

F (x) =

⇥
⌅

⇤

0 if x < a
x�a
b�a if a ⇥ x ⇥ b
1 if x > b.

(3.7)

This CDF is obtained by setting dF = f(x)dx = k1dx and determining k1 by the conditions
that F (a) = 0 and F (b) = 1. The PDF is obtained as the derivative,

f(x) =
� 1

b�a if a ⇥ x ⇥ b
0 otherwise (3.8)

These distributions are shown in fig. 3.1.
The mean is of course simply

E(X) = µx =
1

b� a

⇧ b

a
xdx =

a + b

2
(3.9)

•If g(x) a bijective Function of X, then it is also a random
distribution. Expected value E of g(X), E(g(x)) is then
•

30 Population Synthesis

for X to be in the interval [a, b] given as

P (a ⇥ X ⇥ b) =
⇧ b

a
f(x)dx. (3.3)

If g(x) is a bijective function of the random deviate X, then it is itself a random deviate.
For a continuous random deviate the expectation value of g(X), E(g(x)) is then given as

E(g(X)) =
⇧ ⇥

�⇥
g(x)f(x)dx. (3.4)

A particular case is the expectation value of X itself, which is

E(X) .= µx =
⇧ ⇥

�⇥
xf(x)dx. (3.5)

This quantity is also called the first moment, or the mean µ. From this equation it follows that
E(aX + b) is simply given as aµx + b. Higher moments of the degree n are defined as E(Xn).
Another important quantity are the central moments of degree n, defined as E((X � µx)n).
The case n = 2 is particularly important, as it is the variance,

E((X � µx)2) .= D2(X) .= ⇥2
x =

⇧ ⇥

�⇥
(x� µx)2f(x)dx. (3.6)

⇥ is called the standard deviation. The equation above shows that D2(X) = ⇥2
x = E(X2)�µ2

x.

3.1.1 Generic distributions

The program exostat which was written for this research project generates the initial condi-
tions for the populations synthesis calculations (it is also used for the statistical comparison
with the observational data once the synthetic planets were calculated). In this program, a
number of important generic probability distributions were implemented.

Uniform deviate in [a, b]

This simplest probability function has a CDF

F (x) =

⇥
⌅

⇤

0 if x < a
x�a
b�a if a ⇥ x ⇥ b
1 if x > b.

(3.7)

This CDF is obtained by setting dF = f(x)dx = k1dx and determining k1 by the conditions
that F (a) = 0 and F (b) = 1. The PDF is obtained as the derivative,

f(x) =
� 1

b�a if a ⇥ x ⇥ b
0 otherwise (3.8)

These distributions are shown in fig. 3.1.
The mean is of course simply

E(X) = µx =
1

b� a

⇧ b

a
xdx =

a + b

2
(3.9)

•Special case if X is the expected value

30 Population Synthesis

for X to be in the interval [a, b] given as

P (a ⇥ X ⇥ b) =
⇧ b

a
f(x)dx. (3.3)

If g(x) is a bijective function of the random deviate X, then it is itself a random deviate.
For a continuous random deviate the expectation value of g(X), E(g(x)) is then given as

E(g(X)) =
⇧ ⇥

�⇥
g(x)f(x)dx. (3.4)

A particular case is the expectation value of X itself, which is

E(X) .= µx =
⇧ ⇥

�⇥
xf(x)dx. (3.5)

This quantity is also called the first moment, or the mean µ. From this equation it follows that
E(aX + b) is simply given as aµx + b. Higher moments of the degree n are defined as E(Xn).
Another important quantity are the central moments of degree n, defined as E((X � µx)n).
The case n = 2 is particularly important, as it is the variance,

E((X � µx)2) .= D2(X) .= ⇥2
x =

⇧ ⇥

�⇥
(x� µx)2f(x)dx. (3.6)

⇥ is called the standard deviation. The equation above shows that D2(X) = ⇥2
x = E(X2)�µ2

x.

3.1.1 Generic distributions

The program exostat which was written for this research project generates the initial condi-
tions for the populations synthesis calculations (it is also used for the statistical comparison
with the observational data once the synthetic planets were calculated). In this program, a
number of important generic probability distributions were implemented.

Uniform deviate in [a, b]

This simplest probability function has a CDF

F (x) =

⇥
⌅

⇤

0 if x < a
x�a
b�a if a ⇥ x ⇥ b
1 if x > b.

(3.7)

This CDF is obtained by setting dF = f(x)dx = k1dx and determining k1 by the conditions
that F (a) = 0 and F (b) = 1. The PDF is obtained as the derivative,

f(x) =
� 1

b�a if a ⇥ x ⇥ b
0 otherwise (3.8)

These distributions are shown in fig. 3.1.
The mean is of course simply

E(X) = µx =
1

b� a

⇧ b

a
xdx =

a + b

2
(3.9)

•Then CDF and PDF

Equal distribution in [a,b]

30 Population Synthesis

for X to be in the interval [a, b] given as

P (a ⇥ X ⇥ b) =
⇧ b

a
f(x)dx. (3.3)

If g(x) is a bijective function of the random deviate X, then it is itself a random deviate.
For a continuous random deviate the expectation value of g(X), E(g(x)) is then given as

E(g(X)) =
⇧ ⇥

�⇥
g(x)f(x)dx. (3.4)

A particular case is the expectation value of X itself, which is

E(X) .= µx =
⇧ ⇥

�⇥
xf(x)dx. (3.5)

This quantity is also called the first moment, or the mean µ. From this equation it follows that
E(aX + b) is simply given as aµx + b. Higher moments of the degree n are defined as E(Xn).
Another important quantity are the central moments of degree n, defined as E((X � µx)n).
The case n = 2 is particularly important, as it is the variance,

E((X � µx)2) .= D2(X) .= ⇥2
x =

⇧ ⇥

�⇥
(x� µx)2f(x)dx. (3.6)

⇥ is called the standard deviation. The equation above shows that D2(X) = ⇥2
x = E(X2)�µ2

x.

