Numerisches Praktikum - Numerical Practical Training

Hubert Klahr

Integration

Return by 9:15 a.m. Feb 23nd
as .pdf by Mail to: cecil@mpia.de

Free Training

- Write a program code for numerically computing a definite integral, using multiple segments (free parameters are: number of segments n, lower and upper bound a and b, step size $h=(b-a) / n)$. Prepare the following three methods:

1. Trapezium Rule
2. Simpson $1 / 3$ Rule
3. Gaussian Two-Point Quadrature

Test your programm for $f(x)=x(a=0, b=2)$ and $f(x)=x^{2}-3 x(a=-3$, $b=6$)

Assignment for the Afternoon / Homework

- Exercise 1, 5 points: Trapezium Rule.

Integrate numerically the definite integral

$$
\begin{equation*}
\int_{0}^{2}(2+\cos (2 \sqrt{x})) d x \tag{1}
\end{equation*}
$$

using the Trapezium rule. Use $n=2,10,100,1000,10000$, print the result.

- Exercise 2, 5 points: Simpson $1 / 3$ rule.

Integrate the definite integral of 1 using Simpson's $1 / 3$ rule, for $n=$ $2,10,100,1000,10000$, print the results.

- Exercise 3, 5 points: Gaussian two point quadrature.

Integrate the definite integral of 1 using the Gaussian two point quadrature, for $n=2,10,100,1000,10000$ intervals of $[a, b]$, print the results.

- Exercise 4, 5 points: Accuracy and Errors.

Evaluate the integral of 1 analytically. Compute the true error (absolute and relative) of the numerically computed integral for Trapezium, Simpson $1 / 3$ rule and Gaussian two-point quadrature (for the $n=2,10,100,1000,10000$) values. Put all results in a double logarithmic plot of error against n. What scaling of the error do you find?

