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ABSTRACT

We investigate the performance of some common machine learning taeebriig identifying Blue Horizontal Branch (BHB) stars
from photometric data. To train the machine learning algorithms, we us@psty published spectroscopic identifications of BHB
stars from Sloan Digital Sky Survey (SDSS) data. We investigate therpafre of three dierent techniques, namely k nearest
neighbour classification, kernel density estimation for discriminant aisand a support vector machine (SVM). We discuss the
performance of the methods in terms of both completeness (what fraxftioput BHB stars are successfully returned as BHB stars)
and contamination (what fraction of contaminating sources end up in tipeitoBHB sample). We discuss the prospect of trading
off these values, achieving lower contamination at the expense of lowernatemgss, by adjusting probability thresholds for the
classification. We also discuss the role of prior probabilities in the classiiicpgoformance, and we assess via simulations the
reliability of the dataset used for training. Overall it seems that no-pri@sghe best completeness, but adopting a prior lowers the
contamination. We find that the support vector machine generally detivedowest contamination for a given level of completeness,
and so is our method of choice. Finally, we classify a large sample of Ix8& Release 7 (DR7) photometry using the SVM
trained on the spectroscopic sample. We identify 27,074 probable BiBataof a sample of 294,652 stars. We derive photometric
parallaxes and demonstrate that our results are reasonable by swmjpaknown distances for a selection of globular clusters.
We attach our classifications, including probabilities, as an electronic tabteasthey can be used either directly as a BHB star
catalogue, or as priors to a spectroscopic or other classification mé&tlecalso provide our final models so that they can be directly
applied to new data.
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1. Introduction models aimed at identifying BHBs from the photometry alone.
With this tool, we hope to be able to extend the available $amp
of known (or better, strongly suspected) BHB stars from SDSS
and other surveys, with a view either to use our sample dyrect
f'trace structure, or at least to guide follow-up studieb spec-

The blue horizontal branch (BHB) stars are old, metal-p@bo h
stars. They are of interest as tracers of Galactic strubecause
they are more luminous than most giant branch or populati
Il main sequence stars, have a narrow range of intrinsic-lu
nosities (hence ’horizontal branch’) and display spedtaiures
rendering them identifiable, in particular a strong Balmanp
and narrow strong Balmer lines. There is therefore an isténe
building large, reliable samples of them, particularlyhe ton-
text of wide-field halo surveys such as the Sloan digital sky s
vey (SDSS) and the forthcoming Pan-Starrs survey. BHB st
are always of interest whenever halo structure is studiedtolu
their strength as distance indicators. Recent studieshatage

concentrated on BHB stars to trace structure include Hamrig,, e 5 500 objects. The method of Xue et al. is discussed in
et al. (2010), who searched for moving groups in the halo, Xlljﬁore detéil in Sect. 3.3

et atlh (ZOQ?[) who ?ﬁe? thet:ntto fearc}g' for closie Ipalzrs, imply- We have selected three machine learning methods to investi-
ing the existence of halo substructure, Kinman etal. 2008) .0 ‘These are a k-Nearest Neighbour (kNN) technique eker
sgarched for a population of BHB stars ass_ouated W't.h tick th density estimator (KDE) and a support vector machine (SVM)
disk, and Ruhland et al. (2010), who investigated strudtutiee We also apply the decision boundary in4 g, g — r) colour '
Sagittarius dwarf and streams. The main problem with BHBs ace suggested by Yanny et al. (2000) for cc;mparison feer
tracers is their relayive sparseness compared to othewsrauch_ colour cut. the kNN method is brobably the simplest aigonith
as turndf stars. This means that Iarge, pure samples are h'gk}& consid'er. One example of its use can be found in Marengo
deswabl_e for structure tracing studies. . %ﬁ’lanchez (2009). Examples of KDE use in classification prob-
In this paper, we take as our lead several recent StUd'e‘ﬁ s in astrophysics include Gao et al. (2008), Richardd.et a

BHB spectra from SDSSEGUE and attempt to use the reliabl 09b). Richards et al. (2009a) and Ruhland et al. (20 T
and large samples of BHBs detected as a training set to blE@M W)C’)rks by identify.in(g a de)cision boundary in'é mjtjflﬁdi-

* Tables 7, A.3 and A.4 are only available in electronic form at th@€nsional space (Vapnik _1995) (in thiS case the space of SDSS
CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)eor colours) based on a training set containing examples of two o
httpy/cdsweb.u-strasbg/figi-biryqcat?JA+A/ more classes of object — for our purposes BHB stars and non-

The main three studies we follow are those of Yanny et al.
(2000), who identified a colour cut in theg, g-r colour-colour
diagram that yields most of the available BHB populationk&i
et al. (2004) who used spectra to identify a reliable sample o
700-1000 BHBs (the size of the sample depends og thagni-

e and the reliability desired), and most importantly Xual.
(2008), who analysed a sample of SDSS DR6 data using similar
techniques to Sirko et al. and extended the reliable listtdBB
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BHB contaminants. The SVM performance should be equiva-
lent to that obtainable with a neural network, but it has ttie a
vantage of being highly adaptable and relatively easy toltse
main drawback is its inability to provide genuine probapiés-
timates for classes, because it does not model the distibot

the data. This is discussed further in Sect. 4.4. SVMs haga be
used on classification problems by various authors, for exam
ple Tsalmantza et al. (2007, 2009) who developed a galaxy li-
brary for the Gaia mission and explored classification motd
therein, Gao et al. (2008) who used them to search for quasars
in SDSS data, and Huertas-Company et al. (2009) who used
them for morphological galaxy classification. Bailer-Joe¢al.
(2008) discussed SVM classification of astrophysical sesiic

the context of unbalanced samples.
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We proceed by taking the sample of Xue et al. and obtain- u-g [mag]
ing the up-to-date photometry for it from SDSS DR7. We then
investigate the ability of each of the three techniques tover
the BHB stars from the Xue sample, and the various optiorts tfag. 1. The sample of Xue et al. (2008) in the-g, g—r plane, with DR7
are available to optimize them. Finally, we take a new sampﬂé‘a- BHB stars (accorgjlng to Xue et al.) are shown as red crosses, n
of DR7 photometry, for sources without spectra, and apply OEHB stars as black points. The box shows the colour cut used by Xue
models to this sample to recover samples of probable BHB.st t al. (2008) and Yanny et al. (2000). The outer boundary exterids 0
- . : agnitudes beyond this. Sources outside the plot region were discarded
We use a selection of globular clusters of known distancedb t
the BHB classifications and photometric parallaxes.

3. General Approach

All our classification methods are supervised, meaningttiegt
require samples of data for objects of known type in order to
train a model, which can then be applied to new data. Various
parameters must be set to optimize the classification, atitein

. o . , d the reliability of the methods relative to each other &nd
proximately 8400 square degrees, with images in the five SDR% | e terms has to be determined in some way. For these rea
bands:u,g,r,i,z Spectra are available for a subset of the d%

tected objects based on various selection criteria ons, we need a sample of test objects of known type on which
| ' we can run our trained models. Our sample contains 2536 BHB
The study of Xue et al. used a sample of SDSS DR6 dattars as identified by Xue et al. Our standard procedure was to
selected to lie inside the colour box suggested by Yanny.et edlndomly split the BHB sources into roughly equal trainimgl a
(2000) (08 < u—-g < 1.6,-0.5 < g-r < 0.0). We have recovered testing sets, and then randomly select equal humbers of non-
the sources used by Xue et al. in the DR7 release by matchéngBHB sources (designated “other”) to include in the trainamgl
SDSS MJD, plateld and fiberld fields. We obtained the PSF magsting samples. We can investigate the statistical ptiegenf
nitudes, estimated extinction, and the parameter$,([0ogg, and the results by bootstrapping.
[Fe/H]) as determined by the SDSS pipeline. The dereddened
magnitudes were obtained from the model magnitudes duri
the pipeline processing by applying extinction corrediate-
rived from the map of Schlegel et al. (1998). We recover thehe PSF photometry was corrected for the expected extinctio
extinction from the model magnitudes and apply it to the PSfetermined by the SDSS pipeline. There are four colourd-avai
magnitudes. The DR7 photometry is generally consistertt wigble. Theu—gandg—r colours are the most important for BHBs.
the DR6 photometry given by Xue et al. to within hundredtttshe others show little or no real information when examingd b
of a magnitude, but there are a number of sources with mage. They make someftrence (for the better) for the kNN and
divergent values. We rejected the most discrepant of thege b SVM methods, but tend to degrade the KDE. It is possible that
troducing a colour cut 0.1 magnitudes outside of the colotir cthe improvement seen for kNN and SVM by including the other
of Yanny et al.. This cut excluded mostly contaminant stBh&  colours is mostly due to excluding faint sources due to theje
Xue et al. sample contained 10224 objects, of which 2558 weygatter in all bands.
identified by them as BHB stars. After rejecting sources with

discrepant photometry, 9929 objects remained, of which6253 ) o
were identified by Xue et al. as BHB stars. 3.2. Comparing methods: completeness and contamination

