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Abstract. [ discuss various aspects of source classification and physi-
cal parametrization using data from the future Galactic survey mission
GATA. Due to the heterogeneity of the data, the large variety of ob-
jects observed and problems of data degeneracy (amongst other things),
efficiently extracting physical information from these data will be chal-
lenging. I discuss the global and local nature of commonly used pattern
recognition algorithms and outline two alternative frameworks for classi-
fication — parallel and hierarchical — and describe some aspects of each.
A method for calibrating the classification algorithms is proposed which
requires only a limited amount of additional (ground-based) data. By
way of illustration, an example of stellar parametrization using GATA-
like RVS data is presented.

1. Introduction

The primary scientific goal of GAIA is a detailed study of the composition,
structure and formation of our Galaxy. The major contribution which GAIA
will make in this area is high precision astrometry of around one billion stars,
providing accurate positions, parallaxes and proper motions. Of course, to be
able to use this astrometric data for Galactic structure studies, it is essential
that the intrinsic properties of the stars so observed are known. For this reason,
GATA will also employ multiband photometry and high resolution spectroscopy
(see section 2.).

The classification' requirements for GAIA have been outlined in Bailer-
Jones (2002), but include: (1) discrete classification of GAIA sources as star,
galaxy, quasar, solar system object etc.; (2) determination of stellar astrophysical
parameters (APs) (Teg, [Fe/H], [a/Fe], log g, Vyot, mass, age, activity, etc.); (3)
accurate determination of interstellar extinction (which is unique for a given
star so can effectively be assumed to be a stellar parameter); (4) detection and

'T draw a distinction between classification and parametrization. Classification refers to the
allocation of discrete classes, such as (1) star or nonstar, (2) star, galaxy, quasar, asteroid or
other, or even (3) hot star or cool star. Parametrization, on the other hand, refers to the
placing of sources on a continuous scale, such as Teq, [Fe/H], star formation rate, albedo etc.
The distinction is important in terms of the way in which algorithms are used. However, where
the distinction is not important, I will use the term classification to refer collectively to the
process of assigning attributes (classes or parameters) to sources.
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description of stellar multiplicity; (5) identification of new types of objects. The
goal for GAIA is not “just” to produce a catalogue of astrometric parameters
and associated photometry, but also detailed information on source classification
and APs.

2. GAIA data

GATA is an all sky magnitude-limited survey (to V~20). Due to telemetry
limitations from its orbit around the Earth-Sun L2 point, not all data will be
transmitted to ground. Instead there will be real time on board detection of all
sources above a magnitude limit (V~20) and only the CCD pixels in patches
around each object will be transmitted.

The primary information for classification purposes will come from the
Medium Band Photometer (MBP) a set of 10-20 (the system is not yet fixed)
medium band filters over the wavelength region 200-1100 nm. This must obtain
information on every object down to the GAIA magnitude limit. This will be
supplemented by about five broad bands from the astrometric instrument (which
are primarily intended to give a chromatic correction to PSF centroiding).

Data relevant to stellar parametrization will also be provided by the Radial
Velocity Spectrograph (RVS), the capabilities and optimization of which are the
subject of this meeting. The RVS will obtain slitless spectra over the whole
sky over the wavelength range 849-874 nm with a resolution (to be decided) of
between 5000 and 10 000 (see contribution by D. Katz in this volume). Due pri-
marily to signal-to-noise considerations, RVS data will only be obtained down
to V~17. For the brighter stars, it will also provide an information on stellar
activity (via emission lines), rotational velocities (via line broadening), indi-
vidual element abundances and permit an independent determination of Teg,
[Fe/H], [a/Fe] and logg. The RVS instrument has significant implications of
parametrization of GAIA data, as it provides different amounts of information
(and perhaps even different formats if lossy compression schemes are used) for
each object, depending on magnitude (and crowding).

