Microarcsecond astrometry with Gaia -The solar system, the Galaxy and beyond

> Coryn A.L. Bailer-Jones Max-Planck-Institut für Astronomie, Heidelberg & Gaia Science Team

acknowledgements: Gaia Science Team, Michael Perryman, Gaia working groups, industrial partners

What is Gaia?

Astrometry: positions, parallaxes, proper motions

10 μas @ V=15

1 billion stars to V=20

Radial velocities / spectroscopy

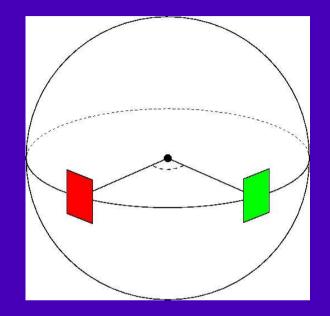
~15 band optical / IR photometry

ESA mission launch 2010

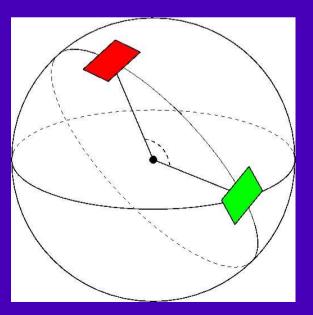
Gaia science objectives

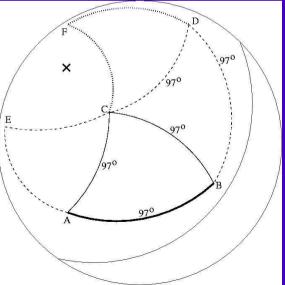
- Galactic structure and formation
- Dynamics (dark matter, merger history)
- Stellar astrophysics (HRD, abundances, binaries)
- Star formation (OB assoc., clusters)
- Exoplanets (10⁴ detections, 10³ orbits, masses, transits)
- Solar system (10⁵ minor planets, taxonomy, NEOs)
- Extragalactic (local group galaxies, SNe)
- Cosmic distance scale (geometric to 10 kpc, Cepheids, RR Lyr)
- Reference frame (quasars)
- Fundamental physics (*light bending*, γ to 5×10^{-7})

Coryn Bailer-Jones IAU196, Transits of Venus Preston, 7-11 June 2004


	Hipparcos	0
Magnitude Limit	12.4	2
Completness		2
No. sources		2
		2
		1
No. quasars		0
No. galaxies		1
Astrometric accuracy		2
		5
		4
Broad band photometry		4
Medium band photometry		1
Spectroscopy		F
Radial velocities		1
Target selection		0

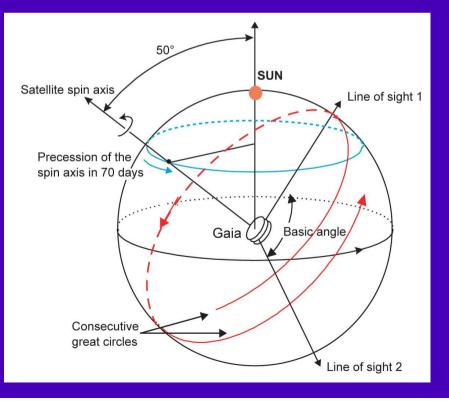
GAIA

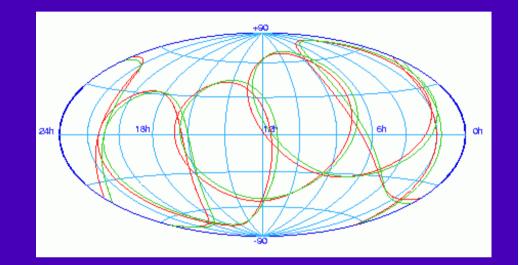

2() 26 million to V=15250 million to V=18000 million to V=20 0.5-1 million -10 million 2-3 uas at V<10 5-15 uas at V=15 10-200 uas at V=20 0 to 16 R=11 500 (848-874 nm) -10 km/s to V=17-18 onboard; mag. limited