We also cross matched against a list of 1172 objects frohecompletenessis defined as the number of correctly classified
the paper of Sirko et al.. All these objects were identified bgources of a particular class, divided by the number of abkl
Sirko et al. as BHB stars. Since Sirko et al. did not providé&SD sources of that class, i.e. it is the fraction of test sounfes
identities in their table, we cross matched first with our SDSparticular class that are correctly classified,
data on the basis of RA and Dec agdanagnitude. After cross Nicjj
matching, 1101 of the sources were identified in the SDSS DRImpletenegs= — =, 1)
data. Of these, 4 had no identified counterpart amongst tlee Xu :
et al. objects. Figure 1 shows the colour-colour diagramusf owheren; ; is the number of objects of true classlassified as
sample. output clasg andN; is the total number of input sources of class

2. Data

The latest publicly available SDSS data release, DR7, s@@f

E% Data dimensionality and feature selection
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Fig. 2. Simulation of the &ect of noise on Xue et al.’s classification. The four spectral line parars used in the classification are fm, D@.2,
andb, (see Xue et al. (2008) for details). Four magnitudes are illustratedafdr of these, we plot D0.2 versus fm amdersusb,. The selection
boxes are shown in each panel. The progressive loss of BHB stdrsr@isses) from the selection box is clear. Non-BHB stars (black al@sjot
scattered into the boxes at the same rate.

i. Input sources can be lost from the output class due to msisclaersus fm anct, versusb, values, and the selection boxes. It
sification into another class, or by remaining unclassifiad dis clear from the figure that, as the noise increases, true BHB
to an instficiently high classification confidence. Thentami-  stars scatter outside one or the other selection box anaste |
nation of the output sample is defined as the number of falsetiecreasing the completeness. Some sources from outside-the
classified sources of that class divided by the number ofcesurlection boxes scatter into the box, but since the box covers a

classified into that class, whether correctly or incorsectl small fraction of the data space, and since a contaminarnbhas
Son scatter into both boxes to be misclassified as a BHB, thedsere
contamination = il B (2) inthe absolute number of contaminating sources is modast. T
i Nij contamination, as defined above, will still increase beedhs

In our particular case, one class, the set of non-BHB SISIrSnlumber of true positives, in the denominator of Equatiors2, i

really a mixed class of contaminants comprising blue steagg Hecreasing. Figure 3 shows the resulting ratio of objeatssii

and main sequence stars, that we are interested in remwin%ﬁd q}%g'é%gﬁ;ﬁ;ﬁ iisteBrt'nZ itftrﬁﬁt?mt?g: f’rt]aers ﬁgra ?gg;_
order to obtain a clean sample of BHB stars. Therefore, we 9: prior p

e . ) ; X
interested in the completeness and contamination of the Bla—%f ty in the following section. For now, we note that thiffect

samble and not primarily in the completeness or contamjnatik'Cks in strongly for sources fainter thgs19.0, and that it will
of thg “other” clags y P degrade the quality of training sets used to define models and

also of any testing set used to assess them.

3.3. Reliability of the training and testing sets .
3.4. Priors

Since our method is based on the results of Xue et al., it is - } ]
worthwhile investigating how reliable these are, particlyl at  The classifiers we use are trained on mixed samples of BHB and

the faint end. To this end, we selected 1381 spectra from X{(@n-BHB stars with a range of properties. We implicitly assu
et al.'s original data, having 18 < g < 15.5. Roughly half of that the classifier takes account of the likely distributafrthe
these (655) were BHB stars. We then added artificial noise R§Pulation of objects to be clasified, and if it does not, weche
degrade them to the same signal-to-noise ratio as fainéetigp 0 correct the classifier output probabilities using appiedp pri-
We constructed in this way eight artificial samples in haliyma OrS-
nitude steps frong=16.0 tog=19.5. We then reanalysed these The simplest prior to be accounted for is the true class frac-
degraded spectra with the technique of Xue et al. and réclagion. To train our models, we use equal numbers of BHB and
fied them. We then compare the performance at faint magrstud®n-BHB stars, whereas the true class fractions are notl equa
with the original performance. (the fraction of BHB stars in the sample of Xue et al. is approx
The classification of Xue et al. is based on recovering fotiately 0.26 for all sources). For the KNN and KDE methods we
different characteristic parameters from the absorption .lingsuld directly include the class fractions in the trainiegss For
These are D0.2, the width at 20% below the continuum of tiilee SVM we could also include proportional fractions of sk
Balmer line, fm, the flux relative to the continuum at the lin®ut the actual #ect of this on the classifier is complex and not
core, andc, andb,, which are parameters from @&8ic fit to well understood. We choose to always use equal class fractio
the line shape @sic 1968). BHB stars are identified as lyingind use a prior to adjust the classifier output. We refer t® thi
within selection boxes in the feature space formed by the liiype of class fraction prior as a 'simple prior’ hereafter.
parameters. This selection is illustrated for our degradiztzh We can also adjust for prior probabilities as a function of
in Fig. 2, which shows for four example magnitudes the DO&her parameters that are not accounted for by the clasiifier
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self. We consideg magnitude and, the Galactic latitude. In population was constant witlp but the observed ratio was al-
Fig. 4 we show the ratio of the density functions of BHB stargred by sources being lost due to increasing noise at higimima
and all stars as functions gfin the sample of Xue et al. (dashedudes. We can correct the measured ratio of BHBs to all ssurce
green line). Because these density functions were indiiglu for this efect. This correction mitigates the faffof the ratio
normalized, the resulting ratio is the relative fractionBHiB at the faint end. The corrected curve is shown as the dottel bl
stars, rather than the absolute fraction - i.e. it is as ifdlass line. We use this as the basis of the magnitude dependemf prio
fractions were equal. but the correction causes a spike at the faint end that isapfgb
Also shown in this plot is the ratio of BHB stars to all sourcegue to small numbers of sources and is obviously not desirabl
at each magnitude as estimated from the experiment dedcrifsethe prior. For this reason we have truncated the functien b
above in Sect. 3.3 (red dash-dotted line). This curve, wisich fore it turns up and adopted a plateau for the high magnitude
renormalized version of the curve shown in Fig. 3, shows whamd. Similarly, we adopt a plateau at the bright end, whege th

we would expect to see if the fraction of BHB stars in the truaction may be stronglyftected by the SDSS spectrum selec-
tion function (there is a cufbatg < 14 for the Legacy spectra,

(Adelman-McCarthy et al. 2006)). The adopted prior as afunc
tion of g is plotted as the solid black line in Fig. 4.
Figure 5 shows the ratio of density functions for BHB and

3 non-BHB sources as a function of absolute Galactic latitude
This ratio shows a relatively smooth trend, with quite a Ibt o
w3 structure superimposed. We model it with a straight linerfd a
£ adopt this fit as the relative prior in latitude.
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Fig. 3. The dfect of increasing noise on the spectroscopic classification 31
of Xue et al., as illustrated in Fig. 2. The line shows the ratio of the
number ofoutput BHB stars, that is, the sources classified as BHB stars,
regardless of whether they really are or not, to total stars.
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- Fig.5. The solid green line shows the ratio of BHB star density to the
© sum of BHB density and other stars density as a function of galactic
go latitude b. The dashed black line is a linear fit used to build the 2-
= dimensional prior as described in the text.
Lo
el =}
<
éq_ | If these priors are independent of one another, we can ap-
@ ply th_em in sequence to the output posterior probabilityhef t
3 classifier using
R :
o N .
N s P(C|Dp)
et _ N n
S P(C|Dy, Do, ....,DN) = anlW’ 3)
14 16 18 20 ) N o
g [mag] where P(C|D,) is the probability of class membership given

some piece of informationD,. This formula is discussed in
depth in Bailer-Jones & Smith (2010). The issue of class-frac
Fig. 4. The dashed green line shows the ratio of the density function®én priors and its influence on classifier training is dismd
BHB stars to the density function of all stars. The dot-dashed red lifi¢ Bailer-Jones et al. (2008). The correlationgodndb is low,
shows the ratio of BHB stars to non-BHB stars from the classificatiqpith a Pearson cdicient of -0.0017. The assumption of inde-
described in Sect. 3.3. This is the same curve plotted in Fig. 3 but it rﬁé dence therefore holds well.
been renormalized so that the peak is at the same level as the peal Othe ratio of BHB stars to all stars for all data is 0.26. how-

the ratio of density functions - i.e. so that it doesn’t include the simple L ; - ;
prior. The dotted blue curve is the result of correcting the basic BHR/E! this includes regions where the selection functioi$o8S

fraction (dashed green line) for the expected change in the ratio dusSRECtra has a largefect (there is a cutbatg = 14 for SDSS
noisy spectra. The regions at either end are replaced with a conste@@acy spectra ang,r or i=15 for SEGUE, and ag > 19 the
value, and the prior actually adopted is plotted as the thick solid blaggliability of the Xue et al. classification method becomiffid
line. cult to assess). The ratio of BHB stars to all stars in theiaie



K.W. Smith et al.: Photometric identification of blue horizontal branch stars

14 < g < 19 is 0.32. We use this latter fraction as the clasgble 1. Codficients for decision boundary in— g, g —r.
fraction.
For the analysis of the flerent classifiers, we consider two Segment m c
different priors, a simple ratio (equal to 0.32) that represtiets —03<9-r<=-025 24 162
fraction of BHB stars to all stars over the sample in the waér —025<g-r<=-015 16 142
14 < g < 19, and the combination of this with the priors as ~01°<9-r<=0. -0533 1.1
functions ofg or b as discussed above. We refer to the first prior
as a 'simple prior’ and to the second as a '2d prior’, becatise i Table 2. Results of classification with decision boundary.
a function of the two variablegandb.

