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Abstract. Current and future large astronomical surveys will yield multipa-
rameter databases on millions or even billions of objects. The scientific ex-
ploitation of these will require powerful, robust, and automated classification
tools tailored to the specific survey. Partly motivated by this, the past five to
ten years has seen a significant increase in the amount of work focused on au-
tomated classification and its application to astronomical data. In this article,
I review this work and assess the current status of automated stellar classifica-
tion, with particular regard to its potential application to large astronomical
surveys. I examine both the strengths and weaknesses of the various techniques
and how they have been applied to different classification and parametrization
problems. I finish with a brief look at the developments still required in order
to apply a stellar classifier to a large survey.
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1. Introduction

At its most general level, the objective of classification is to identify similarities and
differences between objects, with the goal of efficiently reducing the number of types
of objects one has to deal with. Ideally, the classes so produced are motivated by a
scientific understanding of the objects. How we group the objects into classes depends
on many things, including how many classes we want, what measurement features we
have available and what procedure we use to discriminate between the objects. Of course,
at some level of detail, all objects are unique, but the point is that different aspects of
this uniqueness will be irrelevant in different classification contexts.
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In the case of stellar astrophysics, a classification system has emerged over the 140
years since Lewis Rutherfurd first divided stars into three groups based on their low reso-
lution optical spectra. While still closely tied to the optical spectra, stellar classification
now reflects underlying physical properties, in particular the effective temperature, Teff ,
surface gravity, log g, and metallicity, [M/H]. Bright main sequence and giant branch
stars can be represented well by the MK system (Morgan, Keenan & Kellman 1943), a
two-parameter system in which the spectral type (SpT) is closely related to Teff , and
the luminosity class (LC) is related to log g. This is a fairly coarse system, however, and
many “peculiar” types of objects appear as exceptions which cannot be usefully described
by these two parameters alone.

Physical stellar parameters (mass, age, radius, temperature etc.) show continuous
distributions, so it is often more appropriate to parametrize spectra on continuous pa-
rameter scales rather than classify them into discrete classes. For example, the MK
spectral types were originally designated as the classes which were discernible at a cer-
tain wavelength resolution, but we now know them to be somewhat arbitrary divisions on
what is really an underlying continuous temperature scale. While I draw this distinction
between classification and parametrization, I will nonetheless refer to the collective task
of determining quantities from spectra as “classification” for brevity.

In this article, I give an overview of automated stellar classification as a tool for large
surveys. “Large” here means in excess of one million objects. I start in section 2 with an
overview of the goals of classification in this context, before going on to review the main
classification methods (section 3) and give a critical comparison of these methods (section
4). I then give an overview of the literature which illustrates the application of these
methods (section 5). After summarizing the current state of classification performance
(section 6), I conclude with my view of how automated classification needs to develop to
tackle the challenges posed by large surveys.

2. The goals of automated stellar classification

Recent technological developments in electronic detectors, but also in powerful computers
and software, have meant that astronomical surveys of over 109 objects (e.g. the entire sky
down to 20th magnitude) are now being designed and implemented. The full exploitation
of the data from such surveys clearly requires automated methods. This is particularly
the case for multiband surveys which will observe objects in many filters (or even with
a low resolution spectrograph) and thus produce many measurements per object which
cannot be summarized in one or two colour–magnitude diagrams.

A variety of large surveys are underway or being proposed, including multicolour
surveys (e.g. 2MASS, DENIS and SDSS), the large-area synoptic survey and ambitious
parallax missions such as FAME, DIVA and GAIA (see Clowes, Adamson & Bromage
2001 for an overview). Many of these are large area, magnitude-limited surveys, so even
if their primary goal is not Galactic astrophysics, they will nonetheless observe large
numbers of stars.

Large surveys are concerned with two things. The first is finding unusual objects.
These will be discovered by virtue of being isolated from most objects in some parameter
space (provided the measurement or classification system provides this separation). Once
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detected, these unusual objects must always be analysed individually, no matter what
classification system is used. The second goal of a survey is to do statistics with large
numbers of objects, and for this purpose an automated classification system is required
which can extract information relevant to the astrophysical goals. I therefore define the
goal of automated stellar classification as the reliable and precise determination of the

intrinsic properties of a wide range of stars from their spectral energy distributions by

predominantly non-interactive means. That the classification should be precise (have
low random errors) is self-evident. However, we must be aware that there are intrinsic
limits to how precisely we can determine any idealized parameter, and that the “cost”
of achieving ever higher precision increases rapidly (e.g. in terms of collecting area or
integration time). “Reliable” refers to low systematic errors, implying a technique which
will not give wild answers when it is unsure. For example, a stellar classifier should say
that it does not know what a quasar is rather than just classify it as, say, a G2 star.

