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Outline

• Extinction estimation in Gaia DPAC (CU8)

‣ star-by-star with GSP-Phot package (3 methods)

‣ mean total extinction over a field with TGE package

• 3D extinction with Gaia data

‣ idea of joint inference
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(but not only...!)



• Purpose:  Estimate the intrinsic stellar parameters (Teff, logg, [Fe/
H], [α/Fe]) and line-of-sight extinction parameters (A0, R0) for 
individual stars (“Astrophysical Parameters” = APs)

• Extinction law

• Uses primarily the BP/RP spectra from Gaia

• Three algorithms

‣ Support Vector Machine (inverse mapping)

‣ ILIUM (iterative local method using forward modelling)

‣ q-method (Bayesian method), can also use the parallax

• All fit (“trained”) using synthetic/semi-empirical libraries

Generalized Stellar Parametrizer (GSP-Phot)

2 C.A.L. Bailer-Jones

count self-consistently. The basic idea is to estimate P (A, T |p, q),

the posterior probability density function (PDF) over the two pa-

rameters given two pieces of information, the normalized SED,

p, and the quantity q = m + 5 log �. This normalized SED de-

scribes just the shape of the SED, ignoring the overall flux level.

It is used in a conventional, multivariate, forward modelling ap-

proach to compare the data with a set of labelled templates in order

to obtain P (p|A, T ), the likelihood over A, T . The quantity q con-

strains the sum M+A (equation 1). Used alone it can do little other

than place plausible, but not very useful, limits on extreme values

of A and M . I therefore explicitly incorporate the knowledge em-

bodied in the Hertzsprung–Russell Diagram (HRD), the distribu-

tion of stars in the (M, T ) plane. The physics of stellar structure

forbids stars from occupying large areas of this plane, and the na-

ture of stars’ structure and changing rates of evolution mean that

the remaining parts are far from being uniformly populated. This

well-established information should not be ignored when inferring

astrophysical parameters (APs). The method makes uses of this in-

formation in a consistent and quantitative probabilistic framework.

In section 2 I describe the method in detail and derive the basic

equations. I demonstrate it in section 3 by using it to estimate pa-

rameters for a set of 5280 stars covering a range of A and T using

BV JHK photometry and parallax. These data are based on 880

Hipparcos stars (ESA 1997) for which effective temperatures were

estimated by Valenti & Fischer (2005) from echelle spectra. I artifi-

cially redden the data in order to introduce extinction variance. As

the “true” parameters of these data are known, it can be shown that

the method improves the parameter estimation accuracy compared

to using just the four colours. I then apply this method in section 4

to “blindly” estimate A and T for 85 000 Hipparcos stars.

The motivation for this work is to make best use of the parallax

in order to improve the estimation of stellar astrophysical parame-

ters. In principle one could add q as another input alongside p to a

pattern recognition algorithm such as a neural network or a support

vector machine. But such tools fail to recognize the astrophysical

significance of this extra input, and unpublished tests by the Gaia

group at MPIA show that this approach indeed does not work.

The present paper is not the first to combine astrometric and

SED data for stellar parameter estimation in a probabilistic manner.

But it is, to the author’s knowledge, the first to introduce extinction

as a free parameter and to include the HRD in the estimation pro-

cess. Many authors first derive T and then use the parallax to derive

M assuming zero extinction. Alternatively T is derived assuming a

value for extinction, a prerequisite for many methods. For example,

Takeda et al. (2007) use the inferred stellar parameters (T , log g,

and [Fe/H]) from Valenti & Fischer (2005) to predict the parallax,

and then use this in a likelihood model together with evolution-

ary tracks to infer luminosity, mass and age. This approach does

not use the HRD prior nor does it solve for extinction (although

assuming zero extinction is probably a valid assumption for these

very nearby stars). Pont & Eyer (2004) and Joergensen & Linde-

gren (2005) develop Bayesian methods for estimating stellar ages,

but they both assume that T is already known and that A is either

known or zero. However, this overlooks the fact that in most large

surveys T must be estimated from multiband photometry or low

resolution spectroscopy, and that it is degenerate with A (which

is rarely known independently). Estimating both T and A is non-

trivial so they should not be considered as “input data” for an infer-

ence. Rather they should be part of that inference in order that their

uncertainties and degeneracies be correctly propagated.

Using the Bayesian framework we can also turn the problem

around in order to estimate, for example, stellar distances given

Table 1. Notation

V apparent magnitude in the V band (mag)

MV absolute magnitude in the V band (mag)

AV extinction in the V band (mag)

A0 extinction parameter (mag)

R0 selective extinction parameter

T stellar effective temperature (K)

Z stellar metallicity (fraction)

� parallax (arcsec)

q ≡ V + 5 log � (mag)

p normalized spectral energy distribution with elements {pi}
φ set of stellar astrophysical parameters (APs)

P probability density

log base 10 logarithm

some measured properties of the stars. Burnett & Binney (2010)

recently outlined a method for obtaining “spectroscopic parallaxes”

in this way.

2 THEORY

2.1 Problem statement

We would like to determine the probability density function over

the stellar parameters, φ, given measurements of the spectral en-

ergy distribution, apparent magnitude and parallax. I will restrict

the problem to φ = (A0, T ), i.e. to determining P (A0, T |p, q),

although a generalization is straight forward (see section 5). Before

deriving an expression for this in section 2.7, I must first intro-

duce and explain a few concepts. The method involves calculating

likelihoods based on forward modelling of the SED (sections 2.3

and 2.4) for which we need a template grid which shows variance

in effective temperature and extinction. The parallax and apparent

magnitude are then introduced using the q constraint and the HRD

prior (sections 2.5 and 2.6). Table 1 summarizes the main notation

I use.

2.2 Interstellar extinction

In order to construct a grid showing a range of interstellar extinc-

tion, we need to adopt an extinction law. I adopt the widely-used

form from Cardelli et al. (1989). This gives the monochromatic ex-

tinction in a narrow band at wavelength λ in terms of two extinction

parameters A0 and R0 as

Aλ = A0[aλ + bλ/R0] , (2)

where aλ and bλ are fixed polynomials. A0 is frequently written as

AV in this equation, but this is confusing because A0 is not the ex-
tinction in the V band. The extinction in the V filter (or indeed, any

filter) with pass band function hλ is a consequence of integration

over the stellar spectral energy distribution, Fλ, i.e.