Absolute
bhb other
3.5. Priors and performance measures BHB 1963 486
. . L . OTHER 2560 3321

The issue of the class fractions enters the analysis in tetindt  ynclassified 436
ways, and it is worth discussing this issue explicitly beszait Percentage
can easily lead to confusion. BHB 80.16 19.84

Firstly, the class fractions are the single most importantc OTHER 43.53 56.47
tribution to the prior probability used to obtain posternwoba- Completeness ~ Contamination
bilities for each object. This issue is reasonably clear. BHB 0.802 0.566

Secondly, as well as adjusting the classifier probabilitiitis
the prior, when testing the classifiers, wso have to take ac- -~ ) o )
count of the uneven expected class fractions in the measuféfsified, since no training set is needed. The test set tkes
contamination (and in any other quantity where they would Bi&ns are not artificially balanced, so no prior has beeniegpl
important — the completeness is nffeated, as can be seen frompources lying outside the ranges of Table 1 remain uncledsifi
Equation 1). We can do this by either using a test set thattefleThe results are prese_nted first in the form of a confusmmmatr
the true expected fractions (which would be possible in agec Each row of the matrix corresponds to a particular true cleiss
because the classes are not extremely unbalanced), or by H#r BHB or other. The rows are labeled in capitals to indicat
recting the contamination for theftérence between the inputthat this is the true class of the object. The columns listile
test set fractions and the expected true fractions. Sirepdp- PUt classifications. The leading diagonal of the matrixefane
ulation composition as a function gfandb is already present Shows the true classifications. Th diagonal elements indicate
in the test set, no correction should be made to the test butpiisclassifications, and it is possible to see which classegaa-
to correct for the relative fractions of BHB stars as a fumeif ticularly confused with one another. The confusion masiprie-
these quantities. sented twice, once with the absolute numbers of objectsdh ea

Note that this reweighting of the contaminants in the outp@tassification bin, and once with the classifications exyress
sample has to be carried out anyway if the expected class frRgrcentages of the total number of input objects of thatsclas
tions are diferent to the fractions in the test set, whether or ngthe rows of this matrix therefore sum to one. We also present
we also apply the prior to the classifier probabilities. Ak ton- the completeness and contamination obtained with thisadeth
taminations presented in this paper, except that in Tablre?,
based on test sets with eq.ual class fractions,_and_are tm_ﬂreql'z' k-Nearest Neighbours
to the expected class fractions after the classificationguiie
estimated fraction of 32% BHB stars. Nearest neighbour techniques are probably the simplest and

The issue of priors in the context of a classification probmost intuitively obvious method for supervised classifmat
lem with a highly unbalanced data set was addressed in soRt& a given new object, we select thenearest training points
depth by Bailer-Jones et al. (2008). In particular, Se&.12of in the data space and assign a class based on the classes of the
this paper discusses the issue of correction of the contdimin  neighbours. Fok > 1 we could choose to select a simple ma-
in more depth than is possible here. There the specific probl@rity of objects, or we could impose a higher threshold iratn
was identifying quasars amongst stellar samples, whichéxa tempt to improve the purity of one or both of the output classe
tremely unbalanced problem. The issue with BHB stars is le§se. BHB stars or other). Introducing a threshold impliestiwe
severe. must be prepared to tolerate non-classifications.

A probability can be estimated from the fraction of neigh-
) ) ) bours belonging to each class, so for example if nine out of
4. Comparative performance of machine learning ten of the nearest neighbours are BHB stars, we would estimat

techniques P(BHB) = 0.9.

We ran the kNN technique for various choicekand mea-
sured the output sample completeness and contaminati@n. Th
Yanny et al. (2000) derived a decision boundaryin g g —r classifier was run with ten resamplings of the training arsdl te
colour space to distinguish low gravity BHB giants from consets for eaclk, fromk = 1 up tok = 100, and the classification
taminating MS and BS stars in the colour box. Their decisiomas performed with simple majority voting. The completenes
boundary consists of three straight line segments and iwrshovas found to be approximately constant with increadingut
in their Fig. 10. Our estimates of the gradients and intescep the contamination showed a shallow minimum at arokiedl5,
the line segments are shown in Table 1. Sources are BHB statgch we selected as the optimum value.
if they haveu — g < m(g — r) + ¢, with values ofm andc taken We also experimented by cutting the colours used from four
from the Table. down to two (1 — g andg — r). The result was a slight degrad-

We classified our test set with this boundary, and obtaina@tyy of the results for all values & We therefore use the kNN
the results summarized in Table 2. All sources vgth 19 were technique with the four dereddened colours.

4.1. Colour box and direct decision boundary
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Table 3. Results for KNN classification.

With equal priors

S Absolute
bhb other
BHB 1008 235
I OTHER 347 871
8 . m Percentage
£ ~ BHB 81.09 18.91
£ S - OTHER 28.49 71.51
g | " A A Completeness  Contamination
e e BHB 0811 0.422
g ;
© o - With simple prior
. Absolute
“m bhb other
21 BHB 743 500
05 06 07 08 0.9 OTHER 245 973
min(P(BHB)) Percentage
BHB 59.77 40.23
OTHER 20.11 79.89
Fig.6. The dfect on the completeness (green squares) and contami- o
nation (red triangles) of varying the minimum probability (including Completeness ~ Contamination
the dfect of the 2d prior) required for a positive classification in the BHB 0.598 0.412
kNN method. The completeness (necessarily) falls as the threshold_is_ ]
increased. With 2d pr|0r
Absolute
. . . . bhb other
We next investigated theffect of varying the confidence pgyp 920 323
threshold for classification and measuring the completeaed  OTHER 264 954
contamination of the output BHB star sample. Increasing the Percentage
threshold would be expected to lead to a loss of completenesBHB 74.01 25.99
but also a lowering of the contamination. The results of this OTHER 21.67 78.33
kNN are shown in Fig. 6. The completeness does indeed fdll, bu o
the contamination remains constant at around 0.4. (c):c;rzgleteness Oc::)’c;rétammatuon

We performed ten classifications, with resampled trainingBHB

g??)é?fsot;rr‘]nga r?(?;&Tv;/}Iéhvt:Iiek’?dlq‘Nandett?](()adptl%k?aekgifilt;"t]l?rlees?]t(l)rlr(;%tes Top section: Confusion matrix showing the results of kNN clas-

} . U'sification (k=15) with threshold?(BHB) > 0.5. This is the combined
were left fixed k = 15, threshole0.5). The results are shown inresult of ten independent classifications with resampling of the training
Table 3. This table is divided into three sections. In thedep- and testing sets. The rows show the true class (according to Xue et al.),
tion, we present the results of applying the classifier totéis¢ the columns show the classifier output class. When shown as percent-
data without applying any prior. This is equivalent to assgn ages, the quantities in the rows should add to 100%, but the quantities in
equal true class fractions. The second section presentsshlis the columns in general do not. The completeness and contamination are
with the application of the so-called simple prior, with whiwe @S0 shown - and the contamination is corrected for the class imbalance
correct for the #ect of the class fractions only. The final secUSid the simple prioMiddle section: The same confusion matrix, with
tion presents the results with the application of the 2drpao output probabilities corrected for the simple priBottom section: The
function ofg andl. In each section we present the results as coﬁ—ﬁg:itzn\l\g:ch %u;pﬁittfégb;nbélIt':;&?éﬁiﬁi%éor the prior probability as
fusion matrices of absolute classifications and as pergestaf gmag 9 '

the input true classes. Finally we present the completesass

contamination.

Figure 7 shows the completeness and contamination for test
samples classified with the KNN method, with the results éihn
by magnitude. The threshold for classification is always &l
k=15. This is the average of 100 separate trials. The lower plot
shows the standard deviation in each bin.

As expected, the classifier performance falf&for fainter
magnitudes. Part of thisffiect may be due to the natural con-
fusion in the test set between BHB stars and non-BHB stars,
introduced by the noise in the method of Xue et al. (2008).

4.3. Kernel density estimation for classification

We next consider a kernel density estimation (KDE) approach
to the classification. The density estimate is a weightednmea
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Table 4. Results for KDE classification.

3 Equal priors
. m Absolute
@ | Vol T bhb other
g o ] o A BHB 1021 222
£ o A Y G OTHER 505 713
£ ¥ f Percent
2 A N bhb other
531 MW\ / | BHB 82.1% 17.9%
TN A \ 4 OTHER 41.5 % 58.5 %
8.4 R AR
= e \ Completeness  Contamination
-l BHB 0.821 0.512
14 15 16 17 18 19 20 With simple prior
g [mag] bhb other
BHB 765 478
OTHER 281 937
c A Percent
gL 4 /\ BHB 61.5 % 38.5%
g4 OTHER 23.1% 76.9 %
e
E - [ Completeness  Contamination
§°] FON BHB 0.615 0.438
g i
2] I\ | 4 A With 2d prior
g° u\ /7 bhb other
£ BHB 912 331
S o \ i OTHER 293 925
£° e Percent
g S = = BHB 73.4% 26.6 %
w w w w w w w OTHER 24.1% 75.9%
14 15 16 17 18 19 20

Completeness  Contamination
BHB 0.734 0.405

Fig. 7. Top: Completeness (green squares) and contamination (red trigy; e, Top section: Confusion matrix showing results of KDE clas-

gles) for sources of dierent magnitudes classified with the kNN teChgisication of 10 independently selected test sets based on 10 indepen-
nique. One hundred separate trials were averaged to produce this Righyy trained models. The ciassification thresholBBHB) > 0.5 in

