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Abstract

We outline the principles of Bayesian classification using discrete templates. We show that
this form of nonparametric modelling is semi-supervised learning and embodies multi-level
hierarchical modelling to infer all model parameters from the data.
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TABLE 1: Notation

k class label, k = 1 . . . K

T
(k)
j data (vector) on template j of class k, j = 1 . . . Jk
c
(k)
j amplitude of template j of class k
xn measured data (vector), for object n. {xn} is the set of all xn
Vn covariance matrix of xn. {Vn} is the set of all Vn
β
(k)
j = P (T

(k)
j |k), template relevance parameter

{β(k)
j }j set of all template relevances for class k

{β(k)
j } set of all template relevances for all classes

αk = P (k|{β(k)
j }j), class relevance parameter

{αk} set of all class relevance parameters

1 The basic idea

Context: We have a set of N measured objects each with data xn (in general a vector, such as a
spectrum), n = 1 . . . N . We wish to classify these in a system of K classes, k = 1 . . . K. Each
class is represented by a set of Jk templates, j = 1 . . . Jk, for which we have x = T

(k)
j for each.

These templates could be empirical (labelled data) or synthetic, but they are taken “as is”.

Objective: The main goal is to estimate the class posterior probabilities P (k|xn, . . .), where
. . . indicates some other properties of the data (e.g. measurement uncertainties) and parameters
inferred from the data (plus assumptions).1

As we only have a discrete set of templates, we must assume that each measured object is
actually a noisy measurement of one of the templates. This is likely to be a poor assumption, but
it is the limitation imposed by the decision to use discrete templates. Given sufficient reason we
could later add more templates or more classes. Let us adopt a model for this noise (likelihood
model) , the usual choice being the Gaussian2

P (xn|T (k)
j , k, Vn) =

1

(2π)I/2|Vn|1/2
exp

[
−1

2

(
xn − T (k)

j

)T
V −1
n

(
xn − T (k)

j

)]
(1)

where Vn is the covariance of the measurement xn, T indicates transpose, and I is the dimen-
sionality of the data vectors. (In the case of uncorrelated noise, Vn reduces to a diagonal matrix
with elements equal to the “measurement uncertainties”, and the equation can be written as a
product of 1D Gaussians.)3

1In terms of publishing classification results from a survey, we may also want to publish the likelihoods
P (k|{xn}, . . .), as this makes it easier for users to apply their own priors.

2This is inappropriate if the data are strictly positive, but for flux measurements obtained after background
subtraction (which can therefore be negative) it may be an adequate approximation.

3We could also use equation 1 to introduce noise in the templates, or more generally, some smoothing/tolerance
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The probability that xn is a noisy measurement of any of the templates in class k is

P (xn|k, Vn) =

j=Jk∑
j=1

P (xn|T (k)
j , k, Vn)P (T

(k)
j |k) (2)

which follows from the rules of probability (and noting that the second term in the sum has no
dependence on Vn). The terms P (T (k)

j |k) describe the distribution of the class templates. If
we had a continuous model for the data, then P (T (k)

j |k) would be replaced by P (T (k)(w)|k)dw
and the summation replaced by an integral over the parameters, w, of the continuous model. In
the present discrete case, P (T (k)

j |k) has no distribution as such because T (k)
j has no parameters.

Each P (T (k)
j |k) is just a scalar number: the probability of a template. We consider these as

parameters of the model and write them as β(k)
j . We then write equation 2 as

P (xn|k, {β(k)
j }j, Vn) =

j=Jk∑
j=1

P (xn|T (k)
j , k, Vn) β

(k)
j (3)

where ∀j, k: 0 ≤ β
(k)
j ≤ 1 and ∀k :

∑
j β

(k)
j = 1. Note that we have now introduced an explicit

dependence on these parameters into the likelihood on the LHS.

In principle we could specify {β(k)
j } a priori. We may set them equal, for example, reflecting a

prior belief that they are all equally good representatives for their class. But more generally we
treat them as free parameters and infer them from the data. That is, we maximize (something
involving) P (xn|k, . . .) with respect to them. This gives us the model, {β(k)

j }, which makes
the data most probable. (How to do this is outlined in section 2.) Note that there is one set of
these parameters for the whole data set. As they are template probabilities, constrained to the
range 0–1, we interpret them as template relevances. If the templates are broadly distributed
in the data space w.r.t the xn and if the variances in Vn are comparatively small, then many of
these probabilities will be negligible. Those templates which best explain the most data achieve
higher values of β(k)

j , subject to the constraints. Thus increased relevance of one template must
come at the cost of reduced relevance of one or more of the others.

Once {β(k)
j } have been found, the degree to which each template is relevant for modelling an

individual measurement, xn, is determined by the likelihood term in equation 3. We can view
that equation as a β-weighted mixture model of Jk Gaussians.

In the continuous model case we would train the model to best fit the training data, i.e. to make
the best predictions of these data. In the present case, in contrast, we use both the templates and
the unlabelled data to optimize these parameters. In machine learning speak, we are also using
the test data to optimize the model parameters. Hence this discrete classification method is a
case of semi-supervised learning rather than pure supervised learning.

parameter for how well we require a template to reproduce a measured object. This too could be inferred from the
data.
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We can view this discrete model as a “non-parametric” model, consisting of a set of delta func-
tions in the data space (although the term “non-parametric” is really an oxymoron, because this
model actually has one parameter per template, which is many more than a smooth continuous
model).