The fundamental intrinsic properties of a star are its mass, age and abundances.
Related to these are its radius, effective temperature and surface gravity. There are also a
number of “secondary parameters” for characterizing rotation, chromospheric and coronal
activity, microturbulence etc. Many of these can only be measured (or rather inferred) in
specific spectral ranges or at certain resolutions and signal-to-noise ratios (SNRs). Thus
the design of an observational system depends on which parameters are to be measured.
(Many of these quantities are not directly observable, so physical modelling plays an
important role, for example in the determination of the mass of an isolated star.) There
are other parameters which are extrinsic to the star, including its distance, kinematics,
interstellar extinction and companionship. These may be of immediate interest, or may
interfere with the determination of other parameters.

My above statement argues that an automated classification system should operate
on a wide class of objects. Large surveys will not be of preselected objects. Thus a
classification system which only operates on a small subset of stellar types will require
that so much effort be put into a reliable preselection system that this system will already
have done a significant part of the classification. Of course, one can imagine a hierarchical
system with progressive stages of class detail, but, considered as a whole, this system
still has to be applicable to a wide range of stellar types. Much of the early work on
automated classification focused on a limited set of spectral types, and while this work
was important for demonstrating the techniques, the classification systems produced
cannot be directly implemented for larger surveys.

The final aspect of my defined goal refers to “predominantly non-interactive”. That
classification for over one million objects based on tens of measurements per object
cannot be done by hand is obvious, yet we must not delude ourselves into thinking that
an automated system will never fail. There will always be cases with which the system
will have problems, and the skill is to produce a system which will fail gracefully and
inform us when difficulties arise (or better, quantify its own uncertainties). This is a
challenge because even a system with a 99% correct classification rate will still make ten
million errors on a data set of 109 objects.

This review only looks at existing classification systems, and hence at supervised clas-
sification methods. Unsupervised methods – which find “natural” groupings in a dataset
without reference to externally specified classes – do not appear to be as useful for fulfill-
ing the goal described. This is because the new classes they discover (or rather invent)
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would still have to be calibrated and understood in terms of stellar astrophysics. It seems
more sensible to me to use a supervised technique which will classify objects directly in
terms of our physically motivated classes or parameters. Unsupervised techniques may,
however, have a roll to play as a preprocessor in discriminating known objects from
unknown ones.

In the rest of this paper I will frequently refer to the measured spectrum as the
measured feature vector which is used as the basis for classification. However, this can
equally well refer to a set of non-contiguous flux measurements obtained through a set
of filters, and possible even contain other relevant measurements.

3. Classification methods

Almost all of the recent work on automated stellar classification has used one of four tech-
niques: principal component analysis (PCA); neural networks (NN); minimum distance
methods (MDM); Gaussian probabilistic models (GPM). PCA forms a set of linearly
independent basis vectors with which to describe the data, and can be useful as a classi-
fication system by using only the most significant few components. PCA is described in
the article by Singh, Bailer-Jones & Gupta in these proceedings. The neural networks
used in automated stellar classification have almost exclusively been feedforward net-
works. These are networks which can be trained to give a mapping between the stellar
spectral domain and the classification parameter domain. See the article by Bailer-Jones,
Gupta & Singh in these proceedings for an introduction to these models. The other two
methods are now described in more detail.

3.1. Minimum distance methods (MDM)

Metric distance minimization (also called a minimum distance method) classifies objects
by minimizing some distance metric between the object to classify and each member of a
set of templates. The object is assigned the class of the template which gives the smallest
distance (closest match). If X = (x1, x2, . . . , xi, . . . , xN ) is the feature vector (spectrum)

to classify, and Sc = (s
{c}
1

, s
{c}
2

, . . . , s
{c}
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{c}
i |xi − s

{c}
i |p
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(1)

where w
{c}
i is a weight assigned to flux element i of that class c. X is assigned to class c

for which Dc is minimum. The value of p determines the type of distance: typically p = 2
is used, which is the normal Euclidean distance metric. With this approach, our highest
class resolution is set by the grid of templates, i.e. we make a discrete classification equal
to one of the templates. We can improve this by interpolating between the lowest few
values of Dc and by making an inter-class assignment. Generally we must determine the
weights according to the relative importance of spectral features for determining various

classes. Taking w
{c}
i = 1 for all i and c is generally a poor choice for stellar classification,
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as it will attach most significance to the strongest lines, which are often not the most
relevant for classification.

MDM can be considered as a specialization or generalization of a number of other
methods. It is very similar to the “k nearest neighbours” (or k-nn) method, in which an
object is assigned a class based on the classes of its k nearest neighbours in the feature
space. (The feature space is the N dimensional space containing the measured feature
vector.) MDM without class interpolation is the same as k-nn with k = 1. If inter-
class assignments are meaningful, then the assigned class could be a weighted average
of the classes of the k nearest neighbours, with the weights set inversely proportional to
the distance to these neighbours. In MDM, the class templates are best formed from an
average of a number of examples of a given class, while in the k-nn method this averaging
is done specifically for each new object we want to classify.