The filled symbols and solid lines show the results using the 2d prl%‘ch case. The results are shown at the top as mean numbers efsourc

The open symbols and dashed lines show the results using the simplg,ch category and then as percentages. The completeness and con-
prior only. Bottom: *Standard deviations of completeness and contammination for the BHB output sample is also shown. These are cor-
nation at each point. rected for the expected unbalanced class fractidiiddle section: The
same quantities calculated with the simple prior applied to the classifier
. o . . . output probabilitiesBottom section: The confusion matrix, BHB com-
of neighbours, the weighting function being a kernel of cBoi pleteness and BHB contamination obtained when the prior as a function
See Hastie et al. (2001) for a general discussion of the rdethef g and latitude is applied to the classifier output probabilities.
and see Richards et al. (2009a,b) for examples of KDE used to
identify quasars in SDSS data. ) o .
We use an Epanechnikov kernel, which is truncated and s¢Rown as contours g, g—r space in Fig. 8. The probability of
less influenced by distant points. In practice, the choideniel an object being of classl from a numben. of possible classes
is usually less important than the bandwidth value. The barig taken to be
width was set independently for each dimension. The package Kjzca(X)
np in R* was used to implement the KDE method (Hayfield &(j) = <~
Racine 2008), and also to determine the optimal value for the 2 Ki()

bandwidth, using the method of Li & Racine (2003). This i§arek; are the density functions for each class arare the
based on leave one-out-cross validation and involves NEAIM G oa

ing the variance amongst trial density functions conseietith Training and test sets were independently selected terstime

different bandwidth values. and used to train and test a model. We applied the KDE classifie

h h bl | be obtainedui d ® the test set under the assumptions of equal class sizes (fla
shows that reasonable results can be obtainedwifandg—r,  oiq) the simple prior(BHB) = 0.32 for all sources), and the

but the addition of further colours degrades the perforaie 54 prior. The results for all these tests are shown in Tablhe.
construct density functions for both the BHB stars and the-noy,, .t of this table is the same as Table 3.
a

BHB stars and compare the values at the locations of test daty
or new data points to classify the source. The individuakign
functions for BHB and non-BHB sources in the training set are

(4)

As with the KNN method, we experimented with thresh-
* http://www.r-project.org olds at diferent levels of classification confidence. We adjust
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Fig. 8. The density of points for the non-BHB star training set (left) and the BHBtsining set (right) in thei — g, g — r plane. These density

functions are used for the KDE classification. Contours range from 2 gté2s per unit area in steps of 2.

the threshold probability for BHB classification and rectind
resulting output sample completeness and the contaminatio
These are shown in Fig. 9. As expected, thiea of introducing
a threshold higher than 0.5 for classification is to reduch thee

Fig. 9. Effect of varying the probability threshold with the KDE method

for classification as a BHB star on the completeness (green squades) an
contamination (red triangles) of the output. The results shown in Table 4
correspond to a probability threshold of 0.5. Output probabilities have
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been modified by the 2d prior.

Figure 10 shows the completeness and contamination for the
test sample classified with the KDE method, with the results
binned by magnitude. The threshold for classification isaglsv
0.5.

0.05

Fig. 10. Top: Completeness (green squares) and contamination (red tri-

angles) for sources of fierent magnitudes classified with the KDE
technique with one hundred trials. The filled symbols and solid lines
show the results using the 2d prior. The open symbols and dashed lines

T . . . show the results using the simple prior orBpttom: Standard devia-
Support vector classification is a supervised method inWBiC tjon of completeness and contamination over one hundred trials.
high dimensional decision boundary is fit between two ckasse

The boundary is chosen to maximize the margins with the near-
est representative points of each class (the so-calledsiygz-

4.4. Support vector classification
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tors). See Vapnik (1995) for a fuller description. A lineari\d
defines a boundary that is linear in the original data spate (i
our case the four SDSS colours). By using a kernel function,
a higher dimensional feature space can be defined, and the de-
cision boundary instead defined in this. We use the second or-
der radial basis function as a kernel here. This functionéas
single parameter, gamma, which must be set before traihimg t
model. To deal with the problem of regularization for noisyal

a cost parameter can be introduced, that acts to soften the ma
gin. The cost parameter is so called because it controlteate

S

0.8

0.6
[

Completeness/contamination
o
>

to which the algorithm will attempt to fit a more complex bound I M ) - ; ,(
ary in order to correctly classify all of the training point®. it ° A, a

is the "cost’ to the algorithm of misfitting training pointsidng . S

the model training (Cortes & Vapnik 1995). We use the libSvm  ° 1, ; ; ; ; -
implementation, which is available onlinet{tp: //www.csie. 05 06 r‘n"iz[P(BHB)] 08 09
ntu.edu.tw/~cjlin/libsvm/, Chang & Lin (2001)) and is

implemented in the R package e1071.

Fig. 11. Plot of completeness (green squares) and contamination (red
- triangles) as a function of a threshold probability for BHB classification
4.4.1. Probabilities from SVM in thg ca)se of the SVM classifier. Thg results Zhown in Table 5 corre-
The SVM method is not designed to provide probabilitiesgasin sponq toa probability threshold of 0.5. Output probabilities have been
it deliberately discards many of the training points, usimjy ~medified by the 2d prior.
the support vectors to build the model of the decision boonda
However, a probability estimate can be made based on the dis-
tance of a test point from the decision boundary (Platt 1999) o
The actual probability returned is based on a model fittetid¢o t
training data. This probability estimate is essential ifwant to ot
trade d¢f completeness versus contamination, or use priors. :
The training data were standardized colour by colour so that
each of the colours had zero mean and unit standard deviation
The same fiset and scaling, calculated from the training data,
were applied to the testing data. The SVM was run over a grid
of parameters; cost and gamma, with a fourfold cross vatidat

0.8
:
®
B | |
S

0.6
I

0.4
|

-

'

Completeness/contamination
B>

using the training data to determine the best choice foethak Nl ML AA L aA Al "

ues. The optimum values chosen were gamta5, cost64. / Frae T LA
The model was then trained on the training set and appligteto t o & Nk
test set. The basic classification performance is showntite s ° " A " . - " A

We consider the féect of a threshold on the measured com-
pleteness and contamination. The results of introducimgus
thresholds greater tha(BHB) = 0.5 are shown in Fig. 11. It
can be seen from Fig. 11 that the completeness and contamina
tion both fall as the threshold is increased, except for végh
thresholds when the contamination in fact rises. This isibbes

if the set of sources with the highest values of P(BHB) conédai
large number of contaminants. This is undesirable, butiigypa
caused by the low number of sources with hiflBHB) - in fact
there are only thirteen sources wiR(BHB) > 0.9.

Figure 12 shows the completeness and contamination for the
test sample classified with SVM, with the results binned bgma
nitude. This plot shows the results both with the simple prio " e e ps = - .
and the 2d prior. As with the KDE method, the SVM performs

[mag]
well for 14 < g < 18 but progressively more poorly for fainter o
sources.

0.3

0.1

Standard deviation of completeness/cdntamination
. . 0.2 .
L

.

Fig. 12. Top: Completeness (green squares) and contamination (red tri-
Optimal choi f classifi angles) for sources of flierent magnitudes classified using SVM with
4.5. Optimal choice of classifier one hundred trials. The filled symbols and solid lines show the results

From the bare results in Tables 3, 4 and 5, using the 2d priH?ing the 2d prior. The open symbols and dashed lines show the results
all the techniques have very simila,r Complet,eness Theaoont u_s’lng the simple prior onlyBottom: Standard deviations of one hundred
ination is best in the case of SVM with about 0.3, and worérfals'

for the KDE with 0.4. The decision boundary method of Yanny

et al. (2000) should properly be compared with the simplerpri
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Table 5. Results for SVM classification.

Flat prior 7 i
Absolute oy o o N
bhb other P
BHB 988 255 é N
OTHER 305 913 - W
Percent 5 N
bhb other 5 N
BHB 79.5% 20.5% % 3 AN
OTHER 25.0% 75.0% | S,
L e e N
Completeness  Contamination e TR A
BHB 0.795 0.396 TN
S A - "---—iﬁ—?—i—o—m
Simple prior 0s os 07 08 00 10
Absolute Classification threshold
bhb other
BHB 836 407
OTHER 188 1030 8
Percent - e g
BHB 67.3% 32.7% N o kNN ,_-'/f,@
OTHER 15.4% 84.6% el \ w%rﬁ.g:w%
© A @,69@&0 -~
Completeness  Contamination 5 oy oo o oo
BHB 0.673 0.323 £ =
With 2d prior ° v
Absolute 0 -
bhb other N
BHB 912 331 ‘
OTHER 187 1031 g |
Percent S \ \ \ \
BHB 73.4% 26.6% ° * o e °
OTHER 15.4% 84.6% ’
Completeness  Contamination . . L
BHB 073 0.303 Fig. 13. Top: Completeness (green) and contamination (red) for test

samples with 15< g < 17 classified with the SVM, KDE or kNN.