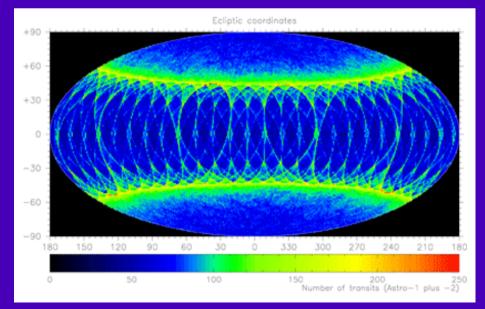

Global astrometry

- 1. Observe simultaneously in two fields separated by a constant *basic angle*
- 2. Multiple observations at different orientations
- 3. Construct a network over celestial sphere
- 4. Measure positions of stars relative to each other
- 5. Simultaneously solve for astrometric parameters of stars plus satellite attitude (iteratively)

Scanning law

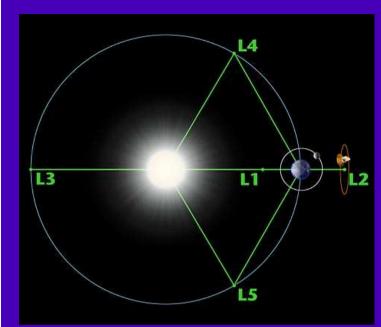

Coryn Bailer-Jones IAU196, Transits of Venus Preston, 7-11 June 2004




Continuous three-axis motion:

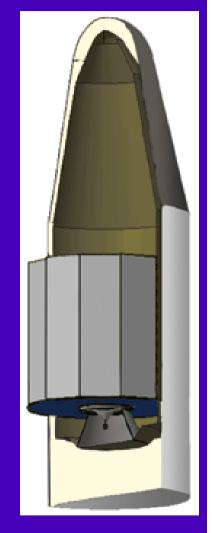
- axis rotation (period = 6 days)
- fixed sun angle precesion (70 days)
- orbit around sun (1 year)

Traces quasi great circles on sky 5 year mission



Satellite and orbit

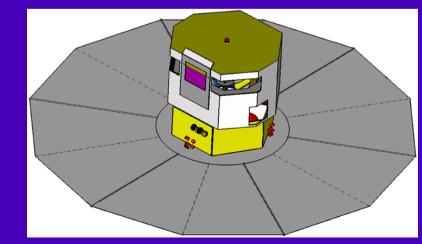
Coryn Bailer-Jones IAU196, Transits of Venus Preston, 7-11 June 2004



basic angle must be stable to 1 μ as over 6 hours

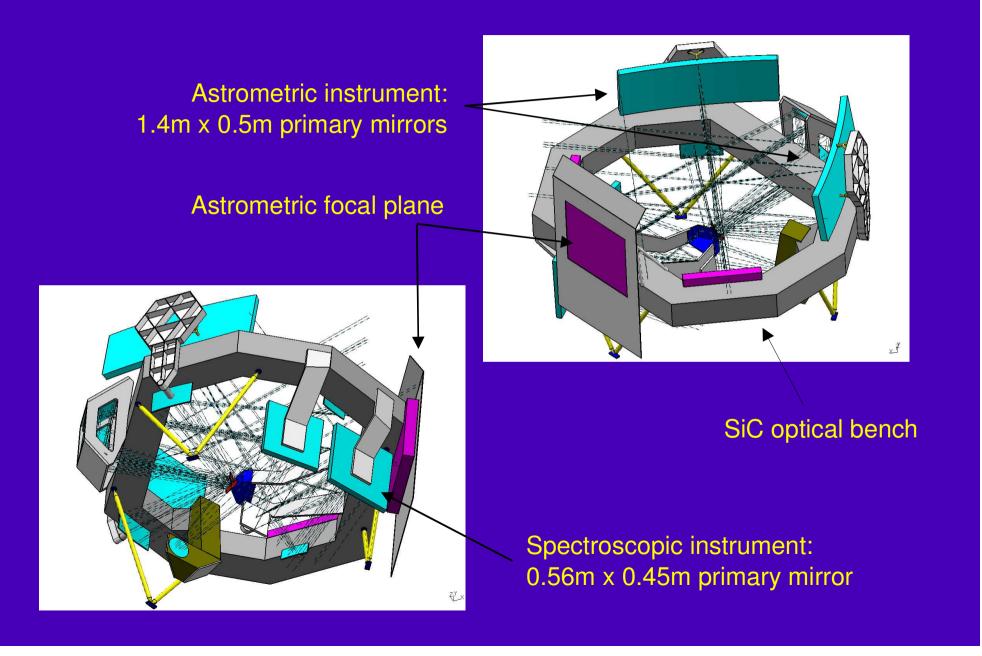
- \Rightarrow 25 μ K thermal stability
- ⇒ stable environment
- \Rightarrow no moving parts!
- \Rightarrow monitor basic angle variations