AV = −2.5 log

 R
Fλhλ10−0.4AλdλR

Fλhλdλ

!
. (3)

Thus AV depends on the spectral energy distribution of the specific

star observed, and hence on its intrinsic parameters (in particular

effective temperature). Two stars with different T will generally

have different AV for the same A0. A0, in contrast, is a property

of the interstellar medium only and so is a better parameter with

which to characterize the interstellar extinction.

As the q constraint depends fundamentally on AV rather than
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Gaia BP/RP spectrophotmetry
of synthetic stellar spectra

Teff and [Fe/H] variation
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Support  Vector Machine

• Off-the-shelf machine learning method

• Learns an explicit mapping between spectrum and APs

• Some results for a synthetic library with Teff=3000 to 10 000K, 
A0 ≤10 mag, wide range of logg and [Fe/H] (end-of-mission):6 Chao Liu and Coryn A. L. Bailer-Jones

Table 1 SVR results. The performance is measured by the absolute residuals.
AP residual G mag All stars A stars F stars G stars K stars

< |Te f f (true)−Te f f (est)|>(K) <16.5 71 111 65 53 117
< |A0(true)−A0(est)| >(mag) <16.5 0.05 0.05 0.03 0.04 0.13

< |FeH(true)−FeH(est)| >(dex) <16.5 0.33 0.65 0.35 0.23 0.32
< |LogG(true)−LogG(est)| >(dex) <16.5 0.39 0.23 0.27 0.43 0.90
< |Te f f (true)−Te f f (est)|>(K) >16.5 265 426 226 226 392
< |A0(true)−A0(est)| >(mag) >16.5 0.14 0.16 0.11 0.14 0.30

< |FeH(true)−FeH(est)| >(dex) >16.5 0.51 0.71 0.51 0.41 0.58
< |LogG(true)−LogG(est)| >(dex) >16.5 0.47 0.35 0.33 0.51 1.02

Table 2 ILIUM results. The performance is measured by the absolute residuals.
AP residual G mag All stars A stars F stars G stars K stars

< |Te f f (true)−Te f f (est)|>(K) <16.5 363 483 419 279 291
< |A0(true)−A0(est)| >(mag) <16.5 0.25 0.18 0.29 0.21 0.24

< |FeH(true)−FeH(est)| > (dex) <16.5 0.35 0.78 0.29 0.32 0.29
< |LogG(true)−LogG(est)| > (dex) <16.5 0.61 0.49 0.59 0.62 0.77
< |Te f f (true)−Te f f (est)|>(K) >16.5 753 971 803 640 706
< |A0(true)−A0(est)| >(mag) >16.5 0.47 0.41 0.48 0.45 0.55

< |FeH(true)−FeH(est)| >(dex) >16.5 0.75 1.24 0.68 0.70 0.74
< |LogG(true)−LogG(est)| >(dex) >16.5 1.45 0.99 1.40 1.65 1.51

mates is summarized in different spectral type of stars, namely, A stars (Te f f =
7500− 10000K), F stars (Te f f = 6000− 7500K), G stars (Te f f = 5250− 6000K)
and K stars (Te f f = 3750− 5250K).
The estimates error in these tables show that SVR achieves about 100K accuracy

for Teff for brighter stars than G=16.5mag. Moreover, SVR estimates A0 in a very
high accuracy. For bright sample the error is below 0.1mag except for K stars. Even
for the faint sample it is around 0.15mag except for K stars. This is better than the
result of ILIUM by a factor of 3–5.
On the other hand, the difference the performance on weak APs between the two

algorithms is small. Indeed, for F, G and K stars, for which it is intrinsically easier
to estimate [Fe/H], the two algorithms perform very similay. Figure 4 shows the
distribution of the [Fe/H] for SVR, where we see that there is a systematic bias in
the SVR estimates. This systematic bias changes with Teff. For the stars hotter than
6000K the SVR tends to underestimate the [Fe/H]. No systematic bias is found in
the estimates of ILIUM.
Another test to assess the performance of the weak APs estimations is to look

at the metallicity distribution and the logg distribution. From figure 5 we find that
ILIUM can reconstruct the both the MDF and logg distribution well, while SVR
result show a strong systematic bias and cannot reconstruct the two distributions.
The third test is to test the completeness and contamination of the certain spectral

type of stars selected from estimated temperature. The completeness defines what
fraction of stars belonging to a spectral type are selected. The contamination defines
how many stars in the selected sample do not belong to the spectral type. Table
3 shows the results. For bright samples, the completeness reaches more than 90%



Forward modelling

1
2

3
4

5
6

7

5

10

15

20

0.2

0.3

0.4

0.5

0.6

0.7

0.8

weak AP, l
strong AP, k

flux

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

• For each band (pixel) i, fit a smooth forward model for flux: 
pi = fi(ϕ)  where ϕ = (ϕ1, ϕ2, ϕ3, ...., ϕj) are the APs

• gradients are the “sensitivities”:  sij = ∂pi/∂ϕj

Flux variation in 
one band (pixel) 
as a function of 
the APs



• ILIUM uses the forward model to search locally for the solution 
(best fitting APs) using a Newton-Raphson iterative method

‣ a band’s contribution is weighed by its sensitivity to each AP

‣ gives uncertainty estimates: covariance matrix for the estimated APs

• see Bailer-Jones 2010 (MNRAS 403, 96) for full details plus more 
results (but more optimization required for Gaia...)