Each point on the sky is observed about 100 times over the course of five
years, providing variability information relevant for identifying some types of
stars and quasars. Astrometric information will also be very useful for clas-
sification, e.g. parallaxes for determining stellar luminosity and radius, (zero)
proper motions for identifying quasars. However, we should not use kinematic
information to parametrize stars, as this would require a Galaxy model and hence
introduce classification biases based on our current and limited understanding
of Galactic structure.

In summary, classification with GAIA is characterised by the heterogeneity
of the data: photometry (from two separate instruments), spectroscopy (only
for some targets, varying formats) and astrometry. Making full interdependent
use of these data is a challenge, and, as discussed by Bailer-Jones (2002), is not
something which classification methods used to date in astronomy have had to
deal with on this scale. This is further complicated by the wide range objects
and astrophysical parameter scales which will be encountered.
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Figure 1.  Classification or parametrization is the process of deter-
mining the mapping from a data domain to a class or astrophysical
parameter (AP) domain. The opposite mapping is equivalent to the
simulation of the data, e.g. the emergent stellar spectral energy distri-
bution (SED).

3. Classification principles

Classification is the problem of assigning object classes or APs and generally
involves determining some kind of mapping from the data space to the parameter
space (Fig. 1).2 A frequently used approach is the supervised or pattern matching
approach, in which pre-classified data (templates) are used to infer the desired
mapping. This mapping is then applied to new data to establish their classes
or APs. Perhaps the most familiar such technique is the minimum distance
method (MDM), shown schematically in Fig. 2. This is a local template matching
method, in which only the properties of the local neighbours in the data space
influence the APs of the new object. This is in contrast to a neural network,
which attempts to do a global interpolation of the function APs=f(data) over
the whole data space.

Classification, then, is the process of mapping from the data space to the
AP or class space. By contrast, simulation of source SEDs is the opposite
mapping, i.e. from the AP space to the data space. This is generally a many-to-
one mapping: a given set of APs provides a unique SED but because of photon
noise and degeneracies, two sets of APs could produce the same SED (within the
noise). Thus the inverse mapping (i.e. classification) is generally one-to-many
and not unique.

This is illustrated schematically in Fig. 3. In the left panel we see that
there are four templates (those lying within the noise bounds) which give rise
to data consistent with the new observation. Confronted with this degeneracy
we must decide what to do. Do we quote all results? Do we average the APs?
There are in fact whole ranges of the AP which are consistent with the data,
so an unweighted average will be biased by the distribution of the nearest tem-
plates. Moreover, at large AP, there is actually another solution which we have
completely failed to recognise due to the low density of templates in that re-
gion. The problem is worse with a lower density template grid (right panel of
Fig. 3), or, equivalently, lower noise data. Clearly, a MDM which just assigns the
APs of the nearest neighbour or even averages over nearby neighbours will give

2The data space refers to the data acquired from GAIA, such as fluxes in different filters or

the RVS spectrum. The parameter space refers to those properties of the sources we wish to
determine, such as Tes or extinction, but could also refer to discrete classes (e.g. star, galaxy,
quasar etc.).
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Figure 2.  Schematic illustration of the generic minimum distance
method (MDM). Left: a two-dimensional data space populated with
pre-classified templates. Assigning parameters to a new object involves
looking at the APs of the nearest neighbours (with the data dimensions
suitably scaled). APs are assigned either by interpolating in the data
space (i.e. solving the function APs=f'(data) locally at the new object —
in the simplest case this is just an average of one or more neighbours) or
in the parameter space (i.e. minimising the function D=g(APs), shown
for one AP in the right panel).

biased results. We might want to get around this by having a very dense tem-
plate space, but this will probably become prohibitive if we have a large number
of APs. But even this will give rise to biases in the classifications where the
mapping function is nonlinear, as one particular neighbour will be preferentially
selected. Although the errors would be small for a single star, it could produce
a significant systematic error in the average classification of many similar stars.