3.1.1 Generic distributions

The program exostat which was written for this research project generates the initial condi-
tions for the populations synthesis calculations (it is also used for the statistical comparison
with the observational data once the synthetic planets were calculated). In this program, a
number of important generic probability distributions were implemented.

Uniform deviate in [a, b]

This simplest probability function has a CDF

F (x) =

⇥
⌅

⇤

0 if x < a
x�a
b�a if a ⇥ x ⇥ b
1 if x > b.

(3.7)

This CDF is obtained by setting dF = f(x)dx = k1dx and determining k1 by the conditions
that F (a) = 0 and F (b) = 1. The PDF is obtained as the derivative,

f(x) =
� 1

b�a if a ⇥ x ⇥ b
0 otherwise (3.8)

These distributions are shown in fig. 3.1.
The mean is of course simply

E(X) = µx =
1

b� a

⇧ b

a
xdx =

a + b

2
(3.9)

30 Population Synthesis

for X to be in the interval [a, b] given as

P (a ⇥ X ⇥ b) =
⇧ b

a
f(x)dx. (3.3)

If g(x) is a bijective function of the random deviate X, then it is itself a random deviate.
For a continuous random deviate the expectation value of g(X), E(g(x)) is then given as

E(g(X)) =
⇧ ⇥

�⇥
g(x)f(x)dx. (3.4)

A particular case is the expectation value of X itself, which is

E(X) .= µx =
⇧ ⇥

�⇥
xf(x)dx. (3.5)

This quantity is also called the first moment, or the mean µ. From this equation it follows that
E(aX + b) is simply given as aµx + b. Higher moments of the degree n are defined as E(Xn).
Another important quantity are the central moments of degree n, defined as E((X � µx)n).
The case n = 2 is particularly important, as it is the variance,

E((X � µx)2) .= D2(X) .= ⇥2
x =

⇧ ⇥

�⇥
(x� µx)2f(x)dx. (3.6)

⇥ is called the standard deviation. The equation above shows that D2(X) = ⇥2
x = E(X2)�µ2

x.

3.1.1 Generic distributions

The program exostat which was written for this research project generates the initial condi-
tions for the populations synthesis calculations (it is also used for the statistical comparison
with the observational data once the synthetic planets were calculated). In this program, a
number of important generic probability distributions were implemented.

Uniform deviate in [a, b]

This simplest probability function has a CDF

F (x) =

⇥
⌅

⇤

0 if x < a
x�a
b�a if a ⇥ x ⇥ b
1 if x > b.

(3.7)

This CDF is obtained by setting dF = f(x)dx = k1dx and determining k1 by the conditions
that F (a) = 0 and F (b) = 1. The PDF is obtained as the derivative,

f(x) =
� 1

b�a if a ⇥ x ⇥ b
0 otherwise (3.8)

These distributions are shown in fig. 3.1.
The mean is of course simply

E(X) = µx =
1

b� a

⇧ b

a
xdx =

a + b

2
(3.9)

•Simple case: (a+b)/2, but then we can test the general Eq.:

Probability distributions 31

!1 !0.5 0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

!1 !0.5 0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

Figure 3.1: PDF (left) and CDF (right) for a standard uniform deviate.

and the variance �2
x = (b�a)2

12 . This distribution is implemented as No. 1 in exostat.
A special case is the uniform deviate in the unit interval (i.e. between 0.0 and 1.0) which

is given by random number generators. Called the standard uniform deviate, it has a PDF
equal 1, i.e. f(x)dx = dx in the unit interval, and 0 otherwise. In the practical application for
a computer program, one wants to calculate random deviates from some given distribution,
and has a random number generator at disposition which gives a standard uniform deviate.
In some cases it is possible to use the transformation method to draw random samples of the
given distribution, in the way explained in Press et al. (1992).

Assume that a computer program can generate a standard uniform deviate X. But what
we want is another random deviate Y , with samples y that follow some given PDF, f(y).
To get y which follows this f(y), we can use the fundamental law of the transformation of
probabilities which is given as

|f(y)dy| = |f(x)dx| (3.10)

so that

f(y) = f(x)
����
dx

dy

���� =
����
dx

dy

���� (3.11)

The solution to this simple di�erential equation is just x = F (y), where F (y) is given as the
integral of f(y). Therefore, the transformation of a uniform deviate x to y distributed as f(y)
is given as

y(x) = F�1(x), (3.12)

where F�1 denotes the inverse function of F . The transformation method can therefore be
used if the inverse to the indefinite integral of f can be calculated. An example helps to clarify
this method.

Imagine we want to generate an uniform deviate Y in the interval [a,b]. For this simple
case we immediately understand that we have to calculate y = x(b�a)+a when x comes form
an standard uniform deviate X, that is from our random number generator. This equation
can however also be derived as described above:

The CDF of Y exists, and is, a shown above, (y�a)/(b�a). Setting this expression equal
x and solving for y (i.e. calculating the inverse function F�1) yields y(x) = x(b � a) + a, as
expected.

Probability distributions 31

!1 !0.5 0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

!1 !0.5 0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

Figure 3.1: PDF (left) and CDF (right) for a standard uniform deviate.

and the variance �2
x = (b�a)2

12 . This distribution is implemented as No. 1 in exostat.
A special case is the uniform deviate in the unit interval (i.e. between 0.0 and 1.0) which

is given by random number generators. Called the standard uniform deviate, it has a PDF
equal 1, i.e. f(x)dx = dx in the unit interval, and 0 otherwise. In the practical application for
a computer program, one wants to calculate random deviates from some given distribution,
and has a random number generator at disposition which gives a standard uniform deviate.
In some cases it is possible to use the transformation method to draw random samples of the
given distribution, in the way explained in Press et al. (1992).