ILIUM

Parameter estimation with ILIUM 3

Table 1. Notation

I number of bands (pixels in spectrum)

i counter over band, i = 1 . . . I
pi photon counts in band i (p is a spectrum)

J number of APs (astrophysical parameters)

j counter over AP, j = 1 . . . J
φj AP j (φ is a set of APs)

sij sensitivity of band i to AP j,
∂pi
∂φj

S sensitivity matrix, I × J matrix with elements sij

fi(φ) forward model for band i
n iteration; e.g. φ(n) is the AP at iteration n
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Figure 1. Sketch of the search method for one band (I=1) and one AP

(J=1). The dashed blue curve is the (unknown) generative model, and the

solid blue curve is the forward model (our approximation to the generative

model) formed by fitting a function to the templates. (The difference be-

tween the two is exaggerated.) The straight red line shows the local linear

approximation of the forward model (tangent at φ1) used to calculate the

first AP step. (In the case show the forward model could be inverted. But

this is not generally the case, not even in one dimension if it has a turning

point.)

spectrum for a given set of APs and thus encapsulates the underly-

ing stellar model, radiative transfer, interstellar extinction, instru-

ment model etc. (There is a separate function for each band, but for

simplicity I will refer to it in the singular.) Generally we don’t have

an explicit function for this model, so it remains unknown. All we

have for doing AP estimation is a discrete template grid of exam-

ple spectra with known APs generated by the generative model. We

approximate the generative model using a forward model, fi(φ),

which is a (nonlinear) parametrized fit to this grid and provides

flux estimates at arbitrary APs, i.e. off the grid. (Forward models

can be fit independently for each band.) Demanding the forward

models to be continuous functions ensures we can also use them to

calculate the sensitivities, which by definition are the gradients of

the flux with respect to each AP. The forward model fitting is done

just once for a given grid and is kept fixed when predicting APs. In

other words it is a training procedure.

2.2 Core algorithm

The basic idea of ILIUM is to use the Newton-Raphson method to

find that forward model-predicted spectrum (and associated APs)

which best fits the oberved spectrum.

In detail, the algorithm is as follows (Fig. 1). Consider first a

single AP and single band. The measurement is p(0) and we want

to estimate its AP. The forward model, p̂ = f(φ), has been fit

and remains fixed. The procedure is as follows (n is the iteration

number)

(i) Initialize: find nearest grid neighbour to p(0), i.e. the one

which minimizes the sum-of-squares residual δpT δp. Call this

[p(1), φ(1)]. φ(1) is the initial AP estimate.

(ii) Use the forward model to calculate the local sensitivities,
∂p
∂φ , at the current AP estimate.

(iii) Calculate the discrepancy (residual) between the predicted

flux and the measured flux, δp(n) = p(n)− p(0).

(iv) Estimate the AP offset as δφ(n) =
“

∂φ
∂p

”

φ(n)
× δp(n),

i.e. a Taylor expansion truncated to the linear term. (Note that this

partial derivative is the reciprocal sensitivity.)

(v) Make a step in AP space, φ(n+1) = φ(n)−δφ(n), toward
the better estimate. This is the new AP prediction.

(vi) Use the forward model to predict the corresponding (off-

grid) flux, p(n + 1)
(vii) Iterate steps ii–vi until convergence is achieved or a stop is

imposed.

The algorithm is basically minimizing |δp|. At each iteration we

obtain an estimate of the APs (step v) and the corresponding spec-

trum (step vi). Convergence could be defined in several ways, e.g.

when changes in the spectrum or the APs (or their rate of change)

drop below some threshold. Alternatively we could simply stop af-

ter some fixed number of iterations. There is no guarantee of con-

vergence. For example, if the AP steps were sufficiently large to

move to a part of the function with a sensitivity of the opposite

sign, then the model could diverge or get stuck in a limit cycle.

Likewise, if initialized too far from the true solution the algorithm

could become stuck in a local minimum far from the true solution.

For this, and other reasons, the algorithm in practice has some ad-

ditional features (discussed in section 2.5). Also,

2.3 Generalization to multiple APs and bands

In general we have several bands and several APs. The flux pertur-

bation due to small changes in the APs is then

δp = S δφ (1)

where S is the I × J sensitivity matrix with elements sij =
∂pi/∂φj . Note that I > J . Multiplying this equation on the left

by (ST S)−1ST
gives

δφ = (ST S)−1ST δp (2)

so the AP update equation (step v in the algorithm) becomes

φ(n + 1) = φ(n)− (ST S)−1ST δp(n) (3)

The I forward models are now functions of J variables, and this

turns out to be a critical matter.

2.4 The forward model

The core algorithm just described can make use of any form for

the forward model, on the condition that it provides values of the

function and its first derivatives for arbitrary values of the APs.

The most obvious forward model would be a multidimen-

sional, nonlinear regression of the form p̂ = f(φ), which in prin-

ciple works for any number of APs. However, I found that it was

difficult to get a model which simultaneously fits both Teff , a strong

AP, and log g, a weak AP to sufficient accuracy. Strong here means

c� 0000 RAS, MNRAS 000, 000–000 Content is c� C.A.L. Bailer-Jones
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J number of APs (astrophysical parameters)

j counter over AP, j = 1 . . . J
φj AP j (φ is a set of APs)
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solid blue curve is the forward model (our approximation to the generative

model) formed by fitting a function to the templates. (The difference be-

tween the two is exaggerated.) The straight red line shows the local linear

approximation of the forward model (tangent at φ1) used to calculate the

first AP step. (In the case show the forward model could be inverted. But

this is not generally the case, not even in one dimension if it has a turning

point.)

spectrum for a given set of APs and thus encapsulates the underly-

ing stellar model, radiative transfer, interstellar extinction, instru-

ment model etc. (There is a separate function for each band, but for

simplicity I will refer to it in the singular.) Generally we don’t have

an explicit function for this model, so it remains unknown. All we

have for doing AP estimation is a discrete template grid of exam-

ple spectra with known APs generated by the generative model. We

approximate the generative model using a forward model, fi(φ),

which is a (nonlinear) parametrized fit to this grid and provides

flux estimates at arbitrary APs, i.e. off the grid. (Forward models

can be fit independently for each band.) Demanding the forward

models to be continuous functions ensures we can also use them to

calculate the sensitivities, which by definition are the gradients of

the flux with respect to each AP. The forward model fitting is done

just once for a given grid and is kept fixed when predicting APs. In

other words it is a training procedure.

2.2 Core algorithm

The basic idea of ILIUM is to use the Newton-Raphson method to

find that forward model-predicted spectrum (and associated APs)

which best fits the oberved spectrum.

In detail, the algorithm is as follows (Fig. 1). Consider first a

single AP and single band. The measurement is p(0) and we want

to estimate its AP. The forward model, p̂ = f(φ), has been fit

and remains fixed. The procedure is as follows (n is the iteration

number)

(i) Initialize: find nearest grid neighbour to p(0), i.e. the one

which minimizes the sum-of-squares residual δpT δp. Call this

[p(1), φ(1)]. φ(1) is the initial AP estimate.