MDM is the same as χ2 minimization when p = 2 and w
{c}
i = σ−2

i (for all c), where
σi is the error in xi (which includes the photon noise, calibration errors etc.) and the
templates are assumed to be noise free. However, this is not the most useful weighting for
stellar classification, as it is unrelated to the relative importance of the spectral features
in distinguishing between classes. MDM is also similar to cross-correlation of X on the
templates, differing in the treatment of boundaries (i.e. how we treat the correlation sum
when the spectra do not overlap fully).

3.2. Gaussian probabilistic models (GPM)

A different approach is to consider the classification problem in terms of probabilities.
Let p(x|c) be the probability that a member of class c has feature vector x. From Bayes’
Theorem, the probability that an object with a measured feature vector x is a member
of class c is

p(c|x) ∝ p(x|c)p(c) . (2)

We can then make the simplifying assumption that p(x|c) is a multivariate Gaussian
distribution with mean µ and covariance matrix Σ. These can be determined from a set
of preclassified data by various methods (a process we can refer to as training). p(c) is
the prior probability that an object is a member of class c. We may not have any idea
what this is, so may want to assign an uninformative prior, i.e. p(c) constant. However,
we may already have some knowledge that this object is more likely to be a particular
type of star (e.g. that it is likely to be low metallicity based on its kinematics). All
classification methods have such a prior, but not all allow us to specify it (easily). For
example, MDM implicitly assumes that p(c) is constant.

This direct probabilistic approach to stellar classification has been explored relatively
little in the context of stellar classification, yet a large literature exists on this class of
model. For an example of an unsupervised approach for the classification of IRAS LRS
sources, see Goebel et al. (1989). One feature of these models which may often be useful
when data are missing (which is inevitable for large surveys) is the ability to marginalize

over unmeasured features, xu, and classify only on the basis of the measured features,
xm:
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p(xm|c) =

∫

p(xm,xu|c)dxu =

∫

p(xm|xu, c)p(xu|c)dxu . (3)

Gaussian distributions are convenient here, because the marginal distribution of a mul-
tivariate Gaussian is another multivariate Gaussian.

4. A comparison of the classification methods

4.1. Training

All of the four methods described in the previous section are in some sense supervised,
i.e. they assign classifications based on some preclassified data. NN and GPM must be
explicitly trained, and encapsulate this training information in their internal parameters
(the network weights and mean/covariance matrix respectively). With PCA, the training
can be considered as the matrix diagonalization required to determine the principal
components (PCs). PCA as it stands is not really a supervised classification method, as
the formation of the PCs is independent of the class assignments. However, applications
in the literature of PCA as a classifier generally then assumes that the classification is a
simple function of the first few most significant PCs (the function being solved by simple
regression/interpolation techniques).

4.2. Data requirements and speed

MDM does not have to be trained when weighting is not used, as the training data
themselves are retained when making classifications. This introduces potentially serious
problems when we wish to apply the method to multiparameter problems. If no interpo-
lation between classes is used, then the training data should be “dense” in each parameter
so that the method can recognise the effects of all parameters on the feature vector. Thus
if we have templates for 30 spectral types, but then want to extend classification to 10
luminosity classes, we need another 30 × (10 − 1) training spectra so that every class
combination is represented: the training data requirement increases exponentially with
the number of parameters. Moreover, every time we want to classify a new object, we
must evaluate Dc for every template. This will require a significant amount of computer
time if several parameters are involved, and may be prohibitive for a large survey. We
would probably want to be able to classify everything in the survey in about one day,
because repeated classification is inevitable as the data or models are improved. This
means each object must be classified within 0.1 milliseconds. Let us assume that the
feature vector has 50 dimensions and that we wish to classify in five parameters. Of
these, one (probably temperature) is represented by 30 different classes, and the other
four by only ten classes each. The MDM training set would have to consist of 30 × 104

training spectra, and each new classification would require 15 million calculations of the
form (x−s)2 to be completed in 0.1 milliseconds. This is five times faster than is possible
with a CRAY T90 supercomputer.
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The logical solution to this problem is to reduce the amount of data by interpolation.
This is possible with MDM through an interpolation in the class space, as mentioned
in section 3.1. This, however, requires assumptions about the continuity and smooth-
ness between neighbouring classes which may not be valid. Interpolation in the feature
space, on the other hand, is more robust, as the features are typically photon fluxes. An
interpolation in the feature space is precisely what neural networks do. If a 50:10:10:5
network could solve the above problem, it would require only about 700 products and 50
exponentials to be calculated per object. Furthermore, neural networks naturally lend
themselves to being programmed in parallel, or even built into hardware in parallel, in
which case the number of operations is reduced to about 70 products and three expo-
nentials. This is easily achievable in 0.1 milliseconds. Additionally, the exponentiation
(which is slow) could be done via a look-up table. Of course, neural networks must be
trained. But as they only have to be trained once per classification run, and are trained
on a much smaller amount of data than the entire survey, the training could be completed
within one day. For example, a 560:5:10:3 network trained on a few thousand spectra
for a similar problem to the example above took less than one day to train on a Sun
Enterprise workstation, without any parallelization or look-up tables. GPM and PCA
have similar speed characteristics as neural networks, i.e. they are relatively slow to train
yet quick to apply. Note that any interpolation method (indeed any method with free
parameters) requires that sufficient data be used for the proper determination of these
parameters (see section 5.5 of Bailer-Jones et al. in these proceedings). As training data
are generally “expensive” to acquire, it will be desirable to keep the model as simple as
possible (although no simpler).

