What will Gaia do for the disk?

Coryn Bailer-Jones Max Planck Institute for Astronomy, Heidelberg

> IAU Symposium 254, Copenhagen June 2008

Acknowledgements: DPAC, ESA, Astrium

Gaia in a nutshell

- high accuracy astrometry (parallaxes, proper motions)
- radial velocities, optical spectrophotometry
- 5D (some 6D) phase space survey
- all sky survey to G=20 (I billion objects)
- formation, structure and evolution of the Galaxy
- ESA mission for launch in late 2011

		and a set of the second set of
	Hipparcos	Gaia
Magnitude limit	12.4	G = 20.0
No. sources	120 000	I 000 000 000
quasars	0	I million
galaxies	0	10 million
Astrometric accuracy	~ 1000 µas	12-25 µas at G=15
		100-300 µas at G=20
Photometry	2 bands	spectra 330-1000 nm
Radial velocities	none	I-10 km/s to G=17
Target selection	input catalogue	real-time onboard selection

How the accuracy varies

- astrometric errors dominated by photon statistics
 - parallax error: $\sigma(\varpi) \sim 1/\sqrt{flux} \sim distance, d$ for fixed M_V
 - fractional parallax error: $\sigma(\varpi)/\varpi \sim d^2$
 - fractional distance error: fde $\sim d^2$
 - transverse velocity accuracy: $\sigma(v) \sim d^2$
- Example accuracy
 - K giant at 6 kpc (G=15): fde = 2%, σ(v) = 1 km/s
 - G dwarf at 2 kpc (G=16.5): fde = 8%, $\sigma(v) = 0.4$ km/s

Distance statistics

At larger distances may use spectroscopic parallaxes

100 000 stars with fde <0.1%
11 million stars with fde <1%
150 million stars with fde <10%</pre>

8kdc

Payload overview

Instruments

Radial velocity spectrograph

- R=11 500
- Call triplet (848-874 nm)
- more detailed APE for V < 14 (still millions of stars)

Spectrophotometry

 $T_{\rm eff} = 8\,500$ K, [M/H] = 0.0, varying log g, V = 15

Dispersion: 7-15 nm/pixel (red), 4-32 nm/pixel (blue)

Stellar parameters

- Infer via pattern recognition (e.g. SVM)
- From BP/RP at G=15, RMS internal uncertainties:
 - Teff I-5% for wide range of Teff
 - Av 0.05-0.1 mag for hot stars
 - [Fe/H] <0.2 dex for cool stars (SpT>F) down to -2.0 dex
 - logg 0.1-0.4 dex, <0.1 dex for hot stars (SpT \leq A)
- calibration: input physics and synthetic spectra

Disk structure

- current uncertainties
 - thin disk scale height estimates: 200-330 pc
 - thin disk scale length estimates: 2-4 kpc
 - vertex deviation, vertical tilt not well known
 - velocity ellipsoids currently based on small samples
- Gaia will give
 - 3D spatial maps
 - transverse velocities accurate to <1 km/s for ~ 50 million stars out to a few kpc

eesa

Ga

- search for merger debris (Monoceros, Sagittarius, ...)
 - substructure in phase space
- map dark matter distribution
 - compare luminous distribution with gravitational potential

Stellar clusters

- about 70 clusters and SFRs within 500 pc
 - individual distances to 0.5-1% at G=15 (K3V)
 - individual transverse velocity accuracy to < 50 m/s at G=15
 - ages from MSTO fitting
 - examine mass segregation, cluster dispersion
 - saturation limit is G=6
- confirm new (refute old) clusters
- use as abundance tracers in disk out to tens of kpc

Spiral structure

Spiral structure

- map local spiral structure in 3D
 - without assuming M-L relation or extinction
- 3D velocities without assuming rotation curve
- OB star with $M_V = -2.5$ at d=5kpc with 4 mags extinction (G=15)
 - fractional distance error of 13%
 - transverse velocity error of ~ Ikm/s
 - radial velocity error of a few km/s
 - ~ 50 000 OB stars

Ice ages and mass extinctions

Passage of Sun through the Galaxy reconstructed from Hipparcos

thick portions: ice ages crosses: major extinctions

Ice ages and mass extinctions

Passage of Sun through the spiral arms

thick portions: ice ages crosses: major extinctions diamonds: 100 Myr markers

Mass-luminosity relation

M-L relation to be calibrated by Gaia across a wide range of masses with a large sample of binaries

Mass-Luminosity relation

Initial mass function

- LF IIII (I)MF
 - universal?
 - metallicity dependent?
 - time variable?

solid line: empirical log normal

dotted line: four-component power law

- velocity dispersion appears to increase with age
 - GMC scattering, spiral arm perturbation, dark matter, ...
- small decrease in mean metallicity with age, but a large scatter (Nordström et al. 2004)

0.5

-0.5

5

Age (Gyr)

- Gaia contribution
 - 2D or 3D velocities on a large sample
 - improve ages (stellar luminosities)
 - [Fe/H] for large sample

15

Summary

- strength is in accuracy and statistics
 - I 50 million stars with fde < 10% out to 8kpc
 - fde of I-2% at I kpc for G=15
- Gaia will have well-defined selection biases
- impact on many fields of Galactic structure; in the disk:
 - LF; M-L relation (binares); disk shape and structure; substructure (mergers); open clusters; spiral structure; ...
- http://gaia.esa.int