Assume that a computer program can generate a standard uniform deviate X. But what
we want is another random deviate Y , with samples y that follow some given PDF, f(y).
To get y which follows this f(y), we can use the fundamental law of the transformation of
probabilities which is given as

|f(y)dy| = |f(x)dx| (3.10)

so that

f(y) = f(x)
����
dx

dy

���� =
����
dx

dy

���� (3.11)

The solution to this simple di�erential equation is just x = F (y), where F (y) is given as the
integral of f(y). Therefore, the transformation of a uniform deviate x to y distributed as f(y)
is given as

y(x) = F�1(x), (3.12)

where F�1 denotes the inverse function of F . The transformation method can therefore be
used if the inverse to the indefinite integral of f can be calculated. An example helps to clarify
this method.

Imagine we want to generate an uniform deviate Y in the interval [a,b]. For this simple
case we immediately understand that we have to calculate y = x(b�a)+a when x comes form
an standard uniform deviate X, that is from our random number generator. This equation
can however also be derived as described above:

The CDF of Y exists, and is, a shown above, (y�a)/(b�a). Setting this expression equal
x and solving for y (i.e. calculating the inverse function F�1) yields y(x) = x(b � a) + a, as
expected.

30 Population Synthesis

for X to be in the interval [a, b] given as

P (a ⇥ X ⇥ b) =
⇧ b

a
f(x)dx. (3.3)

If g(x) is a bijective function of the random deviate X, then it is itself a random deviate.
For a continuous random deviate the expectation value of g(X), E(g(x)) is then given as

E(g(X)) =
⇧ ⇥

�⇥
g(x)f(x)dx. (3.4)

A particular case is the expectation value of X itself, which is

E(X) .= µx =
⇧ ⇥

�⇥
xf(x)dx. (3.5)

This quantity is also called the first moment, or the mean µ. From this equation it follows that
E(aX + b) is simply given as aµx + b. Higher moments of the degree n are defined as E(Xn).
Another important quantity are the central moments of degree n, defined as E((X � µx)n).
The case n = 2 is particularly important, as it is the variance,

E((X � µx)2) .= D2(X) .= ⇥2
x =

⇧ ⇥

�⇥
(x� µx)2f(x)dx. (3.6)

⇥ is called the standard deviation. The equation above shows that D2(X) = ⇥2
x = E(X2)�µ2

x.

3.1.1 Generic distributions

The program exostat which was written for this research project generates the initial condi-
tions for the populations synthesis calculations (it is also used for the statistical comparison
with the observational data once the synthetic planets were calculated). In this program, a
number of important generic probability distributions were implemented.

Uniform deviate in [a, b]

This simplest probability function has a CDF

F (x) =

⇥
⌅

⇤

0 if x < a
x�a
b�a if a ⇥ x ⇥ b
1 if x > b.

(3.7)

This CDF is obtained by setting dF = f(x)dx = k1dx and determining k1 by the conditions
that F (a) = 0 and F (b) = 1. The PDF is obtained as the derivative,

f(x) =
� 1

b�a if a ⇥ x ⇥ b
0 otherwise (3.8)

These distributions are shown in fig. 3.1.
The mean is of course simply

E(X) = µx =
1

b� a

⇧ b

a
xdx =

a + b

2
(3.9)

•PRNG special case Equal distribution aka
standard uniform deviate (SUD).
•Simple PDF =1,i.e. f(x)dx=dx inside interval
otherwise 0.
•Very useful to generate arbitrary distributions
with transformation method.

Equal distribution in Intervall [0,1]

•If X, follows a SUD. What is then Y, which samples yi
following f(y) ?
•Following fundamental law of probabilities:

Transformation methode I

Probability distributions 31

!1 !0.5 0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

!1 !0.5 0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

Figure 3.1: PDF (left) and CDF (right) for a standard uniform deviate.

and the variance �2
x = (b�a)2

12 . This distribution is implemented as No. 1 in exostat.
A special case is the uniform deviate in the unit interval (i.e. between 0.0 and 1.0) which

is given by random number generators. Called the standard uniform deviate, it has a PDF
equal 1, i.e. f(x)dx = dx in the unit interval, and 0 otherwise. In the practical application for
a computer program, one wants to calculate random deviates from some given distribution,
and has a random number generator at disposition which gives a standard uniform deviate.
In some cases it is possible to use the transformation method to draw random samples of the
given distribution, in the way explained in Press et al. (1992).

Assume that a computer program can generate a standard uniform deviate X. But what
we want is another random deviate Y , with samples y that follow some given PDF, f(y).
To get y which follows this f(y), we can use the fundamental law of the transformation of
probabilities which is given as

|f(y)dy| = |f(x)dx| (3.10)

so that

f(y) = f(x)
����
dx

dy

���� =
����
dx

dy

���� (3.11)

The solution to this simple di�erential equation is just x = F (y), where F (y) is given as the
integral of f(y). Therefore, the transformation of a uniform deviate x to y distributed as f(y)
is given as

y(x) = F�1(x), (3.12)

where F�1 denotes the inverse function of F . The transformation method can therefore be
used if the inverse to the indefinite integral of f can be calculated. An example helps to clarify
this method.

Imagine we want to generate an uniform deviate Y in the interval [a,b]. For this simple
case we immediately understand that we have to calculate y = x(b�a)+a when x comes form
an standard uniform deviate X, that is from our random number generator. This equation
can however also be derived as described above:

The CDF of Y exists, and is, a shown above, (y�a)/(b�a). Setting this expression equal
x and solving for y (i.e. calculating the inverse function F�1) yields y(x) = x(b � a) + a, as
expected.

