Object classification and the determination of stellar parameters

Coryn A.L. Bailer-Jones Max-Planck-Institut für Astronomie, Heidelberg

> Philip Willemsen, Torsten Kaempf Sternwarte der Universität Bonn

Classification objectives

Coryn Bailer-Jones Classification with Gaia Paris, 4-7 October 2004

To determine the intrinsic properties of individual objects observed by Gaia

- discrete source classification (DSC)
 - star, galaxy, quasar, asteroid, supernova etc.
- (stellar) astrophysical parameter estimation (APE)
 - T_{eff}, log g, [Fe/H], extinction (A_V), [α /Fe], CNO, V_{rot}, activity
- identification of (unresolved) binaries
- identification of new types of objects
- Classification working group (ICAP)
- \Rightarrow catalogue of astrometric *and* astrophysical information

Data	Dimensions	No. sources
BBP	5-6 filters	all
MBP	ca. 10 filters	all (minus crowding)
RVS	~350 bins	G<15 (bright for classification quality)
parallaxes		some (sufficient accuracy)
time domain		all

From Gaia data to APs

Coryn Bailer-Jones Classification with Gaia Paris, 4-7 October 2004

Data	Derived quantity	Assumption/Model		
normalized SED	Teff, <i>log</i> g, [Fe/H], A()	atmospheric model: $APs \in SEI$ inversion (data) model		
G or abs. SED, , A()	L (Luminosity)	2.5 <i>log</i> L – f (G, abs. SED) = A – 5 <i>log</i>		
L, Teff	R (Radius)	$\log L \alpha 2 \log R + 4 \log Teff$		
<i>log</i> g, R	M (Mass)	$\log g \alpha \log M - 2 \log R$		
M, R, [Fe/H]	t (Age)	evolutionary model		

SED = spectral energy distribution, from BBP, MBP, (RVS) = parallax, A = extinction

Colour-colour diagrams: SDSS

Coryn Bailer-Jones Classification with Gaia Paris, 4-7 October 2004

black triangle = solar [Fe/H] dwarf green = low [Fe/H] dwarf red = solar [Fe/H] giant blue = low [Fe/H] giant black square = other

Simulated SDSS photometry of BaSeL 2.2 SEDs

Note: uncalibrated magnitudes (zero point offset)

Principle of AP estimation

Coryn Bailer-Jones Classification with Gaia Paris, 4-7 October 2004

Supervised approach:

- match data against pre-classified templates (i.e. with known APs)
- synthetic or real template data
- inverse mapping \Rightarrow potential non-uniqueness (AP degeneracy)

Multidimensional regression

- local vs. global methods
- "curse of dimensionality" \Leftrightarrow structured regression
- global, non-linear methods
 - train model on representative data through error minimization
 - e.g. ANN, SVM, MARS
- Examples: ANNs trained/tested on simulated BBP/MBP stellar data to estimate T_{eff} , log g, [Fe/H], extinction (A_V)

Model performance: T_{eff}

Coryn Bailer-Jones Classification with Gaia Paris, 4-7 October 2004

photon counts

Teff

Model performance: [Fe/H]

Coryn Bailer-Jones Classification with Gaia Paris, 4-7 October 2004

[Fe/H]

blue = std. dev. about mean (random error)

APE performance from MBP

Coryn Bailer-Jones Classification with Gaia Paris, 4-7 October 2004

Accuracy varies strongly as a function of the 4 APs and magnitude ⇒ results averaged over wide AP ranges misleading

	σ(A_v) mag	ര ([Fe/H]) dex	σ (logg) dex	σ (T_{eff}) %
KV, G=15, A _v = 0, [Fe/H] = +0.12 KV, G=20, A _v = 0 KV, G=20, A _v = 6	~0.1 0.1–0.7	0.05–0.25 0.1–0.35 0.7	0.2 0.3–0.5	1–2 2–5 8
KIII, G=15, $A_v = 0$ KIII, G=15, $A_v = 6$		0.2–0.4 0.7–0.8	0.2–0.3 ~1.0	2.5–4 8
AIII, G=15, A _v = 0, [Fe/H] ~ 0	0.08	0.4	0.03	4
BV, G=15, A _v = 6, [Fe/H] ~ 0	0.3		0.35	

Willemsen, Kaempf, Bailer-Jones (2003)

AP error estimates

Coryn Bailer-Jones Classification with Gaia Paris, 4-7 October 2004

Bootstrap uncertainty estimates using neural networks (G=15)

[Fe/H]

T_{eff}

Willemsen, Bailer-Jones & Kaempf (2004)

0

100

0.5

performance is a strong function of component luminosity ratio (L_r) and magnitude (G)

- composite MBP photometry

 \mathbf{O}

- P(BINARY)= 50% (prior) \mathbf{O}

Support Vector Machine Classifier

single star/binary classification IMF: Kroupa (2001) + more RGs \mathbf{O}

Detection of unresolved binaries

Coryn Bailer-Jones Classification with Gaia Paris, 4-7 October 2004

2

2.5

3

1.5

3.5

3.5

- model dependent physical (supervised) scheme
 - additional empirical (unsupervised) scheme?
- calibration of models
 - e.g. synthetic spectra + Gaia observations of known stars
- model training
 - regularization
- problem of "strong" vs. "weak" APs
 - systematic/correlated errors
- dealing with AP degeneracy
 - data space partioning?
- heterogeneous data
 - optimal combination of BBP, MBP, RVS etc.

Optimization of Gaia filter systems

- optimize the input data \Rightarrow optimize photometric system (PS) for doing APE
- parametrize PS
- define figure-of-merit (FoM) of PS performance
- optimize FoM with respect to PS parameters (evolutionary algorithm)
- see Bailer-Jones (2004, A&A) and poster 4.3

- Objective: to determine the intrinsic properties of individual objects observed by Gaia
- wide range of objects/APs ↓ challenging problem
- mutidimensional data analysis methods required
- several algorithmic issues to be addressed
 - degeneracies, training data (calibration)
- numerous open issues
 - discrete source classification, galaxy classification, treatment of peculiar/rare stars, empirical (unsupervised) classification, optimal combination of data (MBP, BBP, RVS, parallaxes etc.)
- several relevant posters (2.6, 2.10, 4.8, 4.9, 4.13, 4.17, 5.16, 5.19)