(ii) Use the forward model to calculate the local sensitivities,
∂p
∂φ , at the current AP estimate.

(iii) Calculate the discrepancy (residual) between the predicted

flux and the measured flux, δp(n) = p(n)− p(0).

(iv) Estimate the AP offset as δφ(n) =
“

∂φ
∂p

”

φ(n)
× δp(n),

i.e. a Taylor expansion truncated to the linear term. (Note that this

partial derivative is the reciprocal sensitivity.)

(v) Make a step in AP space, φ(n+1) = φ(n)−δφ(n), toward
the better estimate. This is the new AP prediction.

(vi) Use the forward model to predict the corresponding (off-

grid) flux, p(n + 1)
(vii) Iterate steps ii–vi until convergence is achieved or a stop is

imposed.

The algorithm is basically minimizing |δp|. At each iteration we

obtain an estimate of the APs (step v) and the corresponding spec-

trum (step vi). Convergence could be defined in several ways, e.g.

when changes in the spectrum or the APs (or their rate of change)

drop below some threshold. Alternatively we could simply stop af-

ter some fixed number of iterations. There is no guarantee of con-

vergence. For example, if the AP steps were sufficiently large to

move to a part of the function with a sensitivity of the opposite

sign, then the model could diverge or get stuck in a limit cycle.

Likewise, if initialized too far from the true solution the algorithm

could become stuck in a local minimum far from the true solution.

For this, and other reasons, the algorithm in practice has some ad-

ditional features (discussed in section 2.5). Also,

2.3 Generalization to multiple APs and bands

In general we have several bands and several APs. The flux pertur-

bation due to small changes in the APs is then

δp = S δφ (1)

where S is the I × J sensitivity matrix with elements sij =
∂pi/∂φj . Note that I > J . Multiplying this equation on the left

by (ST S)−1ST
gives

δφ = (ST S)−1ST δp (2)

so the AP update equation (step v in the algorithm) becomes

φ(n + 1) = φ(n)− (ST S)−1ST δp(n) (3)

The I forward models are now functions of J variables, and this

turns out to be a critical matter.

2.4 The forward model

The core algorithm just described can make use of any form for

the forward model, on the condition that it provides values of the

function and its first derivatives for arbitrary values of the APs.

The most obvious forward model would be a multidimen-

sional, nonlinear regression of the form p̂ = f(φ), which in prin-

ciple works for any number of APs. However, I found that it was

difficult to get a model which simultaneously fits both Teff , a strong

AP, and log g, a weak AP to sufficient accuracy. Strong here means
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c of the median of those points above (below) the median. Using the

notation θ() to denote median, the limits are

uupper = θ(ui) + c[θ(ui > θ(ui))− θ(ui)]

ulower = θ(ui) + c[θ(ui < θ(ui))− θ(ui)] (9)

I somewhat arbitrarily set c = 10 so as to be relatively conservative

in clipping.

2.5.6 Upper limit on AP update step size

The AP steps at each iteration (equation 2) could be very large.

This is undesirable, because the updates are based on a local linear
approximation to the generative model. The code therefore imposes

upper limits on the AP updates, corresponding to steps no larger

than about 2.0 dex in log g and [Fe/H], 0.04 in log(Teff ) (10% in

Teff ) and 0.3 mag in AV. A larger step size is permitted for the

weaker APs because the initial nearest neighbour offset can be quite

incorrect. These limits are imposed more often for noisy data, but

still relatively rarely.

2.5.7 Limit AP extrapolation

We do not expect the forward model to make good predictions be-

yond the AP extremes of the grid, so I set upper and lower limits

on the AP estimates which ILIUM can provide. These are set as e
times the range of each AP, i.e.

upper limit = max φj + e(max φj −min φj)

lower limit = min φj − e(max φj −min φj) (10)

I set e = 0.1.

2.5.8 Stopping criterion

The algorithm is simply run for a fixed number of iterations (20).

We often observe good natural convergence, so a more sophisti-

cated stopping criterion is not applied at this time, although it may

be important on high variance data sets (low SNR or more APs).

2.6 Performance statistics

The model performance is assessed via the AP residuals (estimated

minus true, δφ) on an evaluation data set. I report three statistics

: (1) the root-mean-square (RMS) error, which I abbreviate with

�rms; (2) the mean absolute error, |δφ|, abbreviated as �mae; (3) the

mean residual, δφ, a measure of the systematic error, abbreviated

as �sys. (Note that as (1) and (2) are statistics with respect to the

true values they also include any systematic errors.) I mostly use

�mae rather than RMS because the former is more robust. If the

residuals had a Gaussian distribution then the RMS would equal

the Gaussian 1σ which is

p
π/2 = 1.25 times larger than �mae.

But usually there are outliers which increase the RMS significantly

beyond this.

2.7 Uncertainty estimates

If vectors y and x are related by a transformation y = Ax then

a standard result of matrix algebra is that the covariance of y is

Cy = ACxAT
where Cx is the covariance of x. Applying this to

equation 2 gives us an expression for the covariance in the APs

Cφ = (ST S)−1ST CpS(ST S)−1
(11)

as a function of the sensitivity (calculated at the estimated APs)

and the covariance in the measured photometry, Cp. (This equa-

tion assumes that ILIUM provides unbiased AP estimates and that

the sensitivities have zero covariance. It can also be written Cφ =
MCpMT

where M is the update matrix introduced in equation 7.)

Cp can be estimated from a photometric error model, and will be

diagonal if the photometric errors in the bands are independent.

Even in this case Cφ is generally non-diagonal: the AP estimates

are correlated on account of the sensitivities.

Because we have a forward model we can calculate a

goodness-of-fit (GoF) for any estimate of the APs. Here I simply

use the reduced-χ2
to measure the difference between the observed

spectrum and predicted spectrum
3

GoF =
1

I − 1

i=IX

i=1

„
pi − p̂i

σpi

«2

(12)

where p̂i = fi(φj) is the forward model prediction and {σ2
pi
} =

diag(Cp) is the expected photometric noise. (Despite the name, a

larger value refers to a poorer fit!) As the GoF can be measured

without knowing the true APs, it can be used for detection of poor

solutions or outliers.