Having found P (xn|k) for all n and k, the final step is to use Bayes’ theorem to get the posterior
probability for each class

P (k|xn, {β(k)
j }j, Vn) =

P (xn|k, {β(k)
j }j, Vn)P (k|{β

(k)
j }j, Vn)

P (xn|{β(k)
j }j, Vn)

=
P (xn|k, {β(k)

j }j, Vn)αk∑
k P (xn|k, {β

(k)
j }j, Vn)αk

(4)

where αk = P (k|{β(k)
j }j), in which the dependence on Vn has been dropped because it provides

no additional information given {β(k)
j }j (conditional independence). These α terms are also

parameters of the model, the class relevances. They are subject to the constraints ∀k: 0 ≤ αk ≤
1 and

∑
k αk = 1. These too can be inferred from the data, as we will now see.

2 Inferring the relevance parameters

For a given set of data, {xn}, we determine a single set of β(k)
j parameters. To infer these we

maximize P ({xn}|{β(k)
j }, {Vn}) w.r.t these, where

P ({xn}|{β(k)
j }, {Vn}) =

∏
n

P (xn|{β(k)
j }, Vn)

=
∏
n

∑
k

P (xn|k, {β(k)
j }, Vn)P (k|{β

(k)
j }, Vn)

P ({xn}|{β(k)
j }, {αk}, {Vn}) =

∏
n

∑
k

P (xn|k, {β(k)
j }j, Vn)αk (5)

where αk = P (k|{β(k)
j }j) and an explicit dependence on these has been introduced into the

notation on the LHS in the third line. In the second line we assume that the measurements
of each object are independent, and in the third line conditional independence has been used
to remove superfluous dependencies. The αk parameters are just the same ones introduced in
equation 4.

We can now maximize equation 5 (which we might call the evidence) w.r.t both {β(k)
j } and
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{αk}, subject to the constraints

∀j, k : 0 ≤ β
(k)
j ≤ 1

∀k :
∑
j

β
(k)
j = 1

∀k : 0 ≤ αk ≤ 1∑
k

αk = 1

(6)

2.1 Implementation

To maximize equation 5 w.r.t the normalization conditions in equation 6, it is easier to maximize
its logarithm

L =
∑
n

ln

(∑
k

P (xn|k, {β(k)
j }j, Vn)αk

)
(7)

w.r.t the transformed variables {ak} and {b(k)j }, where

αk =
exp(ak)∑K

k′=1 exp(ak′)

β
(k)
j =

exp(b
(k)
j )∑Jk

j′=1 exp(b
(k)
j′ )

∀k . (8)

This softmax transformation imposes the normalization conditions. These transformed variables
are permitted to range between ±∞, and so are easier to work with in standard optimization
algorithms. The optimization involves searching over a space of dimensionality K +

∑
k Jk,

which is of the order of the number of templates, and is typically large. (This is one reason why
we often choose to adopt continuous models instead.)

Note that equation 7 involves a sum over all templates (through equation 3) of the likelihood
(equation 1), so every step in the optimizer has to calculate Gaussian exponential using all the
data.

3 Semi-discrete models

The basic presentation of the previous section is somewhat restrictive because the templates are
entirely fixed with no free parameters. Only their relevance in an inference is adjustable. But
there are many applications in which it is useful to give the templates a variable “amplitude”.
An example is when the data are photometric measurements of astronomical sources, i.e. xn
is a spectral energy distribution (SED). While we may consider a fixed set of templates, such
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as archetypal star or galaxy SEDs, these objects nonetheless appear at different apparent mag-
nitudes in the universe. We don’t want to have to duplicate all the templates at every possible
apparent magnitude in order to accommodate this. We therefore generalize equation 1 to give
each template a scalar amplitude, c(k)j

P (xn|c(k)j , Vn, T
(k)
j , k) =

1

(2π)I/2|Vn|1/2
exp

[
−1

2

(
xn − c(k)j T

(k)
j

)T
V −1
n

(
xn − c(k)j T

(k)
j

)]
(9)

The probability that the observed object is described by template T (k)
j is obtained by marginal-

izing over this amplitude

P (xn|Vn, T (k)
j , k) =

∫
c
(k)
j

P (xn|c(k)j , Vn, T
(k)
j , k)P (c

(k)
j |T

(k)
j , k) dc

(k)
j (10)

which is a one-dimensional integral. (Note that we can remove the Vn dependence from the
second term.) This is just the above likelihood averaged over the prior for the amplitude. The
rest of the inference proceeds as before from equation 2.

P (c
(k)
j |T

(k)
j , k) is a one-dimensional function over c(k)j for each template. Typically it must be

positive (unless xn can be negative), in which case a convenient choice might be the Gamma
distribution. As this integral must be evaluated many times during the optimization, it is prudent
to make it fast to calculate via some approximation. One possibility would be to write it as a
weighted sum of fixed basis functions, fixed in the sense that they are functions only of the data
(and so can be precalculated).

4 Marginalizing over the relevance parameters

If we are only interested in classifying the unlabelled data, then rather than maximizing
P ({xn}|{Vn}, {β(k)

j }, αk) w.r.t {β(k)
j } and {αk} it is desirable to marginalize over these. We

achieve this by extending the inference one level up by placing a prior probability distribution
over {β(k)

j }. . . .

5 Summary

• In discrete classification, the fixed, class-labelled templates (perhaps with a vari-
able amplitude) are used as they are. This is often referred to as nonparametric
modelling. There is no forward model fitting.

• The relevances of the templates are inferred from the data using the whole data set
including the unlabelled data. The model is therefore a type of semi-supervised
learning.

Technical Note 1MPIA, 2NYU 7



CU8 GAIA-C8-TN-MPIA-CBJ-061

• The model is hierarchical in the sense that both the template relevances (β) and the
overall class probabilities (α) are inferred from the data.

• Learning or marginalizing over the model parameters involves integrations over a
space with dimensionality of the order of the number of templates.
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