Notes. Top section: Confusion matrix showing results of an SVM clagDifferent shades and symbols are used to distinguish the methods. All

sification without priors and with a threshold BBHB) > 0.5, also the esults are modified with the 2d prior and the contamination is cor-
completeness and contamination in the output BHB sample, correcfggted for class fractions. Results are the average of ten independent
for the expected class imbalanddiddle section: the same quantities "UNS-Bottom: Same data as in the top plot, with completeness plotted
obtained applying the simple prior probability for all sourcBettom directly against contamination for direct comparison. The SVM resul_ts
section: The confusion matrix and completeness and contaminati@f€ @ways below and to the right of the other methods, demonstrating

found when applying the prior as a functiongénd latitude. ower contamination for a given completeness.

range of thresholds. The kNN technique maintains compésten

case for the three machine learning methods — the test set naetter than SVM for very high thresholds. However, the kNN
rally has the right class fractions, but because the methadti method does not show any significant improvement in contami-
probabilistic, the correction for the 2d prior cannot be makhe nation, and it never delivers a better contamination tharother
completeness of the decision boundary method is cleartghetmethods for similar completeness. The other techniquebawo s
than the three machine learning methods. The contaminafiora falling contamination with increasing threshold. In tbevér
over 50% is however worse than any of them. plot, it is clear that the SVM delivers on average a lower con-

From the magnitude performance plots in Figs. 7, 10 and Z2mination for a given completeness.
it can be seen that all the methods achieve a high completenes In summary, all the methods perform reasonably well, but
and low contamination for the approximate range<1§ < 17. the SVM seems to have the edge across the largest range of con-
The contamination achieved by the SVM technique for the rdiions, and we choose to use this technique on the new data.
gion of best performance between 45 < 17 is slightly better
than for the kNN. 5 Classificati ; d

To make a more direct comparison, we plot in Fig. 13 the’ assification of new data
completeness and contamination, averaged over ten indepgfe obtained new DR7 photometry from SDSS and use the var-
dent trials, for all the methods as a function of the clas#iifd® ious models to predict the classes (BHB versus non-BHB). The
threshold. For this plot, we restrict the test sample tos@giin - DR7 data were obtained using the colour cut of Yanny et ak (se
the range 15< g < 17, where all the methods perform reasonSect. 2). The search yielded 859,341 objectg at 23. This
ably well. magnitude cutfi is very deep, being 0.8 magnitudes deeper than

From this comparison, we can note the following; The SVNhe 95% completeness limit for DR7 (Abazajain et al. 2009).
and kNN methods deliver similar completeness over mosteof thlowever, the selection requires good photometry in all five

10
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Fig. 14. The fraction of new data points passing through the one class
filter as a function of the parameter The higher the value of the pa-

rameter, the more objects are rejected, and fewer then remain for the - .
main classification. The fraction reaches a plateau at areun@.01.
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|

SDSS bands, and the classification method will enforce the co
dition that classified objects occupy the data space defiged b
the training set (see next section), so that the number of@am
objects in the sample will eventually be very low.

Frequency

600

0 200
|

5.1. One class filter

Before attempting to classify the new data, it is necessaext

clude points which lie outside the locus of the availabletray

points. This issue did not arise when using the testing datiea

scribed previously, since all input sources are by definipart Fig. 15. (Top) g magnitude distribution of sources from DR7 selected to

of the defined data set and could potentially be used to traitieain the same data space as the SVM training d&att¢m) g magni-

classifier. New points lying in a 'hinterland’ outside thaitr- tude distribution of sources classified as BHB stars.

ing data locus and well away from the decision boundary may

be misclassified with high confidence levels, since the dibba

ity model is based on distance from the decision boundaiy. It . .

necessary to exclude such points prior to attempting tresifia lected non-BHB stars. The 2d prior probability was used to ob

cation. tain posterior probabilities, and a threshold of 0.5 wasliagp
To do this, we used an SVM in one-class mode. The on these. With this threshold, 27,074 of the new sample tbjec

class SVM defines a decision boundary which separates HM@re classified as BHB stars. Figure 16 shows the probasiliti

training data from the origin with a maximized margin. A pa®utput from the SVM classifier plotted against the prob&bsi

rametery, controls the rigidity of the boundary, and hence whdpodified by the 2d prior. The threshold for BHB classification

fraction of the training set would typically be excluded. @ 1S Shown by the horizontal line. The threshold obtained by as

lected all the available training objects (2,536 BHBs arfiLZ, SUming a prior probabilityp(BHB) = 0.32 for all sources is

non-BHBs) together into one set and standardized accotdingshown with the vertical line. It can be seen that there arépea

this data. We conducted an experiment witffatient values of N source density at low and high probability, so that theictio

the parameter to see how many of the new data points woul@ Prior does not dominate the classification. The distrduof

pass through. The results are shown in Fig. 14 From this figfassified BHB stars iig magnitude is shown in the right hand

ure, we see that the fraction of sources passing throughitise fiSide of Fig. 15.

reaches a plateau for valuesidd little less than 0.01. We chose

v = 0.01 based on this fe}ct, and on a visual insp(_action of ﬂ?fz_l_ Stability of the probabilities

region of the data space in— g, g — r space occupied by the

surviving points. _ . _The training set for the classifier is composed of all thelatag
Filtering the photometry according to consistency with thgHB stars, together with an equal number of non-BHB stars se-

training set, we were left with 294,652 objects. The disttitm |ected at random. This means in practice about one thirdeof th

of these ing magnitude is shown in Fig. 15 (left hand side).  non-BHB stars are included in the training set. The outpobpr

abilities, and eventual classifications in many cases, aviiin-

tually depend on the exact choice of training data. To qbanti

the stability of the output probabilities, we performed tesam-

For the classification, we trained a new SVM model using ahlings of the training data and subsequent classificatiand,

the available BHB stars, plus an equal humber of randomly deund the standard deviations of the output probabilities.

g [mag]

5.2. Classification

11
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In Fig. 17 we show a histogram of the standard deviatioffable 6. Probability standard deviations for BHB and non-BHB classes.
of the probabilities, and a plot of the standard deviationhef
probability for each output sources versus the mean valtigeof
probability obtained. There is a broad peak at about 0.0h6. T ggf 3';50 n;’;%BHB
histogram has been truncatedPat 0.1. 002 34%  55%

0.05 16% 29%
0.10 10% 14%

non-BHB sources have higher standard deviations than tiea gi
threshold.

It is difficult to combine repeated probabilities into a single
value with an uncertainty, and also to include tlkeet of the
magnitude and latitude dependent prior, and we do not attemp

P(BHB) with prior

5 : to do this. Instead, we give in the output table (Table 7) the
- raw SVM output probability from one classification, the stan
o dard deviation on this from ten resamplings, the prior, dred t

posterior probability obtained by applying the prior to ttasv

SVM probability. We use the condition that the posteriortpro

‘ ‘ ‘ ‘ ‘ ‘ ability P(BHB) > 0.5 for BHB classification, but alternatively

" ” T "’ b one could impose some condition based on the standard error
for each object.

Fig. 16. Classification probabilities P(BHB) for the new sources in th\g Photometric distances
DRY7 data set. The abscissa shows the probability returned by the S N’f’

classifier, the ordinate shows the probability after modification with thej;kq et al. (2004) give absolutgmagnitudes based on models
two dimensional prior (a function of latitude amgdmagnitude). The by Dorman et al. (1993), for a range of BHB star propertiesi(Te
horizontal line marks th® = 0.5 threshold above which sources Werﬁ'%gg and metallicity - th’eir Table 2), together with- g, g — r

classified as BHB stars for the purposes of this work. The vertical li d i col To det - hot tric dist f
shows the equivalent threshold for the SVM raw probabilities assumi g — 1 colours . 10 determine pnotometric distances for our

a simple prior ofP(BHB) = 0.32 for all sources. Contours are at 0.004BHB stars, we perform a regression based on this data. We do
0.006, 0.01, 0.03, 0.09 and 0.12 times the maximum density. The highiS with a support vector machine in regression nfode

est density regions lie in the bottom left, top right and in the clump at We estimate the distance errors due to the uncertainty in
approximately (0.8,0.8). the photometry by recomputing the distances witl- in the
colours and irg. the distributions are shown in Fig. 18.

Figure 19 shows the distribution of BHB stars on the sky in
the region of the north Galactic cap. The locations of a selec
tion of globular clusters taken from the list of Harris (19%8e
shown as black circles. These were used to make a test of the
BHB distances, as described below. Also indicated, with»a bo
is the location of the Ursa Minor dwarf galaxy. The BHB popu-
lation of this galaxy is clearly visible as a clump of distatsrs.

10000
|

8000
|

1 I 5.4. A distance test

6000

Frequency

To help assess the accuracy of our BHB identifications and dis
tance determination, we compare our data to a selectiorobf gl
ular clusters taken from the catalogue of Harris (1996) and s
. lected to lie in the north Galactic cap region. Their positi@are
shown in Fig. 19. We considered all BHB stars within half a
tidal radius of each cluster centre to be probable clustenme
000 o2 ona oo 008 o0 bers, and determined the mean distance to those stars, @nd th
Standard Deviation of P(BHB) error on the mean. We then compare those distances with the
ones given in the table of Harris. Out of fifty-two globulaus!
ters within the north Galactic cap region, sixteen had atleae
Fig. 17. Histogram of the standard deviations of the probabilities outp@HB star from our sample within half a tidal radius of the cent
by the SVM classifier over ten_c!assifications trained on ten separyfeFig. 20 is shown the mean distance for each cluster derived
resamplings of the available training data. from the BHB population compared to the accepted distance
given in the catalogue. The agreements with the distankes ta

In Table 6, we show the percentages of objects classified as the sy for regression fits a regression line in a high dimensional
BHBs or non-BHBs with standard deviation in the probabilityeature space, rather than a classification boundary. This involves an
exceeding 0.01, 0.05 and 0.1. The peak occurs between (01 &gra parameter which must be tuned. For a full description see Drucke
0.02 (see also Fig. 17). In each bin, fewer BHB sources thanal. (1996) or the libSVM documentation.