Conventional methods of AP estimation via direct inverse

modelling (e.g. with SVMs or ANNs) do not naturally provide un-

certainty estimates and must usually resort to time-intensive sam-

pling methods, such as resampling the measured spectrum accord-

ing to its estimated covariance. They cannot provide a GoF at all

because they lack a forward model.

2.8 Signal-to-noise weighted AP updates

The update equation (2) only takes into account the sensitivity of

the bands, not their SNR. However, even if a band is very sensitive

to an AP in principle, if its measurement is very noisy then it is

less useful. We could accommodate this by including a factor pro-

portional to C−1
p into equation 2 which would down-weight noisier

measurements. Preliminary results using this on the TG problem

(see section 3.2) show it actually degrades performance at G=15,

but gives some improvement at G=18.5 (Bailer-Jones 2009c).

3 ASSESSING THE ALGORITHM

3.1 Gaia simulations

To illustrate ILIUM I apply it to estimate stellar APs from simu-

lated Gaia stellar spectra and thereby also make preliminary pre-

dictions of the mission performance. Gaia will observe all of its

targets with two low-dispersion slitless prism spectrographs, to-

gether covering the wavelength range from 350–1050 nm. (These

are creatively called “BP” for blue photometer and “RP” for red

photometer.) The dispersion varies from 3 nm/pixel at the blue end

to 30 nm/pixel at the red end (Brown 2006). The blue and the red

spectra are each sampled with 60 pixels, but as the line-spread-

function of the spectrograph is much broader, these samples are

not independent. After removing low SNR regions of the modelled

spectra, I retain 34 pixels in BP covering 338–634 nm and 34 pixels

in RP covering 667–1035 nm. This is a slightly narrower range (and

18 pixels fewer) than the one adopted by Bailer-Jones et al. (2008)

for quasar classification with similar spectra.

3
I use I − 1 degrees of freedom rather than I because all the spectra have

a common G magnitude, so the bands are not all strictly independent.
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Example ILIUM performance on Teff, A0, logg
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0.013 0.072 0.29 G=15
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Mean absolute errors:

Model applied to estimate 3 APs with 
prior range (solar metallicity):

Teff:    4000 to 15 000 K
A0:          0 to 10 mag
logg:    -0.5 to 5.0 dex



• Uses photometry (e.g. BP/RP), parallax and apparent mag

• Bayesian method to infer PDF over APs given data, 

where

is a measured (noisy) quantity. M and m are absolute and 
apparent magnitude, ϖ is parallax. p is (spectro)photometry

• See Bailer-Jones 2011 (MNRAS 411, 435) for full details

• Adopt a Gaussian likelihood (noise) model for p

q-method

forward model data covariance

Bayesian stellar parameter inference 3

A0, we need to express the former in terms of the latter. This will

be done in section 3.5. It turns out that for F,G,K stars with extinc-

tions up to 3.5 mag, the difference between A0 and AV is less than

0.2 mag.

The artificial reddening will be done using using the specific

extinction curves from Fitzpatrick (1999) with R0 = 3.1.

2.3 Forward model

The forward model predicts the observed stellar spectral energy

distribution, p, given the stellar astrophysical parameters, φ. How

many astrophysical parameters we need to consider for an accu-

rate prediction depends in particular on the type of stars we want to

model and on the resolution of p. Note that p is a normalized SED,

i.e. it contains no apparent magnitude information. Here the SED is

a set of colours derived from broad band photometry, so I limit the

parameters to A0 and T , p̂ = f (A0, T ). All other APs are assumed

either to be fixed (R0) or to have negligible impact on the normal-

ized SED ([Fe/H] and log g). Although [Fe/H] has a significant and

usable effect on broad U -band photometry (e.g. Ivezić et al. 2008),

its impact on the redder bands considered here is minimal and is

neglected. log g is an even weaker parameter (Bailer-Jones 2010a)

so its variance too is neglected. The method can nonetheless be

generalized to incorporate these extra parameters as appropriate.

The forward model is calculated by a smooth fit to a set of tem-

plates using the method developed for the ILIUM algorithm (Bailer-

Jones et al. 2010a). It involves fitting a two-dimensional smoothing

spline (a thin-plate spline) as a function of AV and T for each ele-

ment of p separately.

2.4 The likelihood model

The likelihood of the spectral data given the astrophysical param-

eters is P (p|φ) = P (p|A0, T ). Assuming Gaussian errors on a

measurement of p = (p1, . . . , pi, . . . , pI) with covariance matrix

Cp, the likelihood model is an I-dimensional Gaussian

P (p|φ) ∝ e−D2/2 = exp

„
−1

2
[p − f (φ)]T C−1

p [p − f (φ)]

«
.

(4)

If the elements of p were uncorrelated then Cp = diag(σ2
pi

), where

σpi is the expected error in pi, so the exponent could be simplified

to

D2 =
i=IX

i=1

»
pi − fi(φ)

σpi

–2

. (5)

2.5 Parallax/magnitude (q) constraint

As outlined in the introduction, simple geometry and the defini-

tion of absolute magnitude and extinction places the following con-

straint on noise-free quantities

V + 5 log � = MV + AV − 5 (6)

(I assume we measure the apparent magnitude in the V band, al-

though any other band would do). The goal is to use this equation

to constrain MV and AV from noisy measurements of parallax and

magnitude. To do this we need a noise model. For brevity define

q ≡ V + 5 log � . (7)
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Figure 1. Illustration of using the parallax and apparent magnitude (q =
V +5 log �) to constrain extinction and absolute magnitude. Here we mea-

sure q = −1 (which corresponds to a V = 14 star at 1 kpc, for example,

or to a V = 19 star at 10 kpc, etc.). If this were a noise-free measurement,

it would constrain the solution (MV, AV) to lie on the solid black line.

But as q is a noisy measurement – here a Gaussian with σq = 0.4 (inset)

– all solutions have a finite probability, decreasing with distance from the

line. Specifically, any slice perpendicular to the line has the Gaussian pro-

file show in the inset panel, the red dotted lines in both plots showing the 1

and 2 sigma levels for this value of σq .