Thus (as f(x)=1 for SUD)

Probability distributions 31

!1 !0.5 0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

!1 !0.5 0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

Figure 3.1: PDF (left) and CDF (right) for a standard uniform deviate.

and the variance �2
x = (b�a)2

12 . This distribution is implemented as No. 1 in exostat.
A special case is the uniform deviate in the unit interval (i.e. between 0.0 and 1.0) which

is given by random number generators. Called the standard uniform deviate, it has a PDF
equal 1, i.e. f(x)dx = dx in the unit interval, and 0 otherwise. In the practical application for
a computer program, one wants to calculate random deviates from some given distribution,
and has a random number generator at disposition which gives a standard uniform deviate.
In some cases it is possible to use the transformation method to draw random samples of the
given distribution, in the way explained in Press et al. (1992).

Assume that a computer program can generate a standard uniform deviate X. But what
we want is another random deviate Y , with samples y that follow some given PDF, f(y).
To get y which follows this f(y), we can use the fundamental law of the transformation of
probabilities which is given as

|f(y)dy| = |f(x)dx| (3.10)

so that

f(y) = f(x)
����
dx

dy

���� =
����
dx

dy

���� (3.11)

The solution to this simple di�erential equation is just x = F (y), where F (y) is given as the
integral of f(y). Therefore, the transformation of a uniform deviate x to y distributed as f(y)
is given as

y(x) = F�1(x), (3.12)

where F�1 denotes the inverse function of F . The transformation method can therefore be
used if the inverse to the indefinite integral of f can be calculated. An example helps to clarify
this method.

Imagine we want to generate an uniform deviate Y in the interval [a,b]. For this simple
case we immediately understand that we have to calculate y = x(b�a)+a when x comes form
an standard uniform deviate X, that is from our random number generator. This equation
can however also be derived as described above:

The CDF of Y exists, and is, a shown above, (y�a)/(b�a). Setting this expression equal
x and solving for y (i.e. calculating the inverse function F�1) yields y(x) = x(b � a) + a, as
expected.

•Solution if D.E. is x=F(y), with F(y) the integral of f(y).

Transformation-methode II

Probability distributions 31

!1 !0.5 0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

!1 !0.5 0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

Figure 3.1: PDF (left) and CDF (right) for a standard uniform deviate.

and the variance �2
x = (b�a)2

12 . This distribution is implemented as No. 1 in exostat.
A special case is the uniform deviate in the unit interval (i.e. between 0.0 and 1.0) which

is given by random number generators. Called the standard uniform deviate, it has a PDF
equal 1, i.e. f(x)dx = dx in the unit interval, and 0 otherwise. In the practical application for
a computer program, one wants to calculate random deviates from some given distribution,
and has a random number generator at disposition which gives a standard uniform deviate.
In some cases it is possible to use the transformation method to draw random samples of the
given distribution, in the way explained in Press et al. (1992).

Assume that a computer program can generate a standard uniform deviate X. But what
we want is another random deviate Y , with samples y that follow some given PDF, f(y).
To get y which follows this f(y), we can use the fundamental law of the transformation of
probabilities which is given as

|f(y)dy| = |f(x)dx| (3.10)

so that

f(y) = f(x)
����
dx

dy

���� =
����
dx

dy

���� (3.11)

The solution to this simple di�erential equation is just x = F (y), where F (y) is given as the
integral of f(y). Therefore, the transformation of a uniform deviate x to y distributed as f(y)
is given as

y(x) = F�1(x), (3.12)

where F�1 denotes the inverse function of F . The transformation method can therefore be
used if the inverse to the indefinite integral of f can be calculated. An example helps to clarify
this method.

Imagine we want to generate an uniform deviate Y in the interval [a,b]. For this simple
case we immediately understand that we have to calculate y = x(b�a)+a when x comes form
an standard uniform deviate X, that is from our random number generator. This equation
can however also be derived as described above:

The CDF of Y exists, and is, a shown above, (y�a)/(b�a). Setting this expression equal
x and solving for y (i.e. calculating the inverse function F�1) yields y(x) = x(b � a) + a, as
expected.

•Transformation of SUD from X to Y with f(y) :

With F-1 the inverse function of F.
So one has to be able to integrate f!

Probability distributions 31

!1 !0.5 0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

!1 !0.5 0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

Figure 3.1: PDF (left) and CDF (right) for a standard uniform deviate.

and the variance �2
x = (b�a)2

12 . This distribution is implemented as No. 1 in exostat.
A special case is the uniform deviate in the unit interval (i.e. between 0.0 and 1.0) which

is given by random number generators. Called the standard uniform deviate, it has a PDF
equal 1, i.e. f(x)dx = dx in the unit interval, and 0 otherwise. In the practical application for
a computer program, one wants to calculate random deviates from some given distribution,
and has a random number generator at disposition which gives a standard uniform deviate.
In some cases it is possible to use the transformation method to draw random samples of the
given distribution, in the way explained in Press et al. (1992).

Assume that a computer program can generate a standard uniform deviate X. But what
we want is another random deviate Y , with samples y that follow some given PDF, f(y).
To get y which follows this f(y), we can use the fundamental law of the transformation of
probabilities which is given as

|f(y)dy| = |f(x)dx| (3.10)

so that

f(y) = f(x)
����
dx

dy

���� =
����
dx

dy

���� (3.11)

The solution to this simple di�erential equation is just x = F (y), where F (y) is given as the
integral of f(y). Therefore, the transformation of a uniform deviate x to y distributed as f(y)
is given as

y(x) = F�1(x), (3.12)

where F�1 denotes the inverse function of F . The transformation method can therefore be
used if the inverse to the indefinite integral of f can be calculated. An example helps to clarify
this method.

Imagine we want to generate an uniform deviate Y in the interval [a,b]. For this simple
case we immediately understand that we have to calculate y = x(b�a)+a when x comes form
an standard uniform deviate X, that is from our random number generator. This equation
can however also be derived as described above:

The CDF of Y exists, and is, a shown above, (y�a)/(b�a). Setting this expression equal
x and solving for y (i.e. calculating the inverse function F�1) yields y(x) = x(b � a) + a, as
expected.