4000
|

2000
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Fig. 18. The fractional change in the derived distance caused by applyinglamadfset to either thg magnitude or the colours. Théfsets are
drawn from a Gaussian distribution with the appropriat®r each object. On the left, theéfect of the colour uncertainty on the fitting result, on
the right, the &ect of the photometric error ig. Both distributions have a width of the same order of magnitude.

Dec [deg]

RA [deg]

Fig. 19. BHB stars in the north Galactic cap region, shown in fitprojection. The stars have been colour coded for distance as follows;
blue=closer than 15kpc, greed5-40kpc, regfurther than 40kpc. The positions of a few globular clusters selected the catalogue of Harris
(1996) and used for a distance test are shown as black circles. Shiepof the Ursae Minoris dwarf galaxy is marked with a box.
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Fig. 20. Distances to globular clusters taken from the catalogue of Harris cothprathe mean distance to BHB stars within one tidal radius of
the cluster centre (both quantities taken from Harris. The straight lineshract agreemenx (= y). Error bars are plotted where possible {
source identified). The main plot shows the full sample, the inset shansation closer than 30kpc at a larger scale. Globular clusters with no
detected BHB population are not shown.

from Harris are generally reasonably good for clusters maloudistance, as they are intrinsically fainter. Ideally, ¢nasurces
20 kpc distant. Amongst the nearby clusters are several withould of course havB(BHB) < 0.5. BHB stars that are not
overestimated distances, two of which contain only one@urgenuine cluster members could be in the foreground or thie-bac
each. Overestimated distances would be expected if theecluground, so could appear more or less distant than the trgteclu
membership is contaminated with non-BHB stars, since the calistance. Non-BHB stars in the foreground or backgroundidcou
taminants are generally fainter than the BHB stars and so #ygpear at greater or lesser distance than the cluster, ittt
distances will be overestimated in those cases. A morerdistparent distance would be greater than their true distanedalu
cluster at just over 80 kpc also has an overestimated distanc their lower luminosity.

In Fig. 21 we use the information from the globular clusters We can see in the figure that there is a clump of appar-
distance test to further investigate the performance ottag: ent BHB stars at the cluster distance and with high probabil-
sification. We select all sources within half a tidal radidsao ity P(BHB). The majority of the sources with incompatible dis-
cluster centre and calculate the distance to these assuh@pg tances for cluster membership also h&{@HB < 0.5). There
are BHB stars (which they will not all be). We then find the fracare a few sources witP(BHB) > 0.5 and incompatible dis-
tional absolute residuaR, between this distance, which we caltances. These are probably false positive misclassifitstial-

d. and the accepted cluster distarmige though we cannot rule out the possibility that they are sympl
d. - dof foreground or background BHB stars.
= — U0

i ©)

We use the absolute residual because the vast majority ofesou
that have distances inconsistent with the cluster distamee In Table 7 we give the basic data for the sample of DR7 sources
placed on the too distant side (most contaminants will besit  classified by us. The first four columns of this table show-vari
cally fainter than BHB stars). We plot this against the (pdor- ous IDs from SDSS. Column one is the PhotObjld (long) from
rected) SVM probability?(BHB). Sources wittP(BHB) > 0.5 the SDSS PhotObj table. Columns two to 4 are the plate ID,
are classified as BHB stars for the purposes of this plot. MJD, and fiber ID for spectroscopic observations (wherelavai
In Fig. 21, sources which are true BHB stars within thable) from the SDSS SpecObj table. Columns five to eight are
cluster should appear close to the cluster distance. Wedwothe RA, Dec, |, and b in degrees. Columns nine through thir-
like to see as many as possible appearing with high probalid¢en show the SDSS photometry g, r, i, z psfMags). Columns
ity P(BHB). Sources which are in the cluster but are not BHBurteen through eighteen show the errors in the photometry
stars should be assigned distances greater than the tisterclun magnitudes. Columns nineteen through twenty-three show

R=

6. A catalogue of BHB stars from DR7 photometry
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To quantify this &ect, we calculated the completeness and
contamination in the test sample as a function of absolute
Galactic latitude. The results are shown in Fig. 22. From, thi

1.0

0.8

b Ay

0.6
I
1.0

Prob(BHB)

0.4

0.2

0 2 4 6 8 10
Fractional distance residual

Completeness/Contamination

Fig. 21. An analysis of classifier performance based on likely member- 2 1
ship of known globular clusters. Sources are selected based on prox- 0 20 40 60 80

imity to a known globular cluster from the catalogue of Harris (1996). Ibl [deg]

Distances are computed for all these sources, assuming they are&all BH

stars, and compared to the catalogue distance for the cluster. True BHB

stars that are really cluster members should return a distance congig: 22. An analysis of classifier performance on the Xue et al. testing
tent with the cluster distance. Most contaminants from within the cluset as a function of absolute Galactic latitufl, The completeness

ter will appear too distant compared to the BHB population, becaugfreen squares) and contamination (red triangles) are plotted. The sam
they are fainter. This plot shows the fractional absolute residual in tpr was restricted to sources wigh 17.5. The 2d prior was used, and
distance estimate in kpc versus the (prior-corrected) SVM probabilifiye contamination is corrected for the likely class fractions.

P(BHB). The dashed line shows the threshBl@BHB) = 0.5.

we can see that the performance of the classifier holds up well

the extinction in each band. Column twenty-four lists thé cafor |b| > 30°. Below that, there is some degradation, and the per-
egory from Xue et al.. This can be either 'BHB’, meaning BHBormance becomes quite bad in the lowest bin, Witk 18°. It
star from the D0.2 fm method, confirmed Iy, b,, 'Other’, is difficult to assess the detailed behaviour of the classifier here
meaning BHB star from D0.2, fm method, rejectedd@y b, because of the small number of test sources available (trere
method, 'BS’, meaning Blue straggler from DO0.2,fm methodi3 sources in the first bin, of which 18 were BHB stars accagydin
'MS’ meaning main sequence star from DO0.2,fm method, oo Xue et al.).
'None’ meaning not present in the Xue et al. catalogue. Calum
twenty-five shows the raw output probability from the SVM
Column twenty-six shows the standard deviation of this prob
bility over ten trials with resampled training set. Colunwenty-  Starting with a sample of spectroscopically identified BH&s
seven shows the (2d) prior used. Column twenty-eight shoygblished by Xue et al. (2008), we have trained a number of
the posterior probability calculated from the SVM probipil standard machine learning algorithms to distinguish BHiBsst
by applying the prior. Columns twenty-nine and thirty shé t from other contaminating main sequence stars or otherdapter
assigned distance in kpc and the fractional error. ers, using SDSS colours alone. We have investigated thrée me

In the Appendix, we give all the information needed to diods, with and without the use of probabilistic classificatand
rectly apply the SVM one-class filter and the two-class di&ss prior probabilities, and we find that the support vector nirseh
to new data for which the SDSS colouts;- g, g—r,r —iand offers the best completeness while simultaneously minimizing
i —zare available. the contamination in the output sample. The kernel denstiy e
mator was able to provide comparable contamination, but wit
a lower completeness. The KNN method was able to match the
completeness of the SVM, but not the contamination. Adjgsti
The classification is based on dereddened magnitudes, andthie classification thresholds altered this picture in ussiways,
dereddening is performed by the SDSS pipeline based on theé the SVM generally outperformed the other techniques.
map of Schlegel et al. (1998). This is expected to work well at Using the most promising technique (SVM), we have classi-
high Galactic latitudes, but for sources in the disk therestibns  fied a large sample of DR7 data selected to lie within the aolou
may not be reliable. Furthermore, these maps give the line-box of Yanny et al. (2000). This sample comprises 859,341
sight extinction to the edge of the Galaxy, so they will usdéir sources. We used a one-class filter (also based on an SVM), to
mate extinction in all cases, possibly by a non-negligibi®ant select 294,652 of these as lying in the same colour space=as th
even at high latitudes for nearby BHBs. available training set. We have identified 27,074 of thegeals-

The catalogue we present contains 181,022 sources wathle BHB stars. This includes any already identified by Xua.et
[b| < 10 out of the total of 294,652 sources. Out of the prob&ecause our classifier relies on a randomly selected sultblsamp
ble BHB stars, 7,231 sources haRéBHB) > 0.5 and|b| < 10, of the available training objects, we ran multiple clasatiicns
and 19,843 sources ha®BHB) > 0.5 and|b] > 10. Users to quantify the stability of the output probabilities. Tharsdard
should be aware of this issue when considering sources at ldeviations of the output probabilities are also providethmta-
Galactic latitude. ble.

7. Conclusions

6.1. A warning on extinction
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Table 7. Results of classification of new data.