4.3. Knowledge encapsulation

A neural network encapsulates the information about the different classes in a single set
of weights, yet all of these weights are involved in the classification of objects of any one
class. This means that the presence of, say, B stars in the training data may affect the
classification of, say, M stars. In an extreme case this is certainly true: if we train a
network on 1000 B stars and only one M star, we would expect the network to learn very
little about M stars and hence do poorly at classifying them. Thus we must pay attention
to the relative frequencies of objects in the training data. For more evenly distributed
training data we are faced with the conceptual problem of whether the nature of B stars
should affect the ability of the network to classify M stars. In at least one case, a network
trained on a large range of spectral types showed some internal specialization, i.e. certain
hidden nodes specialized to recognise certain ranges of spectral types: see section 7 of
Bailer-Jones et al. (these proceedings).

In MDM, the classification knowledge remains in the templates, all of which must be
retained to make classifications. However, some additional information may be provided
with an appropriate weight vector.

4.4. Model complexity

PCA is a linear transformation of the data, so any linear classification model which uses
a fit to the first few PCs is likely to be too simplistic for multiparameter classification.
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Neural networks, on the other hand, can be made arbitrarily nonlinear (in principle), and
have a convenient means for investigating degrees of complexity and nonlinearity (through
the use of different numbers of hidden nodes and with regularization techniques). Both
GPM and MDM are nonlinear, by which I mean that the class is a nonlinear function of
the feature vector. With MDM, the only apparent flexibility of the model with regard
to complexity control (other than by increasing the amount of data) is the degree of
sophistication in the class interpolation scheme. GPM models are limited by the fact
that they assume Gaussian distributions, although this could be relaxed at the expense
of computational effort.

Not all objects within a given class are identical, so it is necessary for a classification
technique to realise that there are intraclass differences as well interclass ones. NN and
GPM methods can be made to recognise this by being trained on several examples from
each class. As mentioned previously, MDM templates could be constructed from several
examples to convey intraclass variance, and with the k-nn variation, many templates
may influence the classification, depending on the size of k.

4.5. Missing data

An important issue is how the techniques deal with missing data. For instance, if just
a few flux measurements are missing we do not want to have to throw away all of the
data on the object (particularly if the absences are correlated with class). In PCA,
incomplete spectra can be reconstructed through their projection onto the eigenvectors,
and more effective reconstruction techniques are also possible (Connoly & Szalay 1999).
With MDM, the distance metric can still be evaluated with missing dimensions, and
similarly the multivariate Gaussians of GPM can have their dimensions reduced and still
provide probabilities. With MDM, inputs being absent is equivalent to inputs which were
never the present in the first place, because the different dimensions of the feature vector
operate independently in determining the class. The situation is different with neural
networks, because during training all of the inputs affect the determination of all of the
weights. Thus, while a zero input will give no contribution to the output (provided the
transfer functions are symmetric about zero), this itself may mean something, depending
on what value that input had during training. For example, a zero input may mean a
saturated absorption line. Hence, neural networks are not particularly robust to missing
data, and the input vector should be “completed” in some way before being fed to the
network.

4.6. Interpretability

A final issue in comparing these models is their interpretability. MDM (and k-nn) must
“win” as being the most obvious, although for the probabilistically minded GPM is at
least as good. I would argue that neural networks are not nearly as obscure as people who
have no experience with them often suppose: Far from being an elaborate “black box”,
it is simply an example of a nonlinear regression algorithm. See section 7 of Bailer-Jones
et al. (these proceedings).
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5. A survey of the recent literature

The following survey of the literature is not intended to examine every publication in
this area. Instead it aims to illustrate how the above methods have been used and
demonstrate the performance which has been achieved. My focus is primarily on recent
work, specifically that done in the past five years. Although earlier work played a key role
in the development and understanding of the techniques, and of automated classification
itself, this work and their results have, to their credit, been superseded by more recent
work.

