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Abstract

qmethod is a Bayesian method for estimating stellar parameters using (spectro)photometric and
astrometric information. Here I derive a few more results which broaden its range of application:
estimation of the absolute magnitude; generalization to include dependence on and estimation
of metallicity and surface gravity.
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TABLE 1: Notation

G apparent magnitude in the G band (mag)
MG absolute magnitude in the G band (mag)
AG extinction in the G band (mag)
A0 extinction parameter (mag)
T stellar effective temperature (K)
Z stellar metallicity (fraction)
g surface gravity (ms−2)
R stellar radius (m)
m stellar mass (kg)
L stellar luminosity (W)
$ parallax (arcsec)
q ≡ G+ 5 log$ (mag)
p normalized spectral energy distribution
P probability density
log base 10 logarithm

1 Introduction

The qmethod algorithm was introduced in CBJ-049 as a Bayesian method for estimating the
stellar parameters of a star using not only the spectral energy distribution, but also the paral-
lax, apparent magnitude and the astrophysical knowledge embodied in the Hertzprung–Russell
Diagram (HRD). The method ensures that the inferred effective temperature and absolute mag-
nitude are consistent with the distance and apparent magnitude. It also allows one to better
determine the line-of-sight extinction by reducing the degeneracy between this and tempera-
ture.

In that TN I derived the following

P (A0, T |p, q) = P (p|A0, T )︸ ︷︷ ︸
likelihood

P (A0)

P (p, q)︸ ︷︷ ︸
priors

∫
MG

P (q|MG, A0, T )︸ ︷︷ ︸
q constraint

P (MG, T )︸ ︷︷ ︸
HRD prior

dMG

︸ ︷︷ ︸
HRD/q factor

. (1)

In the present TN I derive a few more relevant results which generalize this to

• estimate (the PDF over) absolute magnitude (section 3)

• add dependence on and estimation of the stellar metallicity (section 4)

• add dependence on and estimation of the surface gravity (section 5).

I also remind readers in section 2 of an important difference between conditional and uncondi-
tional independence.
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Although first described in CBJ-049, the algorithm is described better in a MNRAS article,
Bailer-Jones (2011), hereafter CBJ11. (Equation 1 is equation 15 in CBJ11.) There I also
applied the algorithm to the estimation of temperature and extinction of 45 000 FGK stars us-
ing BV JHK data and Hipparcos parallaxes. A few additional results are reported in Bailer-
Jones (2011b). These articles are available from http://www.mpia.de/homes/calj/
qmethod.html.

In the current TN I will use the notation in CBJ11, except that I will refer to the G-band rather
than the V-band (so MG rather than MV , etc.) The notation is summarized in Table 1.

Note: the mathematics in this TN is not nearly as impenetrable as it first appears . . .

2 Conditional dependence

I have discussed in general the significance and subtlety of conditional (in)dependence in CBJ-
053 (section 4), but it is worth emphasizing something which is specific to the current problem.

The extinction parameter, A0, is a property of the interstellar medium, and the effective temper-
atre, T , is a property of a star. They are, therefore, independent when they are not conditioned
on other variables. That is

P (T |A0) = P (T ) and P (A0|T ) = P (A0) unconditional independence . (2)

The situation can change if we now condition on a measurement.1 The spectrum, p, generally
contains information on both variables. So it should be fairly obvious that

P (T |A0,p) 6= P (T ) conditional dependence . (3)

Less obvious, perhaps, is that in general

P (T |A0,p) 6= P (T |p) conditional dependence . (4)

The reason for this is that because p is informative about both variables, then additionally
knowingA0 changes what we know about T . That is,A0 and T are unconditionally independent
but conditionally dependent given p. You can see this visually if you consider the “degeneracy
plots” of the PDF P (A0, T |p), e.g. in Fig. 4 of CBJ11: If we fix (condition on) A0, this changes
what we know about T . Another way of appreciating this is to note that

P (T |p) =

∫
A0

P (T |A0,p)P (A0|p)dA0 . (5)

This does not equal P (T |A0,p), in general, because P (A0|p) is not uninformative (not a “flat”
distribution in A0).2

1The situation can also change if we introduce other information. For example, we may choose to introduce a
Galactic model which says that both OB stars and high extinction regions tend to concentrate in the Galactic disk.
In that case conditioning on Galactic latitude would introduce a dependence between A0 and T .

2If it is uninformative then the two quantities are equal.
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In summary, conditioning on a measurement can introduce a dependence between variables
which were formerly independent. (Or if you prefer, conditioning can introduce a dependence
in our knowledge or estimates of these variables.)

Note also that although P (T |A0,MG) = P (T |MG), P (T |A0,MG) 6= P (T |A0), because MG

and T are not independent: Varying the effective temperature of a star will, in general, change
its absolute magnitude.