ObjID Plate MJD Fiber RA Dec |
587747119446491418 0 0 0 0.010639 -4.960869
587740586797105255 0 0 0 0.010989 23.874033
758874300138651868 0 0 0 0.031694 34.673966
587740589481525502 0 0 0 0.032272 26.043768
758874298530595227 0 0 0 0.040556 28.786874
587747072734134392 0 0 0 0.044479 -4.343054
758874297994576583 0 0 0 0.046331 26.788068
587727178449485952 0 0 0 0.047126 -10.668292
587727225690128568 0 0 0 0.049595 -10.536831
587747117302546716 0 0 0 0.052484 -1.704633
587740587334041618 0 0 0 0.066353 24.353251
587747119446425658 0 0 0 0.067879 -4.793711
588015508195639503 0 0 0 0.070922 -0.669070
758874298530726084 0 0 0 0.087467 28.430939
587740525078905365 0 0 0 0.088007 25.819898
587731186740822469 0 0 0 0.091604 0.301938
587747073270808594 0 0 0 0.107236 -3.878229
587727179523227719 0 0 0 0.110229 -9.809412
758874299066679584 0 0 0 0.122841 30.574360
587727179523293190 0 0 0 0.123358 -9.954755
587747119446622618 0 0 0 0.220188 -5.260937
758874370997223595 0 0 0 0.222175 27.058341
588015507658833969 685 52203 188 0.226867 -1.232878
587727225690259621 0 0 0 0.233561 -10.446949
588015508195704946 685 52203 141 0.234491 -0.699505
758874297994641467 0O 0 0 0.240442 26.679747
587747119446753643 0 0 0 0.244419 -5.568110
758874297994838272 0 0 0 0.256721 26.225998
588015509806383417 0 0 0 0.287599 0.598832
587747121592730035 0 0 0 0.291503 -1.744949
587743959426203774 0 0 0 0.297441 7.314223
587727225153388676 0 0 0 0.307298 -10.991496
588015509806383122 685 52203 482 0.308759 0.537564

Ai
0.26
0.01
0.01
0.02
0.02
0.04
0.08
0.02
0.14
0.05
0.01
0.02
0.04
0.02
0.24
0.25
0.01
0.01
0.01
0.01

Au
22.19
18.39
15.29
20.14
20.14
20.69
21.66
18.88
21.47
20.80
17.99
17.70
20.26
18.42
23.00
23.61
18.88
17.46
18.32
15.58

Ar
0.20
0.01
0.01
0.01
0.02
0.02
0.06
0.02
0.09
0.04
0.01
0.01
0.03
0.01
0.16
0.15
0.01
0.01
0.01
0.01

Az
0.24
0.02
0.01
0.03
0.02
0.05
0.08
0.01
0.16
0.08
0.02
0.01
0.05
0.02
0.32
0.51
0.02
0.01
0.01
0.01

lext i ext

0.08 0.06
0.30 0.23
0.22 0.16
0.11 0.08
0.16 0.12
0.10 0.07
0.13 0.10
0.09 0.07
0.09 0.07
0.09 0.07
0.26 0.20
0.08 0.06
0.11 0.08
0.16 0.12
0.11 0.08
0.07 0.06
0.10 0.08
0.09 0.07
0.12 0.09
0.10 0.07

b u g r i z
91.740344 3BB723.62 22.65 22.85 22.20
108.07830514B53 19.70 18.43 18.39 18.40
111.10495D165R3 16.21 15.09 15.14 15.27
108.76510%11:83804 21.14 19.87 20.01 20.14
109.56393F527 20.98 19.99 20.03 20.07
92.464250 S¥63321.72 20.38 20.59 20.78
108.99937H93414 23.38 22.15 22.12 21.68
84.249601 93388 20.00 18.82 18.82 18.92
84.467652 8aB18 22.68 21.54 21.54 21.16
95.003385 @H31621.88 20.96 20.95 20.95
108.28933®5R[777 19.45 18.07 17.97 17.99
92.038001 +¥%6B518.36 17.19 17.41 17.56
95.923795 4®BB221.76 20.65 20.70 20.70
109.512049.05880 19.83 18.70 18.68 18.56
108.75821641838 24.00 22.85 22.83 22.78
96.745254 BHHB423.85 22.90 23.06 23.27
93.066164 ABBIB519.59 18.48 18.60 18.77
85.743476 3W9118.38 17.29 17.31 17.37
110.13399@2&M23 19.39 18.31 18.27 18.25
85.551926 HMB416.21 15.12 15.27 15.45
91.849680 E¥20323.44 22.45 22.41 22.41 22.25 0.76 0.15 0.17 0.30 0.66 0.12 0.08 0.06 0.04 None
109.262490168M6 16.72 15.65 15.61 15.61 15.69 0.01 0.01 0.01 0.01 0.22 0.16 0.11 0.08 0.06 None
¥F45-61.408443 19.29 18.14 18.15 18.23 18.33 0.03 0.02 0.02 0.03 0.21 0.15 0.11 0.08 0.06 MS
85.039354 18813 20.47 19.35 19.40 19.49 19.39 0.08 0.02 0.01 0.02 0.28 0.15 0.11 0.08 0.06 None
9B206-60.923488 20.82 19.77 19.72 19.81 19.86 0.10 0.03 0.02 0.10 0.21 0.16 0.11 0.08 0.06 MS
109.17287@3%B7462 18.84 17.68 17.82 17.96 18.08 0.02 0.01 0.01 0.01 0.02 0.14 0.10 0.07 0.05 None
91561486 9¥03122.96 21.74 21.81 21.58 21.59 0.58 0.08 0.10 0.14 0.48B 0.13 0.09 0.07 0.05 None
109.05857@83#89 20.71 19.61 19.61 19.65 19.67 0.06 0.01 0.01 0.02 0.26 0.15 0.11 0.08 0.06 None
97.334501 {EB2523.28 22.40 22.44 22.46 22.64 0.58 0.12 0.17 0.29 0.18 0.09 0.06 0.05 0.03 None
95.428721 H169022.64 21.62 21.68 21.69 21.25 0.46 0.06 0.11 0.17 0.28 0.15 0.10 0.08 0.05 None
101.682300 7884 17.74 16.54 16.51 16.55 16.59 0.01 0.01 0.01 0.02 0.82 0.23 0.17 0.12 0.09 None
84.330154 044H3 20.13 18.86 18.94 19.06 19.03 0.05 0.02 0.01 0.02 0.26 0.13 0.10 0.07 0.05 None
910B26-59.814775 17.38 16.13 16.20 16.33 16.39 0.01 0.02 0.01 0.02 0.13 0.09 0.07 0.05 0.03 BHB

Ag
0.92
0.03
0.01
0.09
0.06
0.17
0.55
0.05
0.57
0.23
0.03
0.02
0.23
0.03
1.26
0.94
0.04
0.02
0.02
0.01

Uext  Oext

0.75 0.11
0.63 0.42
0.21 0.30
0.21 0.15
0.68 0.22
0.16 0.14
0.28 0.18
0.08 0.12
0.60 0.13
0.2% 0.12
0.22 0.36
0.08 0.11
0.2 0.15
0.63 0.23
0.82 0.15
0.7@¢ 0.10
0.08 0.14
0.08 0.13
0.23 0.17
0.09 0.14

0.04
0.16
0.11
0.06
0.08
0.05
0.07
0.05
0.05
0.05
0.14
0.04
0.06
0.08
0.06
0.04
0.05
0.05
0.06
0.05

None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None

Notes. A selection of the first few rows are shown. Some rows were omitted $sdhae objects with corresponding spectra are shown.

Zex  Type Psym

0.01
0.34
0.19
0.79
0.27
0.99
3.00
0.25
0.29
0.98
0.66
0.74
0.24
0.87
0.46
0.06
0.24
0.13
0.26
0.33
0.99
0.27
0.11
0.08
0.25
0.39
0.01
0.20
0.02
0.5
0.24
0.71
0.74

AP Qg
0.01 O

0.01
0.02
0.01
0.04
0.38
3.74
0.04
0.30
0.37
0.06
0.01
0.38
0.31
0.11
0.12
0.01
0.00
0.00
0.01
0.33
0.01
0.00
0.05
0.01
0.01
0.01
0.00
0.04
0.40
0.00
0.03
0.01

0.25
0.43
0.14
0.14
0.23
0.14
0.25
0.25
0.22
0.29
0.50
0.22
0.16
0.14
0.21
0.30
0.51
0.22
0.64
0.23
0.52
0.35
0.25
0.22
0.30
0.23
0.14
0.21
0.22
0.56
0.25
0.60

0.15
0.15
0.41
0.05
0.96
5.18
0.10
0.12
0.95
0.45
0.74
0.08
0.57
0.13
0.01
0.12
0.14
0.09
0.48
0.99
0.29
0.06
0.02
0.08
0.22
0.00
0.04
0.00
0.22
0.29
0.45
0.82

Psym d (kpc) Add
23 0.004 255.42 0.26

31.01
6.99
68.92
69.91
87.27
188.11
42.72
150.65
113.95
27.14
20.34
97.66
38.58
274.36
269.88
36.27
21.04
32.54
7.67
223.05
9.68
30.791
53.28
65.3D3

24.98
158.50
60.71
225.32
145.68
14.21
43.32

0.01
0.01
0.02
0.01
0.04
0.13
0.01
0.14
0.06
0.01
0.01
0.06
0.01
0.34
0.27
0.01
0.01
0.01
0.01
0.20
0.01
0.
0.02
0.
0.01
0.14
0.01
0.15
0.11
0.01
0.01
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We used photometric parallaxes derived from colour dagailer-Jones C., Smith K., 2010, Combining probabilitiesciieRep. GAIA-
presented in Sirko et al. (2004) to derive distances forehes CSI;I!\I-'thF_’lA-iBJ-%S& . ;JNRLd?ttp://www-mpia—hd-mpg-de/Gaia/
objects, using another variant of the support vector macton aﬁ’;_ﬁ;ﬁ;gﬁ%ﬁ& E‘_”‘“Tigde-g, et al.. 2008, MNRAS, 30138
make the fit to the colours. We performed a few simple checgﬁang C.C..Lin C.J., 2001
on these distances, and on the spatial distribution of issifled cortes C., Vapnik V., 1995, Machine Learning, 20, 273
BHB stars, to demonstrate that our method is reasonable.  Dorman B., Rood R.T., OConnell R.W., 1993, ApJ, 419, 596