Lissajous' orbit about Earth-Sun L2 point (thermal stability, no drag etc.)

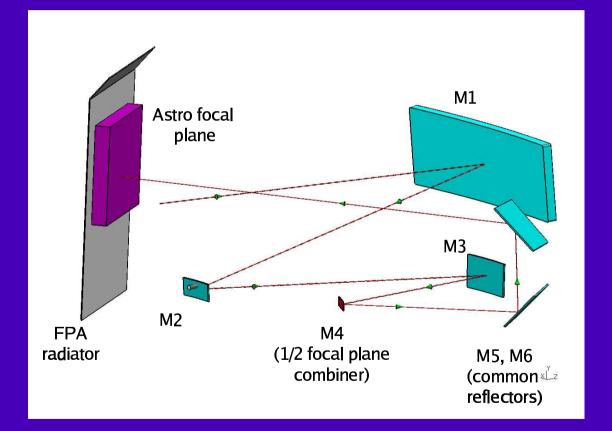

deployable sunshield

- 11m diameter
- passive cooling to 170K

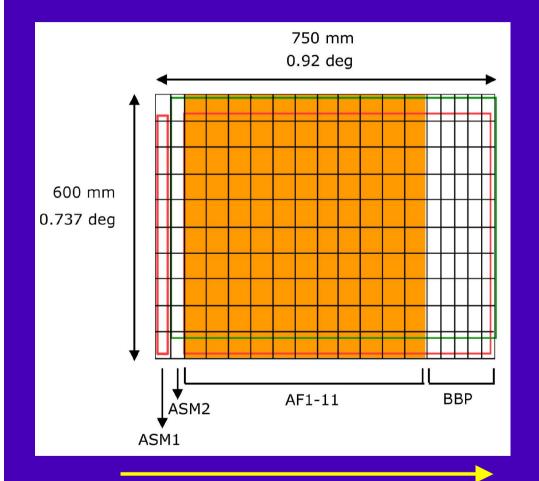
PLM+SVM: 1400 kg; 3.1m high


phased antenna array

- 3 Mb/s for 8 hours per day
- single ground station


Payload overview

Astrometric instrument optics



Astrometric focal plane

Coryn Bailer-Jones IAU196, Transits of Venus Preston, 7-11 June 2004

direction of motion across focal plane

Two FOVs superimposed on single CCD focal plane

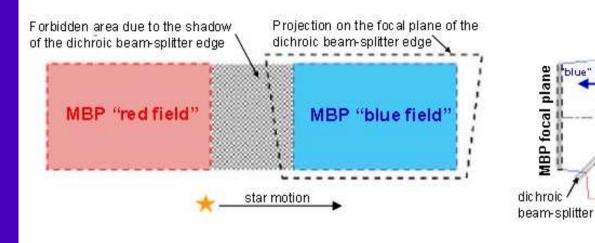
180 CCDs (2000 x 5600 pixels)

CCDs clocked in TDI mode, 55s transit time

Mean of 2x41 passages over 5 years

Astrometry in `white' light (G band)