I divide my survey into two main sections, MK classification and physical parametriza-
tion. This division is partly for convenience, but also reflects a broad difference in the
approaches initially adopted by two communities. On the one hand, those interested
in automating MK classification have tended to use neural networks. On the other
hand, people more concerned with stellar atmospheres and physical parametrization have
tended to use MDM. Moreover, the MK people tend to use the entire spectrum, whereas
the stellar atmospheres people often (but not exclusively) make use of certain line ra-
tios and equivalent widths which are believed to have enhanced sensitivity to physical
conditions. Furthermore, members of the latter community have not stressed the “auto-
mated” side of their work, presumably as this was not their main concern. The emphasis
on automation from the MK community probably reflects the need to computerize the
traditional MK classification method of comparing spectra with standards by eye. Tech-
niques which use the overall appearance of a spectrum will be more robust to changes
in resolution and SNR than ones which use certain equivalent widths, because below
some resolution, equivalent widths are no longer measurable and classification becomes
impossible. A method using “raw” spectral information, on the other hand, will get less
confident (higher random errors) as the SNR or resolution degrade, but should still be
able to produce a classification. Similarly, a whole spectrum approach will generally be
more robust to missing data.

MK classification and physical parametrization are complementary approaches. MK
classifications are fixed, while physical parametrizations will evolve as stellar models
improve. MK gives a compact, and hence necessarily approximate, description of a
stellar spectrum. However, as the goal is to determine the physical parameters of stars,
some kind of physical calibration is ultimately necessary. With automated methods it
is now completely feasible to redetermine physical parameters directly from the original

data every time a new physical model is introduced, even for large surveys. I see no
problem with this approach: on the contrary, we should always be prepared to improve
our knowledge of objects as our physical understanding grows, rather being restrained
by a static classification system. After all, there can be no better standard system than
the underlying physics!

The performance of automated classification models is invariably assessed from some
error measure based on the residuals (the differences between the model classifications
and the “true” classifications), using some evaluation data set. (The ability of the model
to generalize what it has learned cannot be assessed using the training data.) A number
of different error measures are used in the literature, so results cannot always be easily
compared. The RMS value of the residuals, σRMS , is widely used. However, it is a
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conservative measure in that it is dominated by the outliers, and not necessarily repre-
sentative of the majority of the residuals. The mean absolute value of the residuals, ǫ,
is more robust: because it uses only the first power of the residuals, it is usually smaller
than σRMS . For a Gaussian distribution, 1σ = 1.25ǫ. Another error measure which gives
a more appropriate representation of the distribution is σ68, the value of the residuals
which contains the central 68% of the residuals. It is motivated by the fact that it is
equal to the standard deviation (σ) of a Gaussian distribution (which in turn is equal
to the RMS for Gaussian distributed data). All of these errors are, of course, just a
summary of the results for all classes, and obscure any variation of the error with class.
For example, log g is typically harder to determine for cool stars than for hot stars.

Note that authors rarely state the SNR they have used, although it is invariably
high (>100). Only a few articles have analysed how performance varies with SNR. This
is an important assessment for magnitude limited surveys, because these will have the
majority of their objects at the lowest SNR.

5.1. MK classification

PCA received early attention as a component of an automated classifier. Whitney (1983)
used PCA to reduce the 47 spectral bins of 53 A and F stars measured over 3500–4000Å
to just the three most significant principal components. A nonlinear fit to these enabled
him to determine spectral types to within 1.6 SpT (RMS error). This was no worse than
a fit using all 47 principal components, indicating how much redundant information was
present in these spectra. In comparing this to other data compressions with PCA, one
should realise that A and F stars over this relatively narrow spectral range will show
much less variation than, say, O–M stars over a wider spectral range, so fewer PCs will
be required for a good reconstruction in the former case.

Weaver & Torres-Dodgen (1997) used a neural network to classify spectra simultane-
ously in terms of spectral type and luminosity class, for a range of spectral types (O–M)
and luminosity classes (I–V). This was based on high SNR 15Å resolution spectra in
the range 5800–8900Å which the authors had previously used for A star classification
(Torres-Dodgen & Weaver 1995). They used a hierarchical system of networks: A single
network first does coarse spectral type classification. Depending on the outcome, the
spectrum is then passed to one of several more specialist networks, each of which only
knows about (i.e. was trained on) a subset of classes, e.g. just A stars or just F stars.
With such a system, the mean absolute errors, ǫ, were 0.56 SpT and 0.27 LCs (varying
with spectral type between 0.4 and 0.8 SpT, and 0.2 and 0.4 LC). This compares to
1.26 SpT and 0.38 LC for the coarse classifier alone, so is quite a significant increase in
accuracy for spectral type. It occurs because each specialist network is faced with a sim-
pler problem than the coarse network. It would be interesting to test whether a single,
more complex, network could achieve a performance similar to a hierarchical approach.
Note that the system is only hierarchical in spectral type, presumably explaining why
the luminosity class accuracy improved less. Making the structure hierarchical in all
parameters would involve a lot of networks, each of which could only be trained on a
fraction of the training data. As training data is always limited, there is a limit to how
specialized the network structure can be, because each network requires sufficient data to
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ensure that the network weights are not underdetermined (see Bailer-Jones et al., these
proceedings).