We include along with this work a catalogue of the 294,652rucker H., Burges C., Kaufman L., Smola A., Vapnik V., 1996, MiPS'96,
DR7 sources together with probabilistic |dent|f|cat|onsszcBS Gao D., Zhang Y.X., Zhao Y.H., 2008, MNRAS, 386, 1417
stars, in the hope that these can be useful for other workersgrigan M.J., Newberg H.J., Newberg L.A., et al., 2010, MAGR 621
ther directly as a ready made BHB sample, or as prior prohgarris W., 1996, AJ, 112, 1487
bilities for spectroscopic BHB identification methods. Wsoa Hastie. T., Tibshirani R., Friedman J., 2001, Elements of Stedil Learning,
provide, in the appentix, the data and parameters necesany, SN0 | 10 somator sl s, 1
apply our classification to new colour data. The accurachef tHuertas-Company M., Tasca L., Rouan D., et al., 2009, AGA, Z3,
catalogue, or the classifier, can be estimated by referent®t Kinman T.D., Morrison H.L., Brown W.R., 2009, AJ, 137, 3198
various test results presented in the main body of the paperLiQ., Racine J., 2003, journal of multivariate analysis, 366
particular, Fig. 12 gives the estimated performance as e-fuiarengo M., Sanchez M.C., 2009, AJ, 138, 63 ,
tion of magnitude, although the reference classificationmf P'art;;r'éiﬁggg’séﬂ:iesrgn?\ﬁTAb’rfsfﬂen P. Schoelkopf D. (pdsivances in large
the Xue et al. catalogue are unreliable fpr 19 as seen from Richards G., Deo R., Lacy M., et al., 2009a, AJ, 137, 3884
Figs. 2 and 3. Figure 11 gives the expecté@@@ of changing Richards G., Myers A., Gray A, et al., 2009b, ApJS, 180, 67

the required threshold probability for BHB classificatiarhilst Ruhland C., Bell E., Rix H.W., Xue X., 2010, ApJ, Submitted

; ; ; legel D., Finkbeiner D., Davis M., 1998, ApJ, 500, 525
Fig. 22 can be used to estimate the performance asa fumrtlo@(’egr]sic J., 1968, Atlas de galaxias australes Cordoba, ArgenDbservatorio

Galactic latitude. . . . . Astronomio, Tech. rep.
A general conclusion of this work is that, where reliablirko E., Goodman J., Knapp G., et al., 2004, ApJ, 127, 899
training sets can be identified, machine learning appreasieh Tsalmantza P., Kontizas M., Bailer-Jones C., et al., 2007, A&70, 761
as those discussed here can probably extract more infanmaff saimantza P., Kontizas M., Rocca-Volmerange B., etal., 2889, 504, 1071

: . . f . Vapnik V., 1995, The Nature of statistical learning the@pringer
than is available with simple colour cuts & hoc models. This X.. Rix H., Zhao G., et al., 2008, ApJ, 684, 1143

type of approach is likely to be very fruitful in the futurerfo xue x., Rix H., Zhao G., 2009, Research in Astronomy and Astysics, 9,
surveys yielding large photometric datasets. 1230
Yanny B., Newburg H.J., Kent S., et al., 2000, ApJ, 540, 825
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Table A.1. Standardization parameters for both one-class and two-cld@ble A.3. Data for the one-class SVM model.
classifiers.

Yiai u-g g-r r—i i-z
u-g g-r r—i i—z 0.177629 -0.125387 -3.43222 2.042456 0.187264
one-class 0.853943 -2.771393 -3.613814 0.063207 -0.607082

u 1.11589420 -0.11549278 -0.09550841 -0.09199681 0.11659 0.665252 0.272304 -1.799065 2.331353
o 0.09485993 0.08260171 0.21371742 0.15484431 0.388386 0.412248 -0.926218 -0.278366 -3.513227
two-class 0.255163 -0.863317 -0.345117 -1.129957 0.309968
u 1.12810095 -0.12914688 -0.10735233 -0.09247437 1 2.562787 -3.10535 -0.250291 -0.258345
o 0.09391075 0.08442376 0.18161768 0.10137230 0.382262 -0.958194 0.70813 -1.986228 2.899666
0.281138 -0.515436 -2.064209 -0.535715 -2.544512
1 -1.327159 -1.822084 -2.210824 1.937409

Table A.2. Parameters for one-class, two-class and probability modejgytes Only the first ten lines of this table are shown here for illustra-
tion, the remainder is available in electronic form. There are a total of
152 support vectors in the online table. Column one is the progugt

One-class model columns two to five are the dereddened, standardized colours.

y 0.25
P 2.571136
Two-class model

Z 501'(1)%28 on theoriginal dereddened colours, not on the standardized data

Probability mode! used for the one-class model.

A -1.162976
B 0.006035218 A.4. Application of the two-class model

The equations for the two-class model are the same as for
A.2. Application of one-class SVM model the one-class, namely A.2 and A.3 above. The data for the
model should be taken from Table A.4 (support vectors) and
from Table A.2 (model parameters). The decision vajue
Equation A.2 is now either1 (non-BHB) or+1 (BHB), but this

The evaluation equation for the SVM model, for either oressl
or two-class classification, is

i=Ng is of no direct concern to the user since in Table A.4 the vafue
f= Z yiaiK(x,8) - p (A.2) the producta; is given.
i1 Evaluate Equation A.2 using the two-class data to obtain the

decision valuef for each source. Decision valués> 0 indi-

wherex is the colour vector to be classified,are the support 41e BHB stars (since the class label for BHB starsij and
vectorsg; their fitted weightsy; are class labels for each SUPPOTfecision valued < O indicate non-BHB stars.

vector, ang is a constantfiiset applied to each result. The value
of Ng is 152 for the one-class model (Table A.3) aigd= 2645 _ 3 -
for the two class model (Table A.4). The class lalyplre setto A.5. Determine the probability of the classification

+1 or—1 for the two class classifier, and are always setltdor If only a classification is required, this step is unnecesséa
the one-class case.

K is a kernel function, in our case an RBF kernel, given byfgfnﬁﬁgl%sls also required, apply the probability modelde-
K(x,s) = expEylx — si), (A.3) Given the value of the decision vald€rom step A.4 above,

determine the probability by evaluating

wherey is a parameter found by tuning (Table A.2).

The values of the support vectors for the one-class modplgHp) = _r
corresponding to the vectors labelgih Equations A.2 and A.3, 1+exp(Af +B)’
are given in Table A.3, which is available in its full form as a
e-table. The first column in this table gives the prodget for
_?_Zglhe\fgt.or. The value of the parameterandp are given in Table A.2. | - | - )

To apply the one-class model, simply calculate the sum jn_ e n?tel age:cln that this is ?. nomm?]I propab||||ty, a};sum-
Equation A.2 over all the support vectors in Table A.3 and sup'9 eguat_c assf racf[{pns n rea_;t)g no f "’X]ge. n chassl,t(; rh?g'
tract the value op. Sources withf > 0 are compatible with the ?r?)c?ucuen dctfgt?ta?noglelt?gr' n;zgtjgrligr e’roebgbilitgéora?c,u%ge din !
training data and are therefore suitable for classificaith the Sect. 3.4 The simole pri P di tﬂ. PEBHB) = 0.32
two-class classifier. Sources with< 0 are outliers that should 2S¢t 2= 'N€ SIMPIE prior used in this pape (BHB) = 0.32,

; - : ) which roughly accounts for the uneven class fractions, abar
be rejected (they cannot be classified with the two-classathod bly the simplest sensible choice for this.

(A.4)

where A and B are parameters determined by cross validation
during training. The values of these for our model are given i

A.3. Standardization for two-class classification

Having rejected sources not compatible with the model ribis
necessary to standardize the data for the surviving sousieg
the standardization appropriate for the two-class classifihe
equation for this is identical to that used for the one-cktas-
dardization, Equation A.1 above. The parameters are given i
Table A.1. Note that this standardization should be peréatrm
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Table A.4. Data for the two-class SVM model.

Vi u-g g-r r—i i-z

1024 0.669775 0.534765 0.034976 0.123055
1024 -1.534446 -1.443351 -0.4881 -0.636521
1024 0.275784 -0.507595 -0.355955 -0.123561
1024 0.584588 0.16757 -0.251339 -0.172884
1024 -0.182098 0.04912 -0.256845 0.192107
1024 -0.352472 -0.957706 -0.543161 -0.212342
1024 -0.586737 0.85458 0.657162 -0.291259
1024 -0.97008 1.340226 0.18364 0.724797
1024 -0.064965 -0.720806 -0.229315 -0.498417

Notes. Only the first ten lines are shown here for illustration. The re-
mainder is available in electronic form. There are a total of 2,645 sup-
port vectors in the full online table. The columns have the same mean-
ing as for Table A.3 above. Note that column 1, which gives the product
Y@, always has the same value for the first ten instances. This is not the
case for all the support vectors in the full version.