Thus, any sensible implementation of MDM or other pattern matching
method will do some kind of interpolation to provide solutions between tem-
plates, i.e. provide us with an approximation to the curve shown in Fig. 3. But
this will only be a single-valued function if done in the reverse manner, i.e.
data=f(APs). This is the inverse of the function which we would like to have,
APs=f'(data), which would enable us to deduce APs given new data. This is
important, because it means global interpolation methods for determining the
function APs=f'(data), such as neural networks, will give poor interpolants in
the presence of data degeneracies. (Think of rotating the left panel of Fig. 3 by
90° and trying to fit a single-valued function through the templates.)

Appropriate design of the GATA photometric system is a prerequisite to
avoiding such degeneracies, but given the relatively few photometric bands and
large variety of objects observed, they cannot be avoided entirely. The issue,
then, is how to recognise degeneracies and appropriately report multiple solu-
tions without biasing the parameter determinations. This is of course simple in
the one dimensional example in Fig. 3 which we can visualise, but it is more
complex with 5-10 APs and tens or even hundreds of data dimensions, as will
be the case with GAIA. An appropriate solution to this problem is the subject
of ongoing work.
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Figure3.  Schematic diagram of the functional relationship between a
one-dimensional data and a one-dimensional AP space showing degen-
eracies, i.e. several AP solutions for a single given data measurement
(shown by the horizontal line). The dashed lines show the noise level,
so that (in the left diagram) any of the four templates with vertical
lines are consistent with the new measurement.

4. Classification schemes

It seems unlikely that a single classification algorithm will be able to deal with
the large variance of astrophysical sources which GAIA will observe. (Many
results in the literature indicate improved performance when a classification
problem is broken down into subsets covering smaller ranges of APs.) This can
be dealt with in one of two broadly different approaches. The first, which I
describe as the hierarchical scheme, uses a Global Classification Model (GCM)
(a model which can deal with the entire range of sources) to produce a coarse
classification. Based on this, one of several refined classifiers (each of which I
call a Local Classification Model, or LCM) is used to produce a more precise
classification or set of APs. Each of these LCMs only “knows about” (i.e. is
capable of producing good results in) a limited part of the parameter space, e.g. a
restricted range of effective temperature.? This approach is shown schematically
in the left of Fig. 4. An example of such a scheme was presented in Bailer-Jones
(2002) (section 5 and Fig. 1).

The alternative approach, shown in the right of Fig. 4, is to pass the data to
each of many local classifiers right from the start. I refer to this as the parallel
scheme.* The key difference is that every single LCM is given the chance to
say something about the data, and, crucially, to provide a probability that this
source corresponds to a source of its class (or the range of APs which it deals
with). A decision regarding which of these classes the source belongs to (i.e.

3Generally, these spaces should overlap between the LCMs to obviate the problem of small
classification errors from the GCM occuring at the boundaries between the LCMs, which would
result in entirely the wrong LCM being chosen.

“In Fig. 4 I show coarse and refined levels in the parallel scheme, but this could be reduced to
a single refined level.
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Figure 4. Two alternative classification philosophies. AP = Astro-
physical Parameter, P = Probability (that the source conforms to that
class or set of APs, GCM = Global Classification Model (one acting on
a very wide range of the data space or of source types), LCM = Local
Classification Model (one acting on a narrow range of the data space
or source types).

which LCM) is then made independently, for example by taking the LCM which
yields the largest probability. This approach can be seen from the perspective of
Bayesian inference: the determination of the APs within each LCM is the process
of determining the posterior probability distribution over the APs, assuming the
LCM to be the correct one. The higher level of inference — model comparison —
comes about by assessing the evidence for each LCM, regardless of the optimal
or marginalised APs provided by each LCM, and is provided in this case by the
probability, P.

5. A classification framework for GAIA

In the context of the GAIA classification problem, the parallel scheme described
in the previous section offers a number of advantages over the hierarchical one.

