Inferring Galactic interstellar extinction with Gaia

Coryn A.L. Bailer-Jones Max Planck Institute for Astronomy, Heidelberg

with inputs from Ron Drimmel, Jens Knude, Hans Lindstroem and Chao Liu

Leiden ISM workshop, July 2011

Outline

- Extinction estimation in Gaia DPAC (CU8)
 - star-by-star with GSP-Phot package (3 methods)
 - mean total extinction over a field with TGE package
- 3D extinction with Gaia data
 - idea of joint inference

Coryn Bailer-Jones is manager of DPAC CU8 "Astrophysical Parameters" (but not only...!)

Generalized Stellar Parametrizer (GSP-Phot)

- Purpose: Estimate the intrinsic stellar parameters (T_{eff}, logg, [Fe/ H], [α/Fe]) and line-of-sight extinction parameters (A₀, R₀) for individual stars ("Astrophysical Parameters" = APs)
- Extinction law $A_{\lambda} = A_0[a_{\lambda} + b_{\lambda}/R_0]$
- Uses primarily the BP/RP spectra from Gaia
- Three algorithms
 - Support Vector Machine (inverse mapping)
 - ILIUM (iterative local method using forward modelling)
 - q-method (Bayesian method), can also use the parallax
- All fit ("trained") using synthetic/semi-empirical libraries

Gaia BP/RP spectrophotmetry of synthetic stellar spectra

 T_{eff} and A_0 variation

 $A_0 = 0, 0.1, 0.5, 1, 2, 3, 4, 5, 8, 10$

 $(R_0=3.1)$

 $T_{eff} \ and \ A_0 \ are ``strong'' \ APs$

Gaia BP/RP spectrophotmetry of synthetic stellar spectra

T_{eff} and [Fe/H] variation

[Fe/H] = -3, -2, -1, 0, +0.5

 $(A_0=0, logg=4)$

[Fe/H] is a "weak" AP

- Off-the-shelf machine learning method
- Learns an explicit mapping between spectrum and APs
- Some results for a synthetic library with T_{eff} =3000 to 10 000K, A₀ \leq 10 mag, wide range of logg and [Fe/H] (end-of-mission):

AP residual	G mag	All stars	A stars	F stars	G stars	K stars
< Teff(true) - Teff(est) > (K)	<16.5	71	111	65	53	117
< A0(true) - A0(est) > (mag)	<16.5	0.05	0.05	0.03	0.04	0.13
< FeH(true) - FeH(est) > (dex)	<16.5	0.33	0.65	0.35	0.23	0.32
< LogG(true) - LogG(est) > (dex)	<16.5	0.39	0.23	0.27	0.43	0.90
< Teff(true) - Teff(est) > (K)	>16.5	265	426	226	226	392
< A0(true) - A0(est) > (mag)	>16.5	0.14	0.16	0.11	0.14	0.30
< FeH(true) - FeH(est) > (dex)	>16.5	0.51	0.71	0.51	0.41	0.58
< LogG(true) - LogG(est) > (dex)	>16.5	0.47	0.35	0.33	0.51	1.02

Forward modelling

- For each band (pixel) i, fit a smooth forward model for flux: $p_i = f_i(\mathbf{\Phi})$ where $\mathbf{\Phi} = (\Phi_1, \Phi_2, \Phi_3, ..., \Phi_j)$ are the APs
- gradients are the "sensitivities": $s_{ij} = \partial p_i / \partial \phi_j$

ILIUM

 ILIUM uses the forward model to search locally for the solution (best fitting APs) using a Newton-Raphson iterative method

$$\delta oldsymbol{p} \,=\, {f S}\,\delta \phi$$
 ${f S}$ is the sensitivity matrix $\delta \phi \,=\, ({f S}^T{f S})^{-1}{f S}^T\delta p$

- a band's contribution is weighed by its sensitivity to each AP
- gives uncertainty estimates: covariance matrix for the estimated APs

$$\mathbf{C}_{\phi} = (\mathbf{S}^T \mathbf{S})^{-1} \mathbf{S}^T \mathbf{C}_p \mathbf{S} (\mathbf{S}^T \mathbf{S})^{-1}$$

 see <u>Bailer-Jones 2010 (MNRAS 403, 96)</u> for full details plus more results (but more optimization required for Gaia...)

Example ILIUM performance on T_{eff} , A₀, logg

q-method

- Uses photometry (e.g. BP/RP), parallax and apparent mag
- Bayesian method to infer PDF over APs given data, $P(\phi|\mathbf{p},q)$ where $q = M + 5 \log \varpi = m + A_0 - 5$

is a measured (noisy) quantity. M and m are absolute and apparent magnitude, ϖ is parallax. **p** is (spectro)photometry

- See <u>Bailer-Jones 2011 (MNRAS 411, 435)</u> for full details
- Adopt a Gaussian likelihood (noise) model for **p**

$$P(\boldsymbol{p}|\boldsymbol{\phi}) \propto e^{-D^2/2} = \exp\left(-\frac{1}{2}[\boldsymbol{p} - \boldsymbol{f}(\boldsymbol{\phi})]^T \mathbf{C}_p^{-1}[\boldsymbol{p} - \boldsymbol{f}(\boldsymbol{\phi})]\right)$$

forward model data covariance

q-method demonstration

- Infer T_{eff} and A_0 using BVJHK photometry and Hipparcos parallaxes for ~85 000 2MASS/Hipparcos stars
- True APs for forward model fitting (training data):
 - ► T_{eff} from Valenti & Fischer (2005) from high-res. spectroscopy
 - artificially reddened to give A₀ variance
 - 5280 stars with $T_{eff} = 4700-6600$, $A_0 = 0-2.5$ mag

