Numerisches Praktikum - Numerical Practical Training

Hubert Klahr

Linear Equations

Return by 9:15 a.m. Feb 28th
as .pdf by Mail to: ostertag@mpia.de

Free Training

- Start writing routines using the

1. Naive Gaussian Elimination Method and
2. Naive Gaussian Elimination with Partial Pivoting.
3. Think how to implement the LU decomposition of a matrix A to solve the following set of linear equations:

$$
\mathbf{A} \cdot \mathbf{x}=\mathbf{b}
$$

where

$$
\mathbf{A}=\left(\begin{array}{rrrr}
13 & 4 & 7 & 9 \\
10 & 6 & 5 & 12 \\
1 & 8 & 2 & 16 \\
3 & 14 & 15 & 11
\end{array}\right), \quad \mathbf{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{c}
111 \\
118 \\
114 \\
163
\end{array}\right)
$$

Assignment for the Afternoon / Homework, 20 Points

- Exercise 1, 10 points: Print the upper triangular matrix and the new b-vector after the forward Gaussian elimination and show the solution of \mathbf{x}. Also, use the method to calculate the determinant of matrix \mathbf{A}.
- Exercise 2, 10 points: Write a routine which does the LU decomposition on a square matrix. Use the above matrix \mathbf{A} to test your program.
- Print out the L and U parts of the matrix \mathbf{A}.
- Solve the above equation.
- Optional: Compute the inverse of the matrix A.