One of the key advantages relates to the inhomogeneity of source models. At
some level, classification or parametrization involves matching the observed data
to template data of sources with known APs or classifications. A single model
which must classify all types of astrophysical sources (even if only coarsely)
demands a strong degree of homogeneity of the template data. For example, if a
single classifier is to classify both main sequence and pre-main sequence (PMS)
stars based on synthetic spectra of such stars, then these synthetic spectra will
have to show smooth and self-consistent variations as a function of the APs. In
practice, however, different models for different types of stars may be produced
independently and according to different assumptions (opacities, treatment of
convection and so forth). Thus it may be unrealistic to expect modellers to
produce a single, homogeneous grid of synthetic spectra across the full range
of APs of stars which GAIA will observe. In the parallel classification scheme,
homogeneity is not required. Here, each LCM need only known about a limited
set of self-consistent and homogeneous models (e.g. only PMS stars, and perhaps
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then only over a small mass range). Each LCM then attempts to classify a data
vector according to its own source models, and thus provides the most probable
APs, along with error estimates and a probability (P) that this particular data
vector is described at all by this ensemble of source models (independently of
the specific APs it came up with). So if the data source really is a PMS star, of
all the LCMs we would expect the “PMS LCM” to give the highest probability
in the parallel scheme, whereas the “evolved giant” and “quasar” LCMs (for
example) would give very low probabilities.

The key requirement of the parallel scheme is a robust means of determining
the probability (P in Fig. 4) that the data vector is described by that LCM.
This could be determined from the distance (in the data space) compared to
the data uncertainties between the source position and the different templates
in that LCM, with due regard for interpolation errors between the templates. A
specific algorithm for this is presently under investigation.

A classification approach using LCMs (rather than a single GCM) not only
permits inhomogeneous source models to be used. It also allows very different
approaches to classifying different types of astrophysical sources, possibly using
different parts of the GAIA data in each case. For example, a Cepheid LCM may
want to do a light curve analysis to look for characteristic variability, something
which would not be relevant for old G dwarfs.

Another advantage of the parallel scheme is that it naturally provides for
multiple solutions in the presence of AP degeneracy (see section 3). This would
be evident from several LCMs yielding high probabilities, whereas in the hierar-
chical scheme only ever one LCM is selected per source (although this condition
could of course be relaxed). Thus if more than one LCM provided output prob-
abilities above some threshold, all sets of parameters from these LCMs could be
reported.

6. Classification example with GAIA /RVS-like data

Optimization of the GAIA instruments and pre-launch estimates of the AP pre-
cision which can be achieved with these must be undertaken using existing real or
synthetic data. By way of illustration, I show the results of a stellar parametriza-
tion procedure using a neural network applied to RVS-like data obtained and
parametrized by Cenarro et al. (2001). The selected dataset consists of 611
spectra covering the wavelength range 849-874 nm, near-critically sampled at a
resolution of 5800 (0.15 nm FWHM). The median SNR per resolution is 85, but
with a large range (30-170 for 90% of spectra). These spectra were randomly
assigned to two nearly equal sized subsets, and a neural network trained on one
subset to determine Teg, log g and [Fe/H]. Once training is completed (accord-
ing to some optimization criterion), the network parameters are frozen and used
to determine the APs on the other data subset, from which the performance of
the network can be verified. The distribution of the APs in the training and
verification sets is shown in Fig. 5.

Figures 6 and 7 summarise the results. Teg can generally be determined to
within 5% and shows little trend with log g, although is better determined for
near solar metallicity stars. The larger scatter around log g=2.5 may indicate
Teg errors in the assignments of Cenarro et al. log g can be determined to within
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Figure 5.  Distribution of the data used from Cenarro et al. (2001)
for the training set (blue crosses, 300 spectra) and the verification set
(red triangles, 311 spectra).

0.5 dex at solar metallicity, degrading to 1.0 dex or more at lower metallicities.
We see that log g is generally harder to determine at lower metallicities, which we
would expect as there the line profiles which the log ¢ depends upon are weaker.
We also see that the logg of the cooler stars is systematically underestimated
for the cooler subset (lower left panel of Fig. 6) across a range of logg. This
may indicate a limitation of the algorithm. [Fe/H] precision is 0.3 dex across all
temperatures considered (ignoring low number statistics at the extremes), but
shows a trend to poorer performance at low metallicity, particularly for evolved
stars (lower right panel of Fig. 7. This is expected because the metallicity
signature is weaker and small differences are harder to distinguish.