•Equal distribution Y in Intervall [a,b], and SUD X.
•Suggestion: y=x(b-a)+a.
•But use Transformations-method:
•Be x=F(y)=(y-a)/(b-a), and solve for y auf (reverse ->
F-1), thus y(x)=x(b-a)+a

Example

•Y be uniform in log10 within [a,b] thus lg(x) is
uniform in [lg(a),lg(b)]

Example 2: Uniform in lg

32 Population Synthesis

Uniform in ln(x) or log(x) in [a, b]

The CDF of this distribution with the natural logarithm is obtained by setting dF = f(x)dx =
k1d ln(x), in an analogous way as for the uniform distribution. Using again that F (a) must
be 0 and F (b) = 1, yields

F (x) =

⌃
 �

 ⌥

0 if x < a
ln(x)�ln(a)
ln(b)�ln(a) if a ⇥ x ⇥ b

1 if x > b.

(3.13)

which completely correspond to the uniform deviate if we use the transformed variables x̃ =
ln(x), ã = ln(a) and b̃ = ln(b). The PDF is

f(x) =
⇧ 1

ln(b)�ln(a)
1
x if a ⇥ x ⇥ b

0 otherwise
(3.14)

which shows that values drawn from this distribution will be concentrated near the lower
boundary value a. We can again calculate with the transformation method how we can get
a random variable distributed according to this distribution if we have an standard uniform
deviate: By setting x = F (y) and solving for y we find

y = ex(ln(b)�ln(a))+ln(a). (3.15)

The case of the logarithm to the base 10 is completely parallel, with the CDF given as

F (x) =

⌃
 �

 ⌥

0 if x < a
log(x)�log(a)
log(b)�log(a) if a ⇥ x ⇥ b

1 if x > b.

(3.16)

and to draw samples from this distribution one uses the equation

y = 10x(log(b)�log(a))+log(a). (3.17)

i.e. if x is uniformly distributed in the unit interval, then y is distributed log uniformly in
[a, b], which means that log(y) is uniformly distributed in [log(a), log(b)]. The distribution
uniform in log(x) is implemented as No. 2 in exostat.

Normal deviate with mean µ and standard deviation ⇤

The probability density function of this distribution is

f(x) =
1⇤
2⇥⇤

e�
(x�µ)2

2⇥2 (3.18)

and the CDF is
F (x) =

⌦ x

�⇥

1⇤
2⇥⇤

e�
(x�µ)2

2⇥2 =
1
2

⇤
1 + erf

�
x� µ

⇤
⇤

2

⇥⌅
(3.19)

These distributions are shown in fig. 3.2.
If X is a normally distributed deviate with zero mean and unit variance (called a standard

normal deviate), then we obtain Y that is normally distributed with a mean µ and variance
⇤2 as y = ⇤x + µ. This distribution is implemented as No. 3 in exostat.

32 Population Synthesis

Uniform in ln(x) or log(x) in [a, b]

The CDF of this distribution with the natural logarithm is obtained by setting dF = f(x)dx =
k1d ln(x), in an analogous way as for the uniform distribution. Using again that F (a) must
be 0 and F (b) = 1, yields

F (x) =

⌃
 �

 ⌥

0 if x < a
ln(x)�ln(a)
ln(b)�ln(a) if a ⇥ x ⇥ b

1 if x > b.

(3.13)

which completely correspond to the uniform deviate if we use the transformed variables x̃ =
ln(x), ã = ln(a) and b̃ = ln(b). The PDF is

f(x) =
⇧ 1

ln(b)�ln(a)
1
x if a ⇥ x ⇥ b

0 otherwise
(3.14)

which shows that values drawn from this distribution will be concentrated near the lower
boundary value a. We can again calculate with the transformation method how we can get
a random variable distributed according to this distribution if we have an standard uniform
deviate: By setting x = F (y) and solving for y we find

y = ex(ln(b)�ln(a))+ln(a). (3.15)

The case of the logarithm to the base 10 is completely parallel, with the CDF given as

F (x) =

⌃
 �

 ⌥

0 if x < a
log(x)�log(a)
log(b)�log(a) if a ⇥ x ⇥ b

1 if x > b.

(3.16)

and to draw samples from this distribution one uses the equation

y = 10x(log(b)�log(a))+log(a). (3.17)

i.e. if x is uniformly distributed in the unit interval, then y is distributed log uniformly in
[a, b], which means that log(y) is uniformly distributed in [log(a), log(b)]. The distribution
uniform in log(x) is implemented as No. 2 in exostat.

Normal deviate with mean µ and standard deviation ⇤

The probability density function of this distribution is

f(x) =
1⇤
2⇥⇤

e�
(x�µ)2

2⇥2 (3.18)

and the CDF is
F (x) =

⌦ x

�⇥

1⇤
2⇥⇤

e�
(x�µ)2

2⇥2 =
1
2

⇤
1 + erf

�
x� µ

⇤
⇤

2

⇥⌅
(3.19)

These distributions are shown in fig. 3.2.
If X is a normally distributed deviate with zero mean and unit variance (called a standard

normal deviate), then we obtain Y that is normally distributed with a mean µ and variance
⇤2 as y = ⇤x + µ. This distribution is implemented as No. 3 in exostat.

•Transformation - method (x=F(y) -> inverse),

•Can be used in multiple dimensions. (Aka Box
Muller Transformation)
•Not all distribution functions can be integrated.
Then use the Rejection method instead.
•See discussion in Numerical Recipes: Press et al.