There are of course also cases where the opposite occurs: variables are unconditionally depen-
dent but become independent when conditioned on another variable. The reader can no doubt
think of examples (or can see section 4.2 of CBJ-053 for an example and a discussion).

3 Estimation of absolute magnitude

The quantity q is defined as

q ≡ G+ 5 log$ = MG + AG − 5 . (6)

q is measured, and once we have an estimate for AG we could use this equation to estimate MG.
Yet this fails to take into account the known probability distributions over q and AG, so may not
provide an estimate of MG which is consistent with our other parameter estimates or with the
other information we have. The correct approach, as always, is to write down the probability
distribution for MG in terms of the measured quantities. Using Bayes’ theorem and noting that
p and q are independent, we have

P (MG|p, q) =
P (p, q|MG)P (MG)

P (p, q)

=
P (p|MG)P (q|MG)P (MG)

P (p, q)
. (7)

It’s clear that we will have to marginalize over A0 and T , as these terms are present in the q
constraint and/or HRD prior. This motivates us to write the second term in the numerator as

P (q|MG) =

∫
A0,T

P (q|MG, A0, T )P (A0, T |MG) dA0 dT . (8)

The first term in equation 8 is the familiar q constraint. As A0 is independent of MG, and T is
independent of A0, when not conditioned on the data, we can write the second term as

P (A0, T |MG) = P (T |A0,MG)P (A0|MG)

= P (T |MG)P (A0)

=
P (MG, T )

P (MG)
P (A0) . (9)

Equation 8 then becomes

P (q|MG) =

∫
A0,T

P (q|MG, A0, T )P (MG, T )
P (A0)

P (MG)
dA0 dT . (10)
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In analogy to equation 8 we can also write P (p|MG) as a marginalization

P (p|MG) =

∫
A0,T

P (p|MG, A0, T )P (A0, T |MG) dA0 dT

=

∫
A0,T

P (p|A0, T )P (A0, T |MG) dA0 dT . (11)

The dependence onMG has dropped out of the first term because by construction of the forward
model A0 and T entirely specify the spectrum. Using the result of equation 9 this becomes

P (p|MG) =

∫
A0,T

P (p|A0, T )P (MG, T )
P (A0)

P (MG)
dA0 dT (12)

Putting equations 10 and 12 into equation 7 gives the final result

P (MG|p, q) =
1

P (MG)P (p, q)︸ ︷︷ ︸
priors

( ∫
A0,T

P (p|A0, T )︸ ︷︷ ︸
likelihood

P (MG, T )︸ ︷︷ ︸
HRD prior

P (A0)︸ ︷︷ ︸
prior

dA0 dT

)

×
( ∫

A0,T

P (q|MG, A0, T )︸ ︷︷ ︸
q constraint

P (MG, T )︸ ︷︷ ︸
HRD prior

P (A0)︸ ︷︷ ︸
prior

dA0 dT

)
. (13)

¡ Compared to the expression for P (A0, T |p, q) (equation 1), here we also integrate over the
likelihood, and overall there is now a squared dependence on the HRD and A0 priors.

3.1 An approximation

Equation 13 is quite cumbersome and slow to evaluate numerically. We can make an entirely
different approach to deriving P (MG|p, q) by involking the maximum entropy principle. This
states that the least biased (or least informative) probability distribution given the available in-
formation is the one which maximizes the entropy (Jaynes 1957). Specifically, for a real-valued
variable for which we only know the mean and variance, the maximum entropy distribution is
a Gaussian.3 In other words, if we simply estimate the expected value of MG and its variance
based on measurements of p, q and/or parameters inferred from these, then it’s conservative
to assume that P (MG|p, q) has a Gaussian distribution. This is an approximation to the best
estimate of the distribution given by equation 13 (which was derived using other information,
so is not Gaussian). The mean may be taken as the value from equation 6,

MG = q − AG + 5 (14)

whereAG is the best estimate of the extinction (e.g. derived from the mean or mode of P (A0|p, q)).
Using the general result of variances (see equation A1 in CBJ11), the variance of MG is

σ2
MG

= Var(MG) = Var(q − AG + 5) = Var(q) + Var(AG)− 2Cov(q, AG)

= σ2
q + σ2

AG
− 2ρ(q, AG)σqσAG

. (15)

3This, incidentally, is why the Gaussian distribution is so ubiquitous for noise models: It’s not because we
really believe they are Gaussian, but rather because if we only know the mean (usually zero) and variance of the
noise, then the Gaussian is the most conservative choice.
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σq is given by the measurements and assumed noise models (see section 3.5 of CBJ11). σAG

can be calculated from the inferred PDF P (A0|p, q). This gives σA0 , so we could apply a simple
relationship to get σAG

.