Bailer-Jones, Irwin & von Hippel (1998a) used a neural network to classify O–M
spectra of luminosity classes III, IV and V, using 3Å resolution spectra in the range
3500–5200Å. Over 5000 spectra were used, half for training and half for testing. They
used PCA to compress these 820 dimension spectra down to 25 network inputs, and
demonstrated that this compression removed noise. The spectral type and luminosity
class problems were solved separately. A committee of ten 25:5:5:1 networks for the
spectral type problem was used. (A committee is a system in which several identical
networks are trained from different initial random weights, and the classification results
are averaged.) The mean classification error was σ68 = 0.82 SpT (ranging between 0.3
and 1.0 depending on spectral type) and σRMS= 1.09 SpT.

For the luminosity class problem Bailer-Jones et al. (1998a) used a committee of ten
25:5:5:3 networks in probabilistic mode, in which each output represents the probability
that the spectrum is a member of each class. This achieved correct classifications for
93% of class III stars (giants) and 98% for class V (dwarfs). Results for class IV were
poor (only about 10% correct) which is worse than a random classifier! In this case,
the network is conveying the useful information that class IV is not distinct (at least in
these spectra), which is not implausible. Equally good results were obtained on both the
luminosity class and spectral type problems using only the line information (using the
continuum removal method of Bailer-Jones, von Hippel & Irwin 1998b). Interestingly,
very similar performance was also obtained for both the spectral type and luminosity
class problems when using the entire spectrum, indicating that the PCA compression by
a factor of 33 led to no loss of classification information (Bailer-Jones 1996). MDM was
also applied to the complete spectra for the spectral type problem, with templates formed
from the average of many training examples. Although the results were poorer (σRMS=
2.03 SpT), only χ2 weighting was used, and class interpolation was not (introducing a
discretization error of up to 0.5 SpT), so a direct comparison is not fair (Bailer-Jones
1996).

Singh, Gulati & Gupta (1998) used neural networks with PCA compression to deter-
mine spectral types of O–M stars from 11Å resolution spectra in the range 3500–6800Å. A
number of networks with different numbers of hidden nodes and PCA inputs were tested.
The best was given by a 20:64:64:55 network used in probabilistic mode, trained on 55 li-
brary spectra, and produced a classification error on 158 test spectra of σRMS= 2.2 SpT.
The article by Singh et al. (these proceedings) shows details of the PCA compression of
these data, and compares it with the data from Bailer-Jones et al. (1998a).

Christlieb et al. (1998) used GPM to classify A5–K0 stars into one of eight classes.
The feature vector was a set of 10 line strengths measured from optical spectra from the
Hamburg/ESO objective prism survey. The model was trained using the EM (expectation
maximization) algorithm on 671 spectra and tested on the same data using the leave-
one-out-method (i.e. 670 separate models are trained on each combination of 670 spectra,
and the performance evaluated on the one left out). The overall misclassification rate
was 28%, but only 1% of objects were incorrectly classified by more than one class.

The above examples concern classification in visual blue and red spectra, but work
has also shown that MK classification is possible in the ultraviolet. Vieira & Pons (1995)
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used extinction-corrected IUE spectra (1150–3200Å) at 2Å sampling in a neural network
classifier, and could achieve an RMS accuracy of 1.1 SpT for spectral types O3 to G5.
Almost identical results were obtained with an unweighted MDM classifier.

5.2. Physical parametrization

Vansevicius & Bridzius (1994) used MDM with χ2 weighting to determine spectral type
and absolute magnitude, MV , from six colour indices defined from Vilnius photometry.
RMS accuracies of 0.7 SpT and 0.8 mag respectively for O5–M5 stars with −9 < MV <

+12 were obtained. They further attempted to determine colour excess [(B−V)−(B−V)0]
from the value of the reduced χ2 (evaluated from Dc in equation 1), based on the belief
that this should equal 1.0 for no reddening. While an intriguing idea, this assumption
appears to ignore the existence of intraclass variation.

Bailer-Jones et al. (1997) used a neural network to physically calibrate spectra in
terms of effective temperature, Teff . They calculated a grid of synthetic spectra for a
range of effective temperatures and surface gravities, and processed them to have the
same properties (wavelength sampling and flux scale) as the observed spectra (those
used in Bailer-Jones et al. 1998a). An 820:5:5:1 neural network was trained on these
synthetic spectra, so that when the real spectra were applied, effective temperatures were
determined directly. As these real spectra had known spectral types, it was also possible
to derive an accurate Teff–SpT calibration for giants, subgiants and dwarfs. They further
showed that the calibration was metallicity dependent, indicating [M/H] = −0.2 for the
sample. Gulati, Gupta & Rao (1997) independently used the same approach to calibrate
G and K dwarf stars from 4850–5380Å spectra at a resolution of 2.4Å. Their spectra
had already been assigned Teff by other means, and they showed that the network could
reproduce these to ±250 K. This is an upper limit, set by the sampling of Teff in the
synthetic spectral grid. An MDM method with no weighting was similarly grid limited.