Generalisation

3. Monte Carlo
Methods

•Calculate complex Integrals of Function f in
multidimensional Volume V.
•Distribute N RND x1,..,xN uniform in V.
•MC theorem says we can then estimate the
Integral as:

Idea Monte Carlo Integration
7.6 Simple Monte Carlo Integration 305

Suppose that we pickN random points, uniformly distributed in a multidimen-

sional volume V . Call them x1, . . . , xN . Then the basic theorem of Monte Carlo

integration estimates the integral of a function f over the multidimensional volume,

⇥
f dV ⌃ V ⇧f⌥ ± V

⇧
⇧f2⌥ ⇥ ⇧f⌥2

N
(7.6.1)

Here the angle brackets denote taking the arithmetic mean over theN sample points,

⇧f⌥ 1

N

N⌅

i=1

f(xi)
⌃
f2
⌥
 1

N

N⌅

i=1

f2(xi) (7.6.2)

The “plus-or-minus” term in (7.6.1) is a one standard deviation error estimate for

the integral, not a rigorous bound; further, there is no guarantee that the error

is distributed as a Gaussian, so the error term should be taken only as a rough

indication of probable error.

Suppose that you want to integrate a function g over a region W that is not

easy to sample randomly. For example, W might have a very complicated shape.

No problem. Just find a region V that includes W and that can easily be sampled

(Figure 7.6.1), and then define f to be equal to g for points inW and equal to zero

for points outside of W (but still inside the sampled V). You want to try to make
V enclose W as closely as possible, because the zero values of f will increase the
error estimate term of (7.6.1). And well they should: points chosen outside of W
have no information content, so the effective value of N , the number of points, is
reduced. The error estimate in (7.6.1) takes this into account.

General purpose routines for Monte Carlo integration are quite complicated

(see §7.8), but a worked example will show the underlying simplicity of the method.
Suppose that we want to find the weight and the position of the center of mass of an

object of complicated shape, namely the intersection of a torus with the edge of a

large box. In particular let the object be defined by the three simultaneous conditions

z2 +
⇤�

x2 + y2 ⇥ 3
�2
⇤ 1 (7.6.3)

(torus centered on the origin with major radius = 4, minor radius = 2)

x ⌅ 1 y ⌅ ⇥3 (7.6.4)

(two faces of the box, see Figure 7.6.2). Suppose for the moment that the object

has a constant density ⇧.
We want to estimate the following integrals over the interior of the complicated

object:
⇥

⇧ dx dy dz

⇥
x⇧ dx dy dz

⇥
y⇧ dx dy dz

⇥
z⇧ dx dy dz

(7.6.5)
The coordinates of the center of mass will be the ratio of the latter three integrals

(linear moments) to the first one (the weight).

In the following fragment, the region V , enclosing the piece-of-torusW , is the

rectangular box extending from 1 to 4 in x, ⇥3 to 4 in y, and ⇥1 to 1 in z.

7.6 Simple Monte Carlo Integration 305

Suppose that we pickN random points, uniformly distributed in a multidimen-

sional volume V . Call them x1, . . . , xN . Then the basic theorem of Monte Carlo

integration estimates the integral of a function f over the multidimensional volume,

⇥
f dV ⌃ V ⇧f⌥ ± V

⇧
⇧f2⌥ ⇥ ⇧f⌥2

N
(7.6.1)

Here the angle brackets denote taking the arithmetic mean over theN sample points,

⇧f⌥ 1

N

N⌅

i=1

f(xi)
⌃
f2
⌥
 1

N

N⌅

i=1

f2(xi) (7.6.2)

The “plus-or-minus” term in (7.6.1) is a one standard deviation error estimate for

the integral, not a rigorous bound; further, there is no guarantee that the error

is distributed as a Gaussian, so the error term should be taken only as a rough

indication of probable error.

Suppose that you want to integrate a function g over a region W that is not

easy to sample randomly. For example, W might have a very complicated shape.

No problem. Just find a region V that includes W and that can easily be sampled

(Figure 7.6.1), and then define f to be equal to g for points inW and equal to zero

for points outside of W (but still inside the sampled V). You want to try to make
V enclose W as closely as possible, because the zero values of f will increase the
error estimate term of (7.6.1). And well they should: points chosen outside of W
have no information content, so the effective value of N , the number of points, is
reduced. The error estimate in (7.6.1) takes this into account.

General purpose routines for Monte Carlo integration are quite complicated

(see §7.8), but a worked example will show the underlying simplicity of the method.
Suppose that we want to find the weight and the position of the center of mass of an

object of complicated shape, namely the intersection of a torus with the edge of a

large box. In particular let the object be defined by the three simultaneous conditions

z2 +
⇤�

x2 + y2 ⇥ 3
�2
⇤ 1 (7.6.3)

(torus centered on the origin with major radius = 4, minor radius = 2)

x ⌅ 1 y ⌅ ⇥3 (7.6.4)

(two faces of the box, see Figure 7.6.2). Suppose for the moment that the object

has a constant density ⇧.
We want to estimate the following integrals over the interior of the complicated

object:
⇥

⇧ dx dy dz

⇥
x⇧ dx dy dz

⇥
y⇧ dx dy dz

⇥
z⇧ dx dy dz

(7.6.5)
The coordinates of the center of mass will be the ratio of the latter three integrals

(linear moments) to the first one (the weight).

In the following fragment, the region V , enclosing the piece-of-torusW , is the

rectangular box extending from 1 to 4 in x, ⇥3 to 4 in y, and ⇥1 to 1 in z.

•With <> the arithmetic mean over N sample points.

•In general difficult to have points evenly in V , f.i.
complex shape of V.
•Define minimal Volume W, that contains V and then
set f only for points inside V and =0 for outside V
(rejection method).

Monte Carlo Integration II

306 Chapter 7. Random Numbers

area A

∫fdx

Figure 7.6.1. Monte Carlo integration. Random points are chosen within the areaA. The integral of the
function f is estimated as the area of A multiplied by the fraction of random points that fall below the
curve f . Refinements on this procedure can improve the accuracy of the method; see text.

0 2 4

2

4

y

x
1

Figure 7.6.2. Example of Monte Carlo integration (see text). The region of interest is a piece of a torus,

bounded by the intersection of two planes. The limits of integration of the region cannot easily be written
in analytically closed form, so Monte Carlo is a useful technique.