Since equation 6 only holds in the absence of noise, consider the

random variable

x = q − (MV + AV − 5) . (8)

The noise model for x is P (x|MV, AV), which has expectation

value zero and variance σ2
q , the variance in q (MV and AV are not

measured so contribute no noise). For simplicity I choose to model

this as a one-dimensional Gaussian in x, Nx(0, σq). For a given

star (fixed MV and AV), P (x|MV, AV) has its maximum when

the measurement q equals MV + AV − 5 (i.e. x = 0). The further

a measurement of q is away from this value the less probable it

is. As q is the only measured term in equation 8 it follows that

P (x|MV, AV) = P (q|MV, AV).

Now consider P (q|MV, AV) as a function of MV and AV for

a given measurement q, as shown in Fig. 1. We can think of propos-

ing trial solutions for MV and AV: the further they lie from the

solid line, the lower P (q|MV, AV) (inset in Fig. 1). How quickly

the probability drops off depends on σq . With the Gaussian approx-

imation of the noise model for q we have

P (q|MV, AV) = Nx[0, σq(V, �)] (9)

= Nx[q − (MV + AV − 5), σq(V, �)] .

This gives a probabilistic constraint on MV and AV from a mea-

surement of q, quantified by the known statistics of the noise in the

photometry and parallaxes. As noted in section 2.2, we can write

AV as a function of A0 and T , so this q constraint can be written

P (q|MV, A0, T ).

Note that this does not constrain MV or AV to have astro-
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q-method demonstration

• Infer Teff and A0 using BVJHK photometry and Hipparcos 
parallaxes for ~85 000 2MASS/Hipparcos stars

• True APs for forward model fitting (training data):

‣ Teff from Valenti & Fischer (2005) from high-res. spectroscopy

‣ artificially reddened to give A0 variance

‣ 5280 stars with Teff = 4700-6600,  A0 = 0-2.5mag



AP estimation from BVJHK colours (only)

• “true” APs shown as red cross

• contours enclose 90%, 99% and 99.9% of posterior probability

• note the significant degeneracy between Teff and A0
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Information beyond the spectrum

• Spectrum: p constrains Teff and AV

• Parallax and apparent magnitude: q constrains MV + AV

• HRD (“prior”) constrains MV and Teff
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Probabilistic inference
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physically “sensible” values (e.g. the line continues to negative AV

in Fig. 1). This may be done by the HRD prior and/or a prior on
extinction.

2.6 Hertzsprung–Russell Diagram (HRD) prior

The HRD prior, P (MV, T ), gives the relative probabilities of find-
ing stars in different parts of the HRD. The fact that this (MV, T )
plane is far from being uniformly populated is potentially useful in
constraining stellar APs: if MV were known to lie in some range
with some probability, for example, T would correspondingly be
constrained. This is pertinent information independent of the spe-
cific photometric or parallax measurement.

The form we adopt for the HRD depends on the assumed stel-
lar population and can be constructed in a number of different ways.
We could, for example, take an observed sample and normalize the
relative density of stars to give P (MV, T ). Alternatively we could
set the probability at each point to be inversely proportional to the
speed of evolution of all types of stars through that point. In this
article I will construct the HRD prior using a simulated population
of stars evolved with a specified star formation rate, initial mass
function and metallicity distribution (section 3.4 and Fig. 9).

2.7 Probabilistic combination

We are now in a position to derive an expression for P (A0, T |p, q)
in terms of quantities we have just introduced. From Bayes’ theo-
rem

P (A0, T |p, q) =
P (p, q|A0, T )P (A0, T )

P (p, q)
(10)

and from the rule of joint probabilities

P (p, q|A0, T ) = P (p|q, A0, T )P (q|A0, T ) . (11)

As p and q are independent measurements1 we can write
P (p|q, A0, T ) = P (p|A0, T ). This and equation 11 allow us to
write equation 10 as

P (A0, T |p, q) =
P (p|A0, T ) P (q|A0, T ) P (A0) P (T )

P (p, q)
(12)

where I have also assumed that A0 and T are unconditionally inde-
pendent. The terms P (A0), P (T ), P (p, q) are the inevitable priors
over these APs or measurements. The first term in the numerator is
the likelihood (section 2.4). The second term we need to further de-
compose, plus we want to introduce some dependence on MV so
that we can incorporate the HRD and the q constraint. A general
rule of probability allows us to write this term as a marginalization
over MV

P (q|A0, T ) =

Z

V

P (q|MV, A0, T ) P (MV|A0, T ) dMV . (13)

The first term in the integral is the q constraint. As A0 is indepen-
dent of MV and T , we can rewrite the second term in the integral
as

P (MV|A0, T ) = P (MV|T ) =
P (MV, T )

P (T )
. (14)

1 Here I only assume that p and q are independent when conditioned on
A0 and T , although normally we would further assume them to be uncondi-
tionally independent. This is the case when p is a normalized SED, as then
it bears no distance or apparent magnitude information.

(Another way of thinking about this is to note that given T , A0 tells
us nothing additional about MV.) P (MV, T ) is the HRD prior.

Substituting equation 14 into equation 13 and that into equa-
tion 12 gives the final result

P (A0, T |p, q) = (15)

P (p|A0, T )
| {z }

likelihood

P (A0)
P (p, q)
| {z }

priors

Z

MV

P (q|MV, A0, T )
| {z }

q constraint

P (MV, T )
| {z }

HRD prior

dMV

| {z }
HRD/q factor

where we see that P (T ) has cancelled. This equation can be seen
as a product of three terms. The first term is the likelihood func-
tion. The second term comprises priors over the extinction and the
data. Of these, P (p, q) is not relevant (for AP estimation) because
the data are already given. The third term is an integral over two
factors: the combined astrometric/photometric noise model (q con-
straint) and the HRD prior. The integral marginalizes over the un-
known MV leaving a term which is a function of A0 and T .

Given measurements of p and q we can sample the terms in
equation 15 on a grid of A0 and T in order to map the full PDF.
We can also separately marginalize over A0 and T in order to get
one-dimensional PDFs for each AP, i.e.

P (T |p, q) =

Z

A0

P (A0, T |p, q)dA0 (16)

and likewise for A0. If appropriate we may then summarize this
with the mean and a confidence interval.