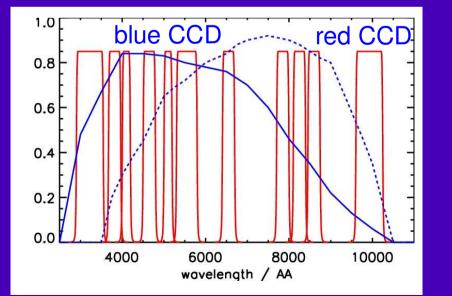
4 broad band photometry (BBP) for chromatic correction


real time on-board detection
=> star mappers (detect+confirm)
=> select CCD windows to transmit

Spectro focal plane

Coryn Bailer-Jones IAU196, Transits of Venus Preston, 7-11 June 2004

from Spectro telescope



Spectro: RVS + Medium Band Photometer

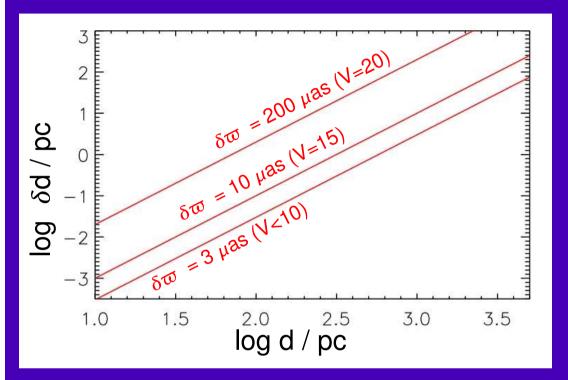
MBP = Physical characterization of sources

- up to 16 filters
- discrete classification (star, galaxy etc.)
- Teff, [Fe/H], A_{v} , logg, [α /Fe]
- binaries
- identify new types of objects

Astrophysical + Astrometric catalogue

plane

blue" light transmitted.


to RVS

red" light reflected

Distance and velocity precision

Coryn Bailer-Jones IAU196, Transits of Venus Preston, 7-11 June 2004

Scaling relations

astrometric error,	<i>δ</i> ϖ ~ 1/√f
distance error,	$\delta d \sim d^2 \delta \omega$
trans. velocity error,	$\delta v \sim d \delta \varpi$

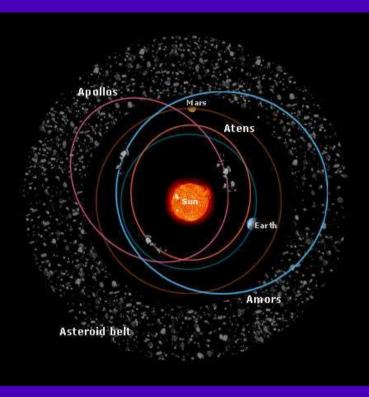
[given star: $f \sim 1/d^2 \Rightarrow \delta \overline{\omega} \sim d$]

 $1 \text{ km/s} = 200 \ \mu \text{as/yr}$ @ 1kpc

Distances

0.2% accuracy at 200 pc at V=15 1% accuracy at 1 kpc at V=15 20% accuracy at 1 kpc at V=20

<0.1%	for	700 000 stars
<1%	for	21 million stars
<10%	for	220 million stars


Transverse velocities

0.1 km/s accuracy at 2 kpc at V=15 1 km/s accuracy at 20 kpc at V=15 1 km/s accuracy at 1 kpc at V=20

