Numerisches Praktikum – Numerical Practical Training

PD. Dr. Hubert Klahr, Dr. Christoph Mordasini

Root finding

Return by 9:15 a.m. tomorrow

Free Training

- Write a program code to calculate the root x_{\star} (i.e., with $f(x_{\star}) = 0$) of some given function f(x) using the four methods presented in the lecture:
 - 1. Bisection method
 - 2. Regula falsi (Interpolation)
 - 3. Newton-Raphson
 - 4. Secant method
- Solve the quadratic equation $x^2 + x 1 = 0$ using these four methods. Plot the graph first to find proper starting values for the iteration.

Assignment for the Afternoon / Homework

• Exercise 1, 8 points: Convergence (I).

Solve the equation $f(x) = \cos(x) - \frac{1}{4}$ with your program using $x_a = 0$ and $x_b = \pi/2$ (for methods 1, 2 and 4) and $x_a = \pi/2$ (for Newton-Raphson) as initial values. Calculate and write out both the absolute true error $(|e_n| = |x_n - x_*|)$ and the absolute true relative error $|f_n| = |x_n - x_*|/|x_*|$ for the first 20 iterations.

• Exercise 2, 6 points: Convergence (II).

Plot $|e_n/e_0|$, where e_0 is the error for n = 0, versus the iteration step n from the data in Ex. 1 in a logarithmic plot. Compare your results to the expected convergence behaviour of these methods.

• Exercise 3, 6 points: Double-well potential

 $f(x) = 0.1 x^4 - 4 x^2 - 10$. Double-well potentials play an important role in quantum mechanics and molecular dynamics to describe the motion of a particle in the force field of two others. Determine the root of f(x) with the four root-finding methods. Start the iteration with the initial values $x_a = 2.5$ and $x_b = 7.0$ (use $x_a = 2.5$ for the Newton-Raphson algorithm). Discuss the results of the four methods in terms of their convergence behaviour. Give an example in which the bisection method cannot be applied or would give a wrong result (i.e., not converge to a root of f(x)).