ρ(q, AG) in equation 15 is the expected correlation between q andAG for any one star. It should
not be confused with the correlation between these variables for a sample of stars. To appreciate
this distinction, consider the quantity ρ(AG, T ). We know from earlier work that the estimates
of AG and T (for a single star) are highly correlated: the degeneracy can be see in Figure 4
of CBJ11. But whether or not these are correlated in any way for a sample of stars depends
entirely on the sample. In Figure 14 of CBJ11 we see no such correlation over that sample. We
could no doubt construct samples with different correlations, without affecting in any way the
correlation between the estimates of the APs for any one star.

If we could reduce ρ(q, AG) into an expression in which the covariances are only between
measured variables – variables for which we have a noise model – then we could estimate it
for any specific star. But AG has such a complicated dependence on p that there is no obvious
simplification. (Using the full PDFs over the APs avoids having to make such simplifcations!)
In lieu of this, the correlation could just be set to zero in equation 15.

4 Extension to metallicity

We saw in CBJ11 that the inference for A0 and T was sensitive to the (distribution of) metallic-
ity, Z, assumed in the HRD (i.e. it was a fixed prior). As we plan to estimate Z (or [Fe/H] if you
prefer) from the BP/RP spectra, we need to generalize the model to include an explicit depen-
dence on, and inference of, metallicity. This turns out to be almost identical to the derivation in
section 2.7 of CBJ11.

From Bayes’ theorem

P (A0, T, Z|p, q) =
P (p, q|A0, T, Z)P (A0, T, Z)

P (p, q)
. (16)

Because p and q are independent measurements, and becauseA0 and (T, Z) are unconditionally
independent, this becomes

P (A0, T, Z|p, q) =
P (p|A0, T, Z)P (q|A0, T, Z)P (A0)P (T, Z)

P (p, q)
. (17)

The second term may again we written as a marginalization

P (q|A0, T, Z) =

∫
MG

P (q|MG, A0, T, Z)P (MG|A0, T, Z) dMG . (18)

As A0 is independent of T and Z, then we can write the second term as

P (MG|A0, T, Z) = P (MG|T, Z) =
P (MG, T, Z)

P (T, Z)
. (19)
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Substituting equation 18 into equation 17 gives our final result

P (A0, T, Z|p, q) = P (p|A0, T, Z)︸ ︷︷ ︸
likelihood

P (A0)

P (p, q)︸ ︷︷ ︸
priors

∫
MG

P (q|MG, A0, T, Z)︸ ︷︷ ︸
q constraint

P (MG, T, Z)︸ ︷︷ ︸
HRD prior

dMG

︸ ︷︷ ︸
HRD/q factor

(20)

This is the same as equation 1 with T replaced by (T, Z). This is not surprising because Z has
the same relationship as T toward A0, MG, p and q. The difference now is that the likelihood,
HRD and q constraint all have to be generalized to include dependence on Z:

• To generalize the likelihood we have to extend the forward model to predict spectra
also as a function of Z. This is straight forward enough, although we have to to
pay special attention to the fact that Z is a weak parameter compared to A0 and T .
Sampling the likelihood becomes computationally more intense, as it is now a three
dimensional function.

• Because q ≡ G+ 5 log$ is unchanged, the model for q is still P (q|MG, AG). All
we have to do is generalize the transformation of A0 to AG to include dependence
on Z. Thus equation 19 in CBJ11 becomes AG = A0 + y(A0, T, Z). In practice
the Z dependence of y is likely to be very weak, perhaps negligible.

• Generalizing the HRD to have a Z dependence is also straight forward, although if
the sampling in Z is relatively sparse then we have to be careful how we smooth
and/or sample it when estimating the posterior PDF.

In the above derivation we did not need to address the issue of the unconditional dependence
of T and Z. But if we did, then for realistic stellar populations they are not independent, being
linked by age: an old stellar population is dominated by cooler and metal poorer stars.

5 Extension to surface gravity

We now include estimation of log g to the original formulation by deriving an expression for
P (A0, T, g|p, q). Proceeding in a similar way as for the inclusion of Z and using the relevant
independences we now get

P (A0, T, g|p, q) =
P (p|A0, T, g)P (q|A0, T, g)P (A0)P (T, g)

P (p, q)
. (21)

The first term is again the likelihood model for the photometric data, in which the forward
model is now extended to predict log g. For the second term, we must ask what information q
has about log g. By definition

g =
Gm
R2

(22)

Technical Note 8
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(G is the gravitational constant) and

L = 4πR2sT 4 (23)

(s is Stefan’s constant) and combining these we get

logL = logm+ 4 log T − log g + log(4πsG) . (24)

As L is closely related to MG, this establishes a relationship between MG, T , m and g. This
tells us that in order to estimate g we need to introduce a dependency on all of these variables
(just as in the original derivation of P (A0, T |p, q) we introduced a dependence on MG). We
therefore write down P (q|A0, T, g) as a marginalization over not just MG, but also m