	44 million stars

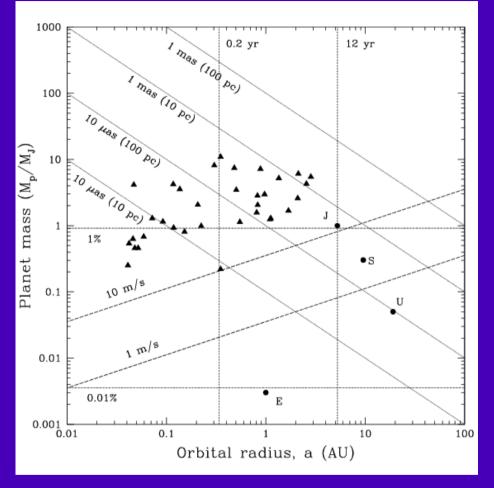
Solar system

- Main belt asteroids
 - solar system formation
 - sizes, albedos, masses (~ 100, cf. 10 now)
- Near-Earth objects
 - high speed (0.1"/s \Rightarrow modified onboard detection)
 - expect 1600 Earth-crossing (vs. 100 now)
- Trojans (e.g. at Jupiter L4, L5)
 - formed in situ or captured? similar to asteroids?
- General Relativity
 - light bending (17 mas at Jupiter limb), γ to 5x10⁻⁷, perihelion precession (J₂)
- Gaia capabilities
 - all sky complete survey to G=20, to within 35° of Sun ("daytime")
 - discovery of 10⁵-10⁶ new objects (cf. 65000 now)
 - very accurate orbital elements (~30 times better)
 - multi-band photometry (taxonomy, chemistry, space weathering)

Corun Bailer-Iones

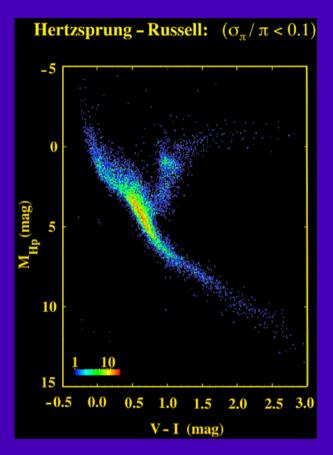
IAU196, Transits of Venus Preston, 7-11 June 2004

Exosolar planets


Coryn Bailer-Jones IAU196, Transits of Venus Preston, 7-11 June 2004

- astrometric companion search
 - $\alpha = (M_p/M_s)(a_p/d)$
 - 47 UMa: astrom. displacement 360 μas
 - no sin i ambiguity in mass
 - complements RV parameter space
- extensive survey
 - monitor 10^5 stars to 150-200 pc (V<13)
 - all stellar types to P ~ 10 years
 - ~ 5000 new planets expected
 - orbital solutions for 1000-2000 systems
 - masses to 10 M_E to 10pc

• transits


- Jupiter across Sun @ SNR=10 \Rightarrow 1 millimag photometric precision
- expect 6000 detections for 0-2 AU orbit around F-K stars
- Venus around Sun (1/115²) would require 0.01 millimag precision

Clusters and associations

- ~70 clusters + SFRs within 500 pc (20 in 200pc)
 - *individual* distances to 0.5%, <2.5pc at V=15
 - transverse velocities to <1 km/s for
 - all stars down to M dwarfs out to 200pc
 - all giants and OB(A) stars out to 500 pc
 - search for new clusters (3D structure, 3D kinematics)
- Hertzprung-Russell Diagram
 - ages from MS turn off (more subgiants)
 - IMF (to BD limit in Hyades, to 1M_{sun} out to 3kpc)
- kinematics
 - mass segregation (dynamic vs. primordial)
 - ejection (BDs) evaporation, dispersion
- stellar structure
 - luminosity calibration (10% distances to: GV to 3kpc; AV + KIII to 10 kpc)
 - He abundances

