Numerisches Praktikum – Numerical Practical Training

Hubert Klahr

Linear Equations

Return by 9:15 a.m. Feb 28th

as .pdf by Mail to: ostertag@mpia.de

Free Training

- Start writing routines using the
 - 1. Naive Gaussian Elimination Method and
 - 2. Naive Gaussian Elimination with Partial Pivoting.
 - 3. Think how to implement the LU decomposition of a matrix A

to solve the following set of linear equations:

$$\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$$

where

$$\mathbf{A} = \begin{pmatrix} 13 & 4 & 7 & 9\\ 10 & 6 & 5 & 12\\ 1 & 8 & 2 & 16\\ 3 & 14 & 15 & 11 \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} x_1\\ x_2\\ x_3\\ x_4 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 111\\ 118\\ 114\\ 163 \end{pmatrix}.$$

Assignment for the Afternoon / Homework, 20 Points

- Exercise 1, 10 points: Print the upper triangular matrix and the new b-vector after the *forward* Gaussian elimination and show the solution of **x**. Also, use the method to calculate the determinant of matrix **A**.
- Exercise 2, 10 points: Write a routine which does the LU decomposition on a square matrix. Use the above matrix A to test your program.
 - Print out the L and U parts of the matrix \mathbf{A} .
 - Solve the above equation.
 - Optional: Compute the inverse of the matrix **A**.