Gaia and MPIA

Coryn Bailer-Jones 20 Feb. 2013 PSF Seminar

Gaia in a nutshell

high accuracy positions, parallaxes, proper motions e.g. 15-25 µas at G=15

optical spectrophotometry

pure survey: entire sky to G=20 ~10⁹ sources

astrophysical parameters

radial velocities to G<17 (1-15 km/s)

Payload module

Instruments

Gaia characteristics

	Hipparcos	Gaia
Magnitude limit	H =12.4	G = 20.0
No. sources	120 000	~ I 000 000 000
quasars	0	~ 0.5 million
galaxies	0	~ 5 million
Astrometric accuracy*	~ 1000 µas	9-26 µas at G=15
		100-330 µas at G=20
Photometry	2 bands	spectrophot. 330-1000 nm
Radial velocities*	none	I-13 km/s to G=17
Target selection	input catalogue	real-time onboard selection

*for 72 observations (i.e. average end-of-mission accuracy)

Gaia distances

How the astrometric accuracy varies

- astrometric errors dominated by photon statistics
- parallax error: $\sigma(\varpi) \sim 1/\sqrt{flux}$
- for fixed M_G
 - $\star \sigma(\varpi) \sim \text{distance, d}$
 - * fractional parallax (and distance) error, $\sigma(\varpi)/\varpi \sim d^2$
 - * transverse velocity error, $\sigma(v) \sim d^2$
- example accuracy
 - * K giant at 6 kpc (G=15): frac. dist. error = 2%, $\sigma(v)$ = 1 km/s
 - * G dwarf at 2 kpc (G=16.5): frac. dist. error = 8%, $\sigma(v)$ = 0.4 km/s

Spectrophotometry (BP/RP)

blue = stars red = quasars

Stellar parameters from spectrophotometry (BP/RP)

strong temperature (T_{eff}) signature (likewise extinction) shown: T_{eff} = 4000 to 15 000 K

> much weaker metallicity signature (likewise surface gravity) shown: [Fe/H] = -2.5 to +0.5 dex

Radial velocity spectra

- slitless spectrograph
- R = 11 500, around Call triplet
- Vrad to I-I0 km/s for V < I7
- higher SNR spectra for millions of stars with V < 14 (helps parameter estimation)

Scanning law: No. observations in equatorial coords

Some science objectives

- Galactic structure
 - * formation of disk and halo (substructure, merger history)
 - \star dark matter content
 - ★ chemical evolution, star formation history
- Stellar structure and evolution
 - \star accurate luminosities
 - ★ stellar cluster structure, kinematics, ages
- Binary systems (including exoplanets)
- Solar system asteroids, including near-earth objects
- General Relativity tests

Stellar clusters

- about 70 clusters and associations within 500 pc
 - * individual stellar distances to 0.5-1% at G=15 (K3V)
 - \star individual stellar transverse velocity accuracy to < 50 m/s at G=15
- science possibilities
 - ★ ages, He abundance from model fitting
 - **★** examine mass segregation, cluster dispersion
 - ★ confirm new (refute old) clusters
 - $\star\,$ use as abundance tracers in disk out to tens of kpc
- saturation limit is G=1.5 to 5.7 (TBD)

Exoplanets

• astrometric signature of a companion $\alpha \sim \frac{M_p}{M_s} \frac{a_p}{d}$

* e.g. for 47 UMa b (K = 49 m/s, M > 2.5 M_{Jup} , P = 2.95 years) $\alpha \sim 360 \mu as$

- identified as poor fit to 5-parameter single star solution
- all-sky, magnitude limited survey
 - \star no spectral type selection
 - expect 50 000 of the 20 million non-single star detections to be planets (mostly Jupiter-like at I-4 AU from host out to 200pc)
 - ★ expect orbital solutions for about a third of these (periods up to ~10 yrs)

Timescale

- ESA mission, built by industry. Data processing by DPAC
- Timescale
 - ★ launch (L): October 2013
 - ★ science operations start: L + 6m
 - * data releases expected: L + 22m, 28m, 40m, 65m
 - ★ end of operations: end 2018 (or 2019)
 - ★ final catalogue: end of operations + 36m (end 2021 or 2022)
- Data policy: no proprietary period; DPAC does no "astrophysics"