It should be emphasised that these results are based on real data, and there-
fore include all sources of cosmic scatter. Moreover, the performances assume
that the Cenarro et al. parametrizations are true, so only assess the ability of
the neural network to reproduce these. Any inconsistencies in that calibration
will be reflected by the network. Finally, no attempt has been made to optimize
the neural network implementation for this purpose, which furthermore is prone
to the degeneracy problem described in section 3..

7. Calibration

The example in the previous section raises the issue of how the parametriza-
tion algorithms for GATA will be calibrated, or, in other words, how the train-
ing/template data set(s) will be defined and parametrized. Unfortunately, a
homogeneous database of real spectra to serve as the GATA templates — cov-
ering the required wavelengths and APs — does not presently exist. Even if it
did, it would presumably consist primarily of ground-based spectra which would
need to be processed to remove telluric features (and still the UV data would be
lacking), and APs would still have to be assigned to those spectra. Obtaining
stellar parameters ultimately requires some kind of stellar model. The emergent
spectral energy distributions derived from such models can be used directly in
the parametrization process by training pattern recognition methods on such
spectra, after suitably processing them with the instrument model to look like
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Figure 6. Teg (top row) and log g (bottom row) parametrization er-
rors on the verification data set. FKach point corresponds to a single
spectrum and gives the network determination minus the “true” value
(as established by Cenarro et al.). The diamonds joined by a line show
the RMS error for all spectra in a bin centered on that point. The
Teg errors are plotted as a function of log g for two metallicity ranges.
The log g errors are plotted as a function of [Fe/H] for two temperature
ranges.

the data GAIA will obtain (e.g. Bailer-Jones et al. 1997). However, synthetic
spectra differ from real spectra in two significant ways. First, they may show
systematic differences due to modelling uncertainties (e.g. missing opacities).
Second, real spectra show increased cosmic scatter due to unaccounted-for APs
(e.g. abundance variations, chromospheres, etc.). So training models on syn-
thetic spectra to apply to real spectra is not ideal.

Fortunately, there is a way around these problems. To assign parameters to
GATA observed objects we need to know: (1) how these objects will appear in
the GAIA multidimensional data space; (2) what the “required” APs for these
objects are (where “required” means just those APs which can be derived in
principle from the GAIA data). However, we do not have to determine the
APs of the templates from the same data that we use in the training. We
may define a grid of real star (“calibration stars”) on the sky which GATA will
observe, covering the full range of APs at some suitable AP density. Ground-
based spectra of each calibration star is obtained with whatever resolution and
wavelength coverage is required to determine its APs (probably from detailed
line fitting) to limits set by our physical knowledge of stars and the quality
of data we can obtain. In some cases existing data or catalogues can be used
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Figure 7.  [Fe/H] errors on the Cenarro et al. data (see Fig. 6).

for this purpose. The GAIA observations form the data for these calibration
stars, so at the end of the GAIA mission we have both the data and APs on a
set of stars which can serve as templates to train our classification algorithms,
unaffected by real-synthetic data mismatch.

Prior to and during the mission, GATA data can be simulated using syn-
thetic spectra, permitting approximate parametrizations. If it turns out that
the sky grid of calibration stars is not dense enough in some regions of the AP
space, it can be supplemented with synthetic spectra, with broad corrections
applied to them to account for systematic differences, in a manner similar to
that described by Lejeune et al. (1997). This calibration method would require
a ground-based observing program. But it would be on a modest scale, requiring
of order 1000 high resolution spectra. Accurate flux calibration is not required,
and depending on the wavelength coverage required, might be obtainable with
a multi-object fibre or slit spectrograph. Of order 10 nights on 4m and 8m class
telescopes would probably suffice.
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