P (q|A0, T, g) =

∫
MG

∫
m

P (q|MG,m,A0, T, g)P (MG,m|A0, T, g) dmdMG . (25)

The first term in the integral can be simplifed to P (q|MG, A0, T ), because q has no dependence
on m or g once the other three variables are condtioned upon. Noting the lack of dependence
on A0 and using Bayes’ theorem, the second term can be written

P (MG,m|A0, T, g) = P (MG,m|T, g)

=
P (MG,m, T, g)

P (T, g)
(26)

Substituting these into equation 25 and that into equation 21 we get

P (A0, T, g|p, q) = P (p|A0, T, g)
P (A0)

P (p, q)

∫
MG

P (q|MG, A0, T )

[ ∫
m

P (MG,m, T, g) dm

]
dMG

= P (p|A0, T, g)
P (A0)

P (p, q)

∫
MG

P (q|MG, A0, T )P (MG, T, g) dMG (27)

where we have marginalized the four dimensional HRD P (MG,m, T, g) over mass to get
P (MG, T, g). Comparing this to equation 1, we see that the equation is the same except with T
replaced by (T, g).

Note that we have not made use of equation 24 in deriving equation 27. That equation implies
that we could replace g by a relation g = v(MG,m, T,BC) for some function v, where logL =
MG + BC and BC is the bolometric correction. But this would remove explicit dependence on
g from the q-dependent part of the data, obviating what we are trying to achieve, namely using
the parallax, magnitude and HRD prior to help estimate g. In practice one could nonetheless do
this and then use such a relation to estimate g after having estimated (MG,m, T ). But we would
no longer get a PDF over g, and we would loose the enforced consistency of this estimate with
the one coming from the spectrum, p.

Technical Note 9
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5.1 The myth of the gravity and the parallax

It is often claimed that “measuring the parallax gives the surface gravity of the star” (assuming
that you have estimated the apparent magnitude and effective temperature accurately). This
statement is too simplistic and contains hidden assumptions. Equation 24 allows us to write the
dependency of g on the other APs in a generic form g = v(T,m,MG,BC). If we measure the
parallax and the apparent magnitude, then these will only give us MG if we already know AG,
which, recall, is strongly degenerate with T in the BP/RP spectra (and in most other photometric
estimates). That is the first complication. Second, the function v has a dependence on mass,
but the mass is unknown. If we knew MG and T accurately enough, then we would have some
idea of mass (by assuming an HRD), but we cannot guarantee that it is constrained well enough
to help in a determination of g. We could instead make use of a temperature–mass relation
and effectively remove the explicit mass dependence, but such relations are neither accurate
nor universal over the whole HRD. The third complication is the presence of the BC, which
depends on the shape of the spectral energy distribution. This depends primarily on T , but not
only, depending also on Z and on the (so far unknown) g. The fourth – but essentially trivial –
complication is that all measures are noisy: if the parallax is not very accurate, it won’t tell us
anything about g.

So we see that there is no simple “deduction” of g once we measure the parallax. The quantities
all hang together in complex way, and assumptions which might permit a “deduction” make
assumptions about the very quantity we are trying to infer. The solution to this is to proceed
in the way presented in this technical note: write down self-consistent, probabilistic equations
for the dependence of the astrophysical parameters on all of the data and then marginalize over
the unknown quantities. The accuracy of the g estimate we can get from this depends on the
sensitivity of the spectrum to g, and how much information P (MG, T, g) contains on g. It’s the
latter which helps the parallax “give” the gravity.4

6 Posterior PDF of all four APs (A0, T , Z, g)

The extension to Z and g turned out to involve replacing T with (T, Z) and (T, g) respectively
in equation 1 (something we may now like to claim as obvious with hindsight!). It should come
as no surprise that the posterior PDF over all four main APs of interest is

P (A0, T, Z, g|p, q) = P (p|A0, T, Z, g)︸ ︷︷ ︸
likelihood

P (A0)

P (p, q)︸ ︷︷ ︸
priors

∫
MG

P (q|MG, A0, T )︸ ︷︷ ︸
q constraint

P (MG, T, Z, g)︸ ︷︷ ︸
HRD prior

dMG

︸ ︷︷ ︸
HRD/q factor

.

(28)

The main differences with respect to equation 1 is that we now require a four dimensional
forward model and a four dimensional HRD prior. Note that I have dropped the dependence

4It is vaguely amusing that some people are quite critical of the idea of using a prior in AP estimation, but five
minutes latter will quite happily say that you can just use the parallax to determine log g.
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of the q contraint on both Z and g under the assumption that the conversion of A0 to AG,
AG = A0+y(A0, T, Z, g) can be approximated asAG ' A0+y(A0, T ). If this approximation
is not good enough, we can reintroduce the dependence on Z and/or g into the q constraint
without changing anything else.
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