If we lack information (or don’t want to use it) then some
terms in equation 15 simplify. For example, if we have no mea-
surement of q then we can set the q constraint to a constant. In that
case the integral over MV makes the HRD prior into a prior on just
T . If we don’t want to use an informative prior on the extinction
we can set P (A0) to be constant. Likewise, if we don’t want to use
the HRD prior, then this is equivalent to setting P (MV, T ) to a flat
distribution (!). In practice the q constraint is only effective if we
use it together with the HRD prior and/or the extinction prior.

Throughout the rest of this paper I will use a uniform extinc-
tion prior. As it is separable in equation 15, we can easily imagine
the effect of introducing this prior subsequently. I will show two
sets of results for P (A0, T |p, q) based on two different sets of as-
sumptions (priors). The first is a uniform HRD prior and constant
q constraint, in which case the posterior PDF is just equal to the
likelihood function (renormalized), i.e. the APs are inferred using
only the spectrum, p. I will therefore refer to this as the p-model.
This is the baseline against which I will analyse the effect of using
the HRD/q factor, using specific models for the q constraint and
HRD prior described in the next section. I will refer to this as the
pq-model.

It may be useful to recognise that when p and q are uncon-
ditionally independent (the normal case), we can interpret equa-
tion 15 as the combination of two separate estimates of the PDF
over (A0, T ) given each of p and q. We can see this when we use
Bayes’ theorem to rewrite the right hand side of equation 12 as

P (A0, T |p, q) =
P (A0, T |p)P (A0, T |q)

P (A0, T )
. (17)

The p-model is simply P (A0, T |p).
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physically “sensible” values (e.g. the line continues to negative AV

in Fig. 1). This may be done by the HRD prior and/or a prior on
extinction.

2.6 Hertzsprung–Russell Diagram (HRD) prior

The HRD prior, P (MV, T ), gives the relative probabilities of find-
ing stars in different parts of the HRD. The fact that this (MV, T )
plane is far from being uniformly populated is potentially useful in
constraining stellar APs: if MV were known to lie in some range
with some probability, for example, T would correspondingly be
constrained. This is pertinent information independent of the spe-
cific photometric or parallax measurement.

The form we adopt for the HRD depends on the assumed stel-
lar population and can be constructed in a number of different ways.
We could, for example, take an observed sample and normalize the
relative density of stars to give P (MV, T ). Alternatively we could
set the probability at each point to be inversely proportional to the
speed of evolution of all types of stars through that point. In this
article I will construct the HRD prior using a simulated population
of stars evolved with a specified star formation rate, initial mass
function and metallicity distribution (section 3.4 and Fig. 9).

2.7 Probabilistic combination

We are now in a position to derive an expression for P (A0, T |p, q)
in terms of quantities we have just introduced. From Bayes’ theo-
rem

P (A0, T |p, q) =
P (p, q|A0, T )P (A0, T )

P (p, q)
(10)

and from the rule of joint probabilities

P (p, q|A0, T ) = P (p|q, A0, T )P (q|A0, T ) . (11)

As p and q are independent measurements1 we can write
P (p|q, A0, T ) = P (p|A0, T ). This and equation 11 allow us to
write equation 10 as

P (A0, T |p, q) =
P (p|A0, T ) P (q|A0, T ) P (A0) P (T )

P (p, q)
(12)

where I have also assumed that A0 and T are unconditionally inde-
pendent. The terms P (A0), P (T ), P (p, q) are the inevitable priors
over these APs or measurements. The first term in the numerator is
the likelihood (section 2.4). The second term we need to further de-
compose, plus we want to introduce some dependence on MV so
that we can incorporate the HRD and the q constraint. A general
rule of probability allows us to write this term as a marginalization
over MV

P (q|A0, T ) =

Z

MV

P (q|MV, A0, T ) P (MV|A0, T ) dMV .

(13)

The first term in the integral is the q constraint (section 2.5). As A0

is independent of MV and T , we can rewrite the second term in the
integral as

P (MV|A0, T ) = P (MV|T ) =
P (MV, T )

P (T )
. (14)

1 Here I only assume that p and q are independent when conditioned on
A0 and T , although normally we would further assume them to be uncondi-
tionally independent. This is the case when p is a normalized SED, as then
it bears no distance or apparent magnitude information.

(Another way of thinking about this is to note that given T , A0 tells
us nothing additional about MV.) P (MV, T ) is the HRD prior.

Substituting equation 14 into equation 13 and that into equa-
tion 12 gives the final result

P (A0, T |p, q) = (15)

P (p|A0, T )
| {z }

likelihood

P (A0)
P (p, q)
| {z }
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MV

P (q|MV, A0, T )
| {z }

q constraint

P (MV, T )
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HRD prior
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where we see that P (T ) has cancelled. This equation can be seen
as a product of three terms. The first term is the likelihood func-
tion. The second term comprises priors over the extinction and the
data. Of these, P (p, q) is not relevant (for AP estimation) because
the data are already given. The third term is an integral over two
factors: the combined astrometric/photometric noise model (q con-
straint) and the HRD prior. The integral marginalizes over the un-
known MV leaving a term which is a function of A0 and T .

Given measurements of p and q we can sample the terms in
equation 15 on a grid of A0 and T in order to map the full PDF.
We can also separately marginalize over A0 and T in order to get
one-dimensional PDFs for each AP, i.e.

P (T |p, q) =

Z

A0

P (A0, T |p, q)dA0 (16)

and likewise for A0. If appropriate we may then summarize this
with the mean and a confidence interval.

If we lack information (or don’t want to use it) then some
terms in equation 15 simplify. For example, if we have no mea-
surement of q then we can set the q constraint to a constant. In that
case the integral over MV makes the HRD prior into a prior on just
T . If we don’t want to use an informative prior on the extinction
we can set P (A0) to be constant. Likewise, if we don’t want to use
the HRD prior, then this is equivalent to setting P (MV, T ) to a flat
distribution (!). In practice the q constraint is only effective if we
use it together with the HRD prior and/or the extinction prior.