Gaia catalogue data products

- astrometry: position, parallax, proper motion
- photometry: G, G_{BP}, G_{RP}, G_{RVS} (and time series)
- spectrophotometry (BP/RP)
- radial velocity spectra and radial velocities
- object class probabilities (star, galaxy, quasar, etc.)
 - \star also outlier/novelty detection
- source astrophysical parameters (with probability distributions)
 - * T_{eff} , [Fe/H], logg, line-of-sight extinction, ...
- variable star classification
- (partial) orbital solutions for star/planet systems
- asteroid orbits and properties

Intermediate data release content

L = October 2013 AP = (stellar) astrophysical parameter

- L+22m: position, G mag for 90% of sources; HTPM
- L+28m: position (+ some parallax, PM); integrated BP/RP photometry (+ rudimentary APs); mean RV of bright stars (90% of sources)
- L+40m: position, parallax, PM for 90% of sources; some binary orbits; BP/RP spectrophotometry plus (strong) APs; mean RVs; some APs based on bright RV spectra; ground-based auxiliary data
- L+65m: as L+40m (improved precision) plus: more detailed APs; variability classification + epoch photometry; solar system results; non-single star catalogue

Gaia group @ MPIA

- part of the Data Processing and Analysis Consortium (DPAC)
- CU8 "Astrophysical Parameters" (since 2006)
 - * probabilistic source classification (star, quasar, galaxy etc.)
 - * stellar parameter estimation (T_{eff} , A_0 , [Fe/H], logg)
 - ★ using BP/RP and astrometry
 - ★ 4 postdocs (3 DLR funded)
- CU9 "Catalogue Access" (starting 2014)
 - * cross matching (with SDSS, UKIDSS, Pan-STARRS, etc.)
 - valued-added catalogues (improved/extended parameters)
 - ★ 2 postdocs (I DLR funded)

Richard Hanson (PhD student) Galactic 3D extinction & dust modelling

Fabo Feng (PhD student) solar orbit, astronomical impacts on Earth

Coryn Bailer-Jones (staff)

Kester Smith (staff) Gaia software, BHB stars

Tri Astraatmadja (postdoc) Gaia software, (astroparticle physics)

Dae-Won Kim (postdoc) Gaia software, time series

Rene Andrae (postdoc) Gaia software, statistics

What now?

- identify science projects which build on the MPIA's strengths
- get ready for the data
 - \star prepare models and analysis tools in advance
 - ★ acquire auxiliary data, observations, simulations etc.
 - \star look at the simulated data
- more information
 - * http://www.rssd.esa.int/index.php?project=GAIA
 - ★ large number of technical notes and publications

Astrophysical parameter accuracy

- Accuracy (mean abs.) is a function of G and APs themselves
 - ★ T_{eff} 3000:1000K, A₀ 0:10mag, [Fe/H] -2.5:+0.5dex, logg 2.5:5.5dex
- At G=15 for $A_0 < Imag$
 - ★ Teff 60-110K, A₀ 0.05mag, [Fe/H] 0.15dex (0.5dex A stars), logg 0.25dex
- At G=15 averaged over all A_0
 - * Teff 110-180K, A₀ 0.07mag, [Fe/H] 0.4dex (0.7dex A stars), logg 0.3dex
- At G=19 for $A_0 < Imag$
 - ★ Teff 250-400K, A₀ 0.1-0.15mag, [Fe/H] 0.35 (G/K stars), logg 0.4dex

Astrophysical parameter accuracy (T_{eff})

upper row: mean absolute error ("random") lower row: mean error ("systematic") colours: four different algorithms

Astrophysical parameter accuracy

mean absolute accuracy variation with G Red lines show 50% and 90% quantiles

Exoplanet discovery space (Gaia astrometry)

red: I $\,M_\odot$ host at 200pc blue: 0.5 $\,M_\odot$ host at 25pc

pink: RV detection at 3sigma for 3 m/s accuracy

black points: planets as of September 2007

light blue: transiting systems

red pentagons: Jupiter and Saturn

