Exercise 2
 Numerisches Praktikum - Numerical Practical Training Hubert Klahr
 Interpolation

Return by 9:15 a.m. Feb 21st as .pdf by Mail to: cecil@mpia.de

- Exercise 1, 10 points: Newton's Divided Differences for known polynomial

Write a program that computes the Newtonian divided differences for five points (i.e. up to the fourth divided difference should be used). To test your program, use the polynomial $y=f(x)=0.1 x^{4}-x^{2}$ to compute 5 pairs of points $(x, y),(x=$ $0,0.3,13.0,-4.8,-9.0)$ and compare the original polynomial with the interpolation polynomial by plotting their values (and check the difference).

- Exercise 2, 10 points:

Use your program up to the third divided difference to obtain a fitting polynomial for the four points given (motion of the S 2 star in the galactic centre). Compare its results with the direct interpolation polynomial derived in the lecture.
The data points to be used are $(1,1500),(2,1000),(3,800),(4,700)$, in units of years and km / s. They are approximately taken from the following plot of measurements obtained by Gillessen et al. (2008), with the year 1 defined as the mid-point between 2003 and 2004.