Throughout the rest of this paper I will use a uniform extinc-
tion prior. As it is separable in equation 15, we can easily imagine
the effect of introducing this prior subsequently. I will show two
sets of results for P (A0, T |p, q) based on two different sets of as-
sumptions (priors). The first is a uniform HRD prior and constant
q constraint, in which case the posterior PDF is just equal to the
likelihood function (renormalized), i.e. the APs are inferred using
only the spectrum, p. I will therefore refer to this as the p-model.
This is the baseline against which I will analyse the effect of using
the HRD/q factor, using specific models for the q constraint and
HRD prior described in the next section. I will refer to this as the
pq-model.

It may be useful to recognise that when p and q are uncon-
ditionally independent (the normal case), we can interpret equa-
tion 15 as the combination of two separate estimates of the PDF
over (A0, T ) given each of p and q. We can see this when we use
Bayes’ theorem to rewrite the right hand side of equation 12 as

P (A0, T |p, q) =
P (A0, T |p)P (A0, T |q)

P (A0, T )
. (17)

The p-model is simply P (A0, T |p).
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Combine all the data probabilistically:



AP estimation from BVJHK colours
0

1
2

3
0

1
2

3
0

1
2

3

4500 5500 6500 4500 5500 6500 4500 5500 6500 4500 5500 6500 4500 5500 6500 4500 5500 6500
Effective temperature, T / K

Ex
tin

ct
io

n,
 A

0 
/ m

ag

P (φ|p)



AP estimation from BVJHK colours + q, HRD
0

1
2

3
0

1
2

3
0

1
2

3

4500 5500 6500 4500 5500 6500 4500 5500 6500 4500 5500 6500 4500 5500 6500 4500 5500 6500
Effective temperature, T / K

Ex
tin

ct
io

n,
 A

0 
/ m

ag

• Accuracy ~40% higher: Mean abs. errors 0.015dex in log(Teff) and 0.2 mag in A0

• Improved precision (contours more compact)
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Application to 85 000 Hipparcos/2MASS stars
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Application to 85 000 Hipparcos/2MASS stars7000 6000 5000

10
8

6
4

2
0

−2
−4

T (p−model) / K

M
_V

 (p
−m

od
el

) /
 m

ag

0.0

0.2

0.4

0.6

0.8

1.0

7000 6000 5000

10
8

6
4

2
0

−2
−4

T (pq−model) / K

M
_V

 (p
q−

m
od

el
) /

 m
ag

0.0

0.2

0.4

0.6

0.8

1.0

BVJHK, parallax, HRD

N
or

m
al

iz
ed

 s
te

lla
r 

de
ns

ity



Derived extinction map

h2mqcat, Mollweide equal area projection, mean A0 pq−model
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Summary of Gaia AP estimation with GSP-Phot

• There is a significant, intrinisic Teff-A0 degeneracy

• AP estimates to take advantage of parallax, apparent magnitude 
and constraints imposed by physics (i.e. HRD prior)

• Gaia catalogue will provide

‣ multiple AP estimates (i.e. from each method)

‣ posterior PDF from q-method in some cases (perhaps summarized as 
a covariance matrix where appropriate)

‣ APs estimated by other algorithms in CU8 dedicated to specific stars 
(e.g. emission line stars, very cool stars), and use of the high resolution 
RVS spectra (for brighter stars)

• DPAC TN summarizing performance (CHL-005) due soon!



Total Galactic Extinction (TGE)

• Role: estimate integrated extinction to the edge of our Galaxy in 
a field

‣ using the single star extinction estimates in that field from GSP-Phot

• Purpose: provide input extinction for estimating the APs of 
extragalactic others, especially quasars

• Objectives

‣ provide an all-sky HEALpix-based total Galactic extinction map

‣ estimate both extinction parameters, A0 and R0



Total Galactic Extinction (TGE)

Dwarfs 

Giants 

• Solid angle calculation uses the HEALpix

• Extinction tracers selected according to their estimated APs Teff and logg

• Use distant extinction tracers (selected on parallax) to estimate the Total 
Galactic Extinction for a given HEALPix

Inputs for TGE are:

Teff, A0, logg (from 
GSP-Phot) and 
parallax, for 
individual stars



Total Galactic Extinction (TGE)

• Software package in place and being tested (see HLI-005)

• Future developments

‣ additional selection criteria, including uncertainty in input APs, [Fe/H], 
variability

‣ investigate accuracy of R0 estimation per HEALpix

‣ provision of extinction map with variable resolution (HEALpix levels 
6, 7, ...)



3D extinction estimation

• GSP-Phot extinction estimates combined with l,b,ϖ allow us to 
construct a 3D extinction map

• But as it’s star-by-star, it does not respect “obvious” constraints, 
e.g.  A0 increasing with distance at fixed l,b (this is a prior)

Star A should probably have a
higher extinction than star B in 
general

A

B
Sun



Joint modelling of extinction for N stars

• Introduce mutual constraints on individual extinctions

‣ e.g. a smooth variation of A0 in 3D space

• Parametrize spatial variation of A0,  e.g.  A0 = f(l,b,ϖ ; a)

• infer P({Teff, A0, ...}, a | {p,q}) where {} represents the N stars

‣ posterior is over a very high dimensional parameter space, O(N) !

‣ marginalize to get P({A0} | {p,q})



Gaia on interstellar extinction: Summary

• Gaia catalogue will have individual star extinction estimates 
derived from BP/RP spectrum

‣ three methods, one of which also uses parallax and HRD (GSP-Phot)

‣ significant, intrinsic Teff-A0 degeneracy (reduced by using parallax/HRD)

‣ catalogue provides uncertainty estimates and posterior PDFs

‣ combined over small field to provide total extinction; used as inputs 
by quasar and galaxy AP estimation algorithms in DPAC

• Approximate A0/mag accuracy (mean abs.; end-of-mission) for 
broad (0-10) prior range

‣ 0.1 at G=15; 0.3 at G=18.5 [ILIUM]

‣ 0.05 for G<16.5; 0.15 for G=16.5 to 20 [SVM]



Work still in progress...feedback welcome!

• How appropriate is the extinction law? (Grey extinction?)

• How many extinction parameters can we estimate with Gaia?

• What are suitable priors for 3D modelling?

‣ not all extinction variation is smooth! use multi-scale?

• How should we best combine with non-Gaia data?

• Questions, suggestions and comments very welcome:

‣ Coryn Bailer-Jones, calj@mpia.de

‣ This presentation on line at www.bailer-jones.de

• Thanks to Anthony Brown for giving this talk!
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