Katz et al. (1998) used MDM with χ2 weighting to determine Teff , log g and [Fe/H]
of high resolution (0.1Å) echelle spectra over the range 3900–6800Å. The templates were
synthetic spectra calculated with temperatures between 4000 K and 6300 K, log g between
0.6 and 4.7 dex and metallicities between −2.9 and +0.35 dex. With a SNR of 100, the
RMS errors were log Teff= 0.008, log g = 0.28, and [Fe/H] = 0.16. If the SNR was
degraded to 10, the errors were no worse (log Teff = 0.009, log g = 0.29, and [Fe/H] =
0.17). (For reference, an error of σ in log co-ordinates is a fractional error of 2.3σ% in
linear co-ordinates.)

Bailer-Jones (2000) used a neural network approach to determine all three principal
stellar parameters over a wide parameter range (Teff = 4000–30000 K, log g = 2.0–5.0,
[M/H] = −3.0 to +1.0) working only with synthetic spectra (3000–10000Å). The 3000
synthetic spectra were randomly split into two sets, the network trained on one and its
performance tested on the other. The goal was to investigate the effect of SNR and
resolution on the ability to determine the parameters. The surprising result was that
even at low resolution (FWHM of 50–100Å) and SNR (5–10 per resolution element), Teff

and [M/H] could be determined to 1% and 0.2 dex respectively, and log g to 0.2 dex for
stars earlier than solar (mean absolute errors), using a 35:5:10:3 network. The spectra
retained absolute flux information, because the simulations were done for the GAIA
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parallax mission. This certainly helps the Teff determination (as L = 4πR2σTeff
4), but

the network still has to disentangle the influences of the three parameters on the spectra.
The work also tested a number of proposed GAIA filter systems.

Again in the context of simulating performance for a parallax mission (this time
DIVA), Elsner et al. (1999) used an unweighted MDM method to determine Teff and
log g from low resolution synthetic spectra (varying from 160–380Å FWHM over the
range 3130–9990Å). Simulating objects at V = 12, they obtained RMS errors of 0.5 dex
in log g and 10% in Teff for hot stars, and 0.15 dex and 5% respectively for cool stars.
With the assumed design for DIVA, this precision (or better) would apply to about 2.5
million stars.

Snider et al. (2001) applied neural networks to the physical parametrization of 264
observed spectra with Teff< 6500 K. These were observed at 2Å resolution over the range
3630–4890Å. The data were initially calibrated by physical methods, and a subset used
for training a network with 1952:5:3 architecture. The RMS errors were 3% in Teff , 0.27
dex in log g and 0.22 dex in [M/H]. These results are comparable to those obtained by
Katz et al., but using a smaller wavelength coverage and much lower resolution.

Allende Prieto & Lambert (2000) have developed a method for estimating masses
and ages from Hipparcos data using evolutionary models. The Hipparcos parallax, fluxes
and B−V colour enable a determination of the effective temperature and radius of the
star (once a suitable bolometric correction is applied). The position of the star in the
theoretical HR diagram is then compared to theoretical evolutionary tracks for objects
of different masses. By averaging over all possible tracks which lie within the error box
of the object, an estimate of the mass and age (with uncertainties) is obtained. The
method was tested against objects with known parameters from eclipsing spectroscopic
binaries, with RMS errors of 12% in mass, 6% in radius and 4% in Teff . A better mass
determination (8% error) is possible if the metallicity of the objects is known (assumed
near-solar in this case). When combined, these errors correspond to an error in log g of
about 0.06 dex. This is considerably lower than that obtained by other methods, and
indicates that evolutionary models could be useful in constraining the possible surface
gravities. However, it should be pointed out that the log g of the sample only varied
between 3.7 and 4.5 dex.

5.3. Other issues

Interstellar extinction (reddening) will affect any deep survey, and it is important to
ensure that it does not bias determinations of stellar parameters. One approach to
circumvent this is to determine the degree of extinction from the spectra, with the aim
of correcting for it. Gulati, Gupta & Singh (1997) attempted such a determination with
both a neural network and χ2 weighted MDM, using the interstellar absorption feature
at 2200Å. From 6Å resolution spectra they were able to determine E(B−V) to within
0.08 magnitudes (RMS error) over the range 0.05–0.95 magnitudes. At least some of this
error is the discretization error in the template/training spectra, which had E(B−V) in
steps of 0.05 magnitudes.

Another important issue related to classification is the fact that many stellar systems
are binaries, and – as most will not be resolvable – will have composite spectra. Whenever
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the brightness ratio is not extreme, it is in principle possible to determine the parameters
of both components. Weaver (2000) has attempted to do this with a neural network which
has two sets of outputs, one for each component. The network had an additional output
for determining the brightness ratio. Composite spectra were artificially constructed by
combining the spectra of Weaver & Torres-Dodgen (1997). Mean absolute classification
errors for both components of 2.5 SpT and 0.45 LC could be obtained, although this
average masks a large dependence on brightness ratio. As the brightness ratio increased
from 1 to 20, the errors varied from about 1.7 to 7 SpT, and 0.2 to 1.0 LC. Some
improvement was obtained with a hierarchical system (i.e. using networks specialized in
classifying, say, only A–F, or G–K binaries). The network included recurrent feedbacks
from the output layer to the input, with the justification that this improved the results,
but it was not clear why this should be the case. Note that the network assumed all
spectra to be binaries, so assigns two classes to all spectra, even if it is not composite.
Clearly, with this approach, some kind of preprocessor is necessary to determine which
spectra really are binary.

