Numerisches Praktikum - Numerical Practical Training

PD. Dr. Hubert Klahr, Dr. Christoph Mordasini

Root finding

Return by 9:15 a.m. tomorrow

Free Training

- Write a program code to calculate the root x_{\star} (i.e., with $f\left(x_{\star}\right)=0$) of some given function $\mathrm{f}(\mathrm{x})$ using the four methods presented in the lecture:

1. Bisection method
2. Regula falsi (Interpolation)
3. Newton-Raphson
4. Secant method

- Solve the quadratic equation $x^{2}+x-1=0$ using these four methods. Plot the graph first to find proper starting values for the iteration.

Assignment for the Afternoon / Homework

- Exercise 1, 8 points: Convergence (I).

Solve the equation $f(x)=\cos (x)-\frac{1}{4}$ with your program using $x_{a}=0$ and $x_{b}=\pi / 2$ (for methods 1, 2 and 4) and $x_{a}=\pi / 2$ (for Newton-Raphson) as initial values. Calculate and write out both the absolute true error $\left(\left|e_{n}\right|=\left|x_{n}-x_{*}\right|\right)$ and the absolute true relative error $\left|f_{n}\right|=\left|x_{n}-x_{*}\right| /\left|x_{*}\right|$ for the first 20 iterations.

- Exercise 2, 6 points: Convergence (II).

Plot $\left|e_{n} / e_{0}\right|$, where e_{0} is the error for $n=0$, versus the iteration step n from the data in Ex. 1 in a logarithmic plot. Compare your results to the expected convergence behaviour of these methods.

- Exercise 3, 6 points: Double-well potential
$f(x)=0.1 x^{4}-4 x^{2}-10$. Double-well potentials play an important role in quantum mechanics and molecular dynamics to describe the motion of a particle in the force field of two others. Determine the root of $f(x)$ with the four root-finding methods. Start the iteration with the initial values $x_{a}=2.5$ and $x_{b}=7.0$ (use $x_{a}=2.5$ for the Newton-Raphson algorithm). Discuss the results of the four methods in terms of their convergence behaviour. Give an example in which the bisection method cannot be applied or would give a wrong result (i.e., not converge to a root of $f(x)$).