Press et al.

•Center of mass for arbitrary shaped body:

Example

306 Chapter 7. Random Numbers

area A

∫fdx

Figure 7.6.1. Monte Carlo integration. Random points are chosen within the areaA. The integral of the
function f is estimated as the area of A multiplied by the fraction of random points that fall below the
curve f . Refinements on this procedure can improve the accuracy of the method; see text.

0 2 4

2

4

y

x
1

Figure 7.6.2. Example of Monte Carlo integration (see text). The region of interest is a piece of a torus,

bounded by the intersection of two planes. The limits of integration of the region cannot easily be written
in analytically closed form, so Monte Carlo is a useful technique.

Press et al.

Torus, with certain cuts…

Difficult to integrate
analytically.

For MC simple.

~rs =
1

M

Z
⇢(~r)~rdV

•Body defined as

Example II

7.6 Simple Monte Carlo Integration 305

Suppose that we pickN random points, uniformly distributed in a multidimen-

sional volume V . Call them x1, . . . , xN . Then the basic theorem of Monte Carlo

integration estimates the integral of a function f over the multidimensional volume,

⇥
f dV ⌃ V ⇧f⌥ ± V

⇧
⇧f2⌥ ⇥ ⇧f⌥2

N
(7.6.1)

Here the angle brackets denote taking the arithmetic mean over theN sample points,

⇧f⌥ 1

N

N⌅

i=1

f(xi)
⌃
f2
⌥
 1

N

N⌅

i=1

f2(xi) (7.6.2)

The “plus-or-minus” term in (7.6.1) is a one standard deviation error estimate for

the integral, not a rigorous bound; further, there is no guarantee that the error

is distributed as a Gaussian, so the error term should be taken only as a rough

indication of probable error.

Suppose that you want to integrate a function g over a region W that is not

easy to sample randomly. For example, W might have a very complicated shape.

No problem. Just find a region V that includes W and that can easily be sampled

(Figure 7.6.1), and then define f to be equal to g for points inW and equal to zero

for points outside of W (but still inside the sampled V). You want to try to make
V enclose W as closely as possible, because the zero values of f will increase the
error estimate term of (7.6.1). And well they should: points chosen outside of W
have no information content, so the effective value of N , the number of points, is
reduced. The error estimate in (7.6.1) takes this into account.

General purpose routines for Monte Carlo integration are quite complicated

(see §7.8), but a worked example will show the underlying simplicity of the method.
Suppose that we want to find the weight and the position of the center of mass of an

object of complicated shape, namely the intersection of a torus with the edge of a

large box. In particular let the object be defined by the three simultaneous conditions

z2 +
⇤�

x2 + y2 ⇥ 3
�2
⇤ 1 (7.6.3)

(torus centered on the origin with major radius = 4, minor radius = 2)

x ⌅ 1 y ⌅ ⇥3 (7.6.4)

(two faces of the box, see Figure 7.6.2). Suppose for the moment that the object

has a constant density ⇧.
We want to estimate the following integrals over the interior of the complicated

object:
⇥

⇧ dx dy dz

⇥
x⇧ dx dy dz

⇥
y⇧ dx dy dz

⇥
z⇧ dx dy dz

(7.6.5)
The coordinates of the center of mass will be the ratio of the latter three integrals

(linear moments) to the first one (the weight).

In the following fragment, the region V , enclosing the piece-of-torusW , is the

rectangular box extending from 1 to 4 in x, ⇥3 to 4 in y, and ⇥1 to 1 in z.

•Assume constant density ρ.

(Torus outer radius = 4, inner radius =3) and planes

7.6 Simple Monte Carlo Integration 305

Suppose that we pickN random points, uniformly distributed in a multidimen-

sional volume V . Call them x1, . . . , xN . Then the basic theorem of Monte Carlo

integration estimates the integral of a function f over the multidimensional volume,

⇥
f dV ⌃ V ⇧f⌥ ± V

⇧
⇧f2⌥ ⇥ ⇧f⌥2

N
(7.6.1)

Here the angle brackets denote taking the arithmetic mean over theN sample points,

⇧f⌥ 1

N

N⌅

i=1

f(xi)
⌃
f2
⌥
 1

N

N⌅

i=1

f2(xi) (7.6.2)

The “plus-or-minus” term in (7.6.1) is a one standard deviation error estimate for

the integral, not a rigorous bound; further, there is no guarantee that the error

is distributed as a Gaussian, so the error term should be taken only as a rough

indication of probable error.

Suppose that you want to integrate a function g over a region W that is not

easy to sample randomly. For example, W might have a very complicated shape.

No problem. Just find a region V that includes W and that can easily be sampled

(Figure 7.6.1), and then define f to be equal to g for points inW and equal to zero

for points outside of W (but still inside the sampled V). You want to try to make
V enclose W as closely as possible, because the zero values of f will increase the
error estimate term of (7.6.1). And well they should: points chosen outside of W
have no information content, so the effective value of N , the number of points, is
reduced. The error estimate in (7.6.1) takes this into account.

General purpose routines for Monte Carlo integration are quite complicated

(see §7.8), but a worked example will show the underlying simplicity of the method.
Suppose that we want to find the weight and the position of the center of mass of an

object of complicated shape, namely the intersection of a torus with the edge of a

large box. In particular let the object be defined by the three simultaneous conditions

z2 +
⇤�

x2 + y2 ⇥ 3
�2
⇤ 1 (7.6.3)

(torus centered on the origin with major radius = 4, minor radius = 2)

x ⌅ 1 y ⌅ ⇥3 (7.6.4)

(two faces of the box, see Figure 7.6.2). Suppose for the moment that the object

has a constant density ⇧.
We want to estimate the following integrals over the interior of the complicated

object:
⇥

⇧ dx dy dz

⇥
x⇧ dx dy dz

⇥
y⇧ dx dy dz

⇥
z⇧ dx dy dz

(7.6.5)
The coordinates of the center of mass will be the ratio of the latter three integrals

(linear moments) to the first one (the weight).