6. Summary of the current status of automated classification

I will now summarise where we are in terms of our ability to classify stars automatically
in line with the goal given in section 2.

1. All three physical parameters (Teff , log g, [M/H]) can be determined to reasonable
accuracy from spectra in an automated fashion.

2. We need neither high resolution spectra nor high signal-to-noise data. A resolution
of around 100Å FWHM and SNR of about 10 per resolution element appear to be
sufficient, although a relatively large wavelength coverage (several thousand Å) may
then be necessary. Such a wide coverage may well be desirable for many surveys anyway,
and presents no particular technical problem if obtained photometrically.

3. Relatively simple classification models are sufficient, for example neural networks with
one or two hidden layers each with 5–10 hidden nodes or MDM with simple weighting
schemes.

4. For a wide range of stars (O–M, I–V), spectral types can be determined to 0.3–0.8
SpT and luminosity classes to 0.2–0.4 LC (or 95% correct classification rate).

5. Physical parameters can be determined directly from spectra by training neural net-
works on synthetic spectra (for example). Teff and [M/H] can be obtained with relative
ease to 1% and 0.2 dex respectively across a wide parameter range. log g can be deter-
mined to about 0.2 dex for early type stars, but only 0.5 dex for later-type stars.

6. Parallax information is very useful, as it enables a determination of absolute luminosity
and hence radius. Thus it is particularly important that powerful automated stellar
classification systems are developed for parallax missions such as DIVA, FAME and
GAIA.

7. We can make some attempt to estimate the fundamental parameters of age and mass
through the combination of evolutionary models and classification models.

8. Some object identification (discrimination of stars from other objects), binary classi-
fication and interstellar extinction determination is possible.
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7. Future requirements

I hope to have shown that many of the constituents of a survey classification system have
been demonstrated. However, much work remains to be done to develop and implement
a complete system, and I finish this review by highlighting what further developments
are required.

To date, all applications have used “cleaned” data sets of preselected objects. This
will not be the case for a blind survey, and a robust system for identifying which objects
are stellar is essential. Methods which have been demonstrated include neural networks
for star–galaxy separation based on image data (e.g. Odewahn et al. 1993) and the
recognition of non-stellar objects from the projection of spectra onto stellar principal
components (Bailer-Jones et al. 1998a).

Stellar spectra show much more variation than is represented by the three parameters
Teff , log g and [M/H]. Thus classifiers need an extended parameter space to include
factors such as microturbulence and the α abundance ratios. Similarly, different phases
of evolution, such as pre-main-sequence stars and white dwarfs, as well as peculiar stars
and pulsating stars, need to be catered for, as do extensions to ultra cool objects (L and T
dwarfs). Developments in stellar structure and atmospheric models are required to model
real spectra better, for example to take account of non-LTE effects, chromospheres and
the formation of dust at low temperatures. Many such developments are in progress or
could already be incorporated.

Large data sets will inevitably have missing data, and classifiers must be able to cope
with this in a robust way. Some theoretical discussion was given in section 4, but there has
been little empirical evaluation of this problem. Additionally, the classification system
should be able to assess its own uncertainties when making classifications (whether inputs
are complete or not), and not just rely on global statistical estimates from test data. For
example, with a neural network, uncertainties will generally be higher where the training
data are sparse, and methods exist for quantifying these (e.g. MacKay 1995). Local error
measures appear to be easily obtainable in both the MDM and GPM methods.

Finally, I mention the need for the automated classification system to be designed in
parallel with the survey. Just as the classification system must be able to cope with what
can be measured, and not make unrealistic demands, the survey must provide the data
which are required by the classification system for producing reliable classifications. The
products of large surveys will be of a more statistical nature than has previously been
the case, so greater interplay between classifier and survey development is essential.

This review has focused on just four methods, yet they are essentially the only meth-
ods which have been used in automated stellar classification. Each method has its own
advantages and disadvantages, and it is not my intention to point to a “winner”, particu-
larly as GPM has not seen much application to stellar classification, further optimization
is desirable with MDM, and entirely distinct methods exist which have not even be
tested. Indeed, the exploration of fully alternative approaches is of much interest. But
generally speaking, for multidimensional problems, it appears that some kind of interpo-
lation method is appropriate, rather than a look-up table type approach. Also, as both
the variety of spectra encountered and the number of parameters we wish to determine
increase, a limited hierarchical approach may be useful.
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