AP estimation from BVJHK colours (only)

- "true" APs shown as red cross
- contours enclose 90%, 99% and 99.9% of posterior probability $~P(oldsymbol{\phi}|\mathbf{p})$
- note the significant degeneracy between T_{eff} and A_0

Information beyond the spectrum

- Spectrum: p constrains T_{eff} and A_V
- Parallax and apparent magnitude: q constrains $M_V + A_V$
- HRD ("prior") constrains M_V and T_{eff}

Probabilistic inference Probabilistic inference

Combine all the data probabilistically:

$$P(A_{0},T|\mathbf{p},q) = \frac{P(\mathbf{p},q|A_{0},T)P(A_{0},T)}{P(\mathbf{p},q)} \quad \text{Bayes' theorem}$$

$$= \underbrace{P(\mathbf{p}|A_{0},T)}_{\text{likelihood}} \underbrace{\frac{P(A_{0})}{P(\mathbf{p},q)}}_{\text{priors}} \underbrace{\int_{M_{V}} \underbrace{P(q|M_{V},A_{0},T)}_{q \text{ constraint}} \underbrace{P(M_{V},T)}_{\text{HRD prior}}_{HRD/q \text{ factor}} dM_{V}}_{HRD/q \text{ factor}}$$

AP estimation from BVJHK colours

 $P(\boldsymbol{\phi}|\mathbf{p})$

AP estimation from BVJHK colours + q, HRD

 $P(\boldsymbol{\phi}|\mathbf{p},q)$

- Accuracy ~40% higher: Mean abs. errors 0.015dex in $log(T_{eff})$ and 0.2 mag in A₀
- Improved precision (contours more compact)

Application to 85 000 Hipparcos/2MASS stars

BVJHK only

Application to 85 000 Hipparcos/2MASS stars

BVJHK, parallax, HRD

Derived extinction map

- There is a significant, intrinisic T_{eff} -A₀ degeneracy
- AP estimates to take advantage of parallax, apparent magnitude and constraints imposed by physics (i.e. HRD prior)
- Gaia catalogue will provide
 - multiple AP estimates (i.e. from each method)
 - posterior PDF from q-method in some cases (perhaps summarized as a covariance matrix where appropriate)
 - APs estimated by other algorithms in CU8 dedicated to specific stars (e.g. emission line stars, very cool stars), and use of the high resolution RVS spectra (for brighter stars)
- DPAC TN summarizing performance (CHL-005) due soon!

Total Galactic Extinction (TGE)

- Role: estimate integrated extinction to the edge of our Galaxy in a field
 - using the single star extinction estimates in that field from GSP-Phot
- Purpose: provide input extinction for estimating the APs of extragalactic others, especially quasars
- Objectives
 - provide an all-sky HEALpix-based total Galactic extinction map
 - $\bullet \quad estimate \ both \ extinction \ parameters, A_0 \ and \ R_0$

Total Galactic Extinction (TGE)

Inputs for TGE are:

T_{eff}, A₀, logg (from GSP-Phot) and parallax, for individual stars

- Solid angle calculation uses the HEALpix
- \bullet Extinction tracers selected according to their estimated APs T_{eff} and logg
- Use distant extinction tracers (selected on parallax) to estimate the Total Galactic Extinction for a given HEALPix

Total Galactic Extinction (TGE)

- Software package in place and being tested (see HLI-005)
- Future developments
 - additional selection criteria, including uncertainty in input APs, [Fe/H], variability
 - investigate accuracy of R_0 estimation per HEALpix
 - provision of extinction map with variable resolution (HEALpix levels 6, 7, ...)

3D extinction estimation

- GSP-Phot extinction estimates combined with I,b,ϖ allow us to construct a 3D extinction map
- But as it's star-by-star, it does not respect "obvious" constraints, e.g. A₀ increasing with distance at fixed I,b (this is a prior)

Star A should probably have a higher extinction than star B in general

- Introduce mutual constraints on individual extinctions
 - e.g. a smooth variation of A_0 in 3D space
- Parametrize spatial variation of A_0 , e.g. $A_0 = f(I,b,\varpi; a)$
- infer $P({T_{eff}, A_{0, ...}}, a | {p,q})$ where {} represents the N stars
 - posterior is over a very high dimensional parameter space, O(N) !
 - marginalize to get $P({A_0} | {\mathbf{p},q})$

Gaia on interstellar extinction: Summary

- Gaia catalogue will have individual star extinction estimates derived from BP/RP spectrum
 - three methods, one of which also uses parallax and HRD (GSP-Phot)
 - significant, intrinsic T_{eff}-A₀ degeneracy (reduced by using parallax/HRD)
 - catalogue provides uncertainty estimates and posterior PDFs
 - combined over small field to provide total extinction; used as inputs by quasar and galaxy AP estimation algorithms in DPAC
- Approximate A₀/mag accuracy (mean abs.; end-of-mission) for broad (0-10) prior range
 - 0.1 at G=15; 0.3 at G=18.5 [ILIUM]
 - ▶ 0.05 for G<16.5; 0.15 for G=16.5 to 20 [SVM]

Work still in progress...feedback welcome!

- How appropriate is the extinction law? (Grey extinction?)
- How many extinction parameters can we estimate with Gaia?
- What are suitable priors for 3D modelling?
 - not all extinction variation is smooth! use multi-scale?
- How should we best combine with non-Gaia data?
- Questions, suggestions and comments very welcome:
 - Coryn Bailer-Jones, <u>calj@mpia.de</u>
 - This presentation on line at <u>www.bailer-jones.de</u>
- Thanks to Anthony Brown for giving this talk!