In the following fragment, the region V , enclosing the piece-of-torusW , is the

rectangular box extending from 1 to 4 in x, ⇥3 to 4 in y, and ⇥1 to 1 in z.

•Find the Volume for the Integrals

7.6 Simple Monte Carlo Integration 305

Suppose that we pickN random points, uniformly distributed in a multidimen-

sional volume V . Call them x1, . . . , xN . Then the basic theorem of Monte Carlo

integration estimates the integral of a function f over the multidimensional volume,

⇥
f dV ⌃ V ⇧f⌥ ± V

⇧
⇧f2⌥ ⇥ ⇧f⌥2

N
(7.6.1)

Here the angle brackets denote taking the arithmetic mean over theN sample points,

⇧f⌥ 1

N

N⌅

i=1

f(xi)
⌃
f2
⌥
 1

N

N⌅

i=1

f2(xi) (7.6.2)

The “plus-or-minus” term in (7.6.1) is a one standard deviation error estimate for

the integral, not a rigorous bound; further, there is no guarantee that the error

is distributed as a Gaussian, so the error term should be taken only as a rough

indication of probable error.

Suppose that you want to integrate a function g over a region W that is not

easy to sample randomly. For example, W might have a very complicated shape.

No problem. Just find a region V that includes W and that can easily be sampled

(Figure 7.6.1), and then define f to be equal to g for points inW and equal to zero

for points outside of W (but still inside the sampled V). You want to try to make
V enclose W as closely as possible, because the zero values of f will increase the
error estimate term of (7.6.1). And well they should: points chosen outside of W
have no information content, so the effective value of N , the number of points, is
reduced. The error estimate in (7.6.1) takes this into account.

General purpose routines for Monte Carlo integration are quite complicated

(see §7.8), but a worked example will show the underlying simplicity of the method.
Suppose that we want to find the weight and the position of the center of mass of an

object of complicated shape, namely the intersection of a torus with the edge of a

large box. In particular let the object be defined by the three simultaneous conditions

z2 +
⇤�

x2 + y2 ⇥ 3
�2
⇤ 1 (7.6.3)

(torus centered on the origin with major radius = 4, minor radius = 2)

x ⌅ 1 y ⌅ ⇥3 (7.6.4)

(two faces of the box, see Figure 7.6.2). Suppose for the moment that the object

has a constant density ⇧.
We want to estimate the following integrals over the interior of the complicated

object:
⇥

⇧ dx dy dz

⇥
x⇧ dx dy dz

⇥
y⇧ dx dy dz

⇥
z⇧ dx dy dz

(7.6.5)
The coordinates of the center of mass will be the ratio of the latter three integrals

(linear moments) to the first one (the weight).

In the following fragment, the region V , enclosing the piece-of-torusW , is the

rectangular box extending from 1 to 4 in x, ⇥3 to 4 in y, and ⇥1 to 1 in z.

•minimal Volume W, in which we are sampling points
uniform in a box of 1 to 4 in x, -3 to 4 in y, and -1 to 1
in z.

Example III
306 Chapter 7. Random Numbers

area A

∫fdx

Figure 7.6.1. Monte Carlo integration. Random points are chosen within the areaA. The integral of the
function f is estimated as the area of A multiplied by the fraction of random points that fall below the
curve f . Refinements on this procedure can improve the accuracy of the method; see text.

0 2 4

2

4

y

x
1

Figure 7.6.2. Example of Monte Carlo integration (see text). The region of interest is a piece of a torus,

bounded by the intersection of two planes. The limits of integration of the region cannot easily be written
in analytically closed form, so Monte Carlo is a useful technique.

•Results for n=1000000
 w,dw 22.107918 2.09707543E-02 (Masse des Körpers; Umgebender Quader: 3x7x2=42)
 x,dx 53.275669 5.50482012E-02
 y,dy 3.4985492 5.61315641E-02
 z,dz -1.39091080E-02 1.53482482E-02

~rs =
1

M

Z
⇢(~r)~rdV

•Center of mass ~rs =

0

@
2.4098
0.1582
�0.0006

1

A

At least plausible (z-component =0 … Symmetry!)

Numerisches Praktikum – Numerical Practical Training

PD. Dr. Hubert Klahr, Dr. Christoph Mordasini

Random numbers

Return by 9:15 a.m. tomorrow

Free Training / Homework

• Exercise 1, 6 points: The infamous randu.
Write a program code with the (not-so) random number generator randu following

the recurrence:

Ij+1 = (65539 Ij)
⇣
mod 2

31
⌘

(see Lecture for details). Then to obtain a random number xi drawn from the interval

(0, 1) use the normalisation xi = ui/231. Create some 100 000 random number,

starting with an initial seed u0 = 1 and plot the consecutive triples (xi, xi+1, xi+2)

in a 3-dimensional plot, e.g., using the splot command from gnuplot. Count the

number of 2D planes by viewing the data in di↵erent projections. What is the

number of planes for randu?

• Exercise 2, 8 points: Transformation method.

Write a program code to generate random numbers with an exponential probability

distribution function (PDF) ⇢(y) = e�y
in the interval ymin = 0 to ymax = 5 using

the transformation:

y = � ln (1� x) , x = e�y.

Use an random number generator with uniform PDF of your choice or the one

o↵ered in the Lecture. Show that your resulting distribution of random numbers

indeed follows an exponential one.

• Exercise 3, 6 points: Monte-Carlo Integration.

Approximate the value of ⇡ using the Monte-Carlo technique by integrating the area

of a square with side length a and a circle of radius 1/2a. Use the equation:

⇡ = 4
Ac

As
⇡ 4

Nc

Ns
,

where Ac and As is the area of the square and the circle, respectively. How does the

precision of the result scale with the number of points used in the integration?