Galactic structure

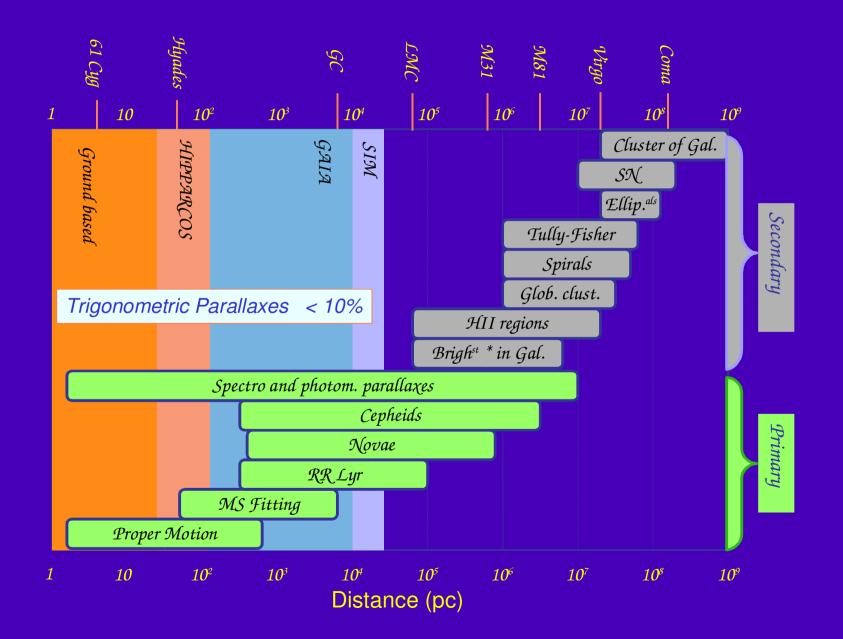
- galaxy formation
 - substructure in halo (merger history)
 - 0.5 km/s precision at V=15 at 10kpc
 - internal photom. parallaxes for outer halo (gG, gK, HB)
- evoluton of stellar populations
 - star formation history in 3D
 - age-metallicity relation (K, M dwarfs)
 - metallicity structure in disk components and halo
- Galactic disk
 - spiral arms (Cepeids, extinction map)
 - mass, dark matter, rotation curve

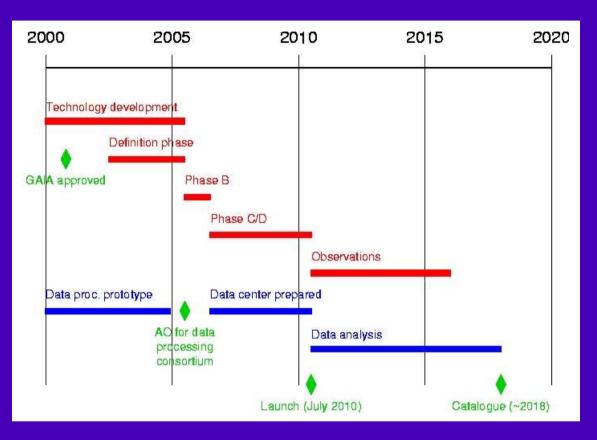
Extragalactic

Coryn Bailer-Jones IAU196, Transits of Venus Preston, 7-11 June 2004

- local group
 - LMC ϖ =20 μ as; average geometric distance to ~1%
 - discrimination of foreground stars via proper motions
 - internal dynamics of dSph

• quasars


- ~500 000; multicolour quasar survey + variability
- quasi-inertial reference frame accurate to <1 μ as/yr
- galactocentric acceleration ~ 4 μ as/yr
- supernovae
 - realtime onboard detection: ~ 50 per day
 - alerts system, ground-based follow-up
- cosmology
 - calibration of distance scale
 - 3D orbits in local group out to 1-2 Mpc (> 20 galaxies)
 ⇒ probe initial density fluctuations


Cosmic distance ladder

Schedule and data processing

- Complex data stream
- Iterative adjustment of 100s millions of stars
- astrometric, photometric and spectroscopic data
- quick look processing (e.g. SNe)

- 10¹⁹ to 10²¹ FLOPS (cf. 10²² inst. SETI@home, 10¹⁷ inst. 1 PC for 1 year)
- 100 TB raw data, ~1 PB working space
- Cf. 1 TB text of books published in 1 year [~ 1 million], 20 TB SDSS raw
- 1s per star for *all* operations would require 30 years

Gaia summary

Formation and evolution of the Galaxy Stellar structure and formation Exoplanets Solar system Fundamental physics

All sky survey to V=20 (10^9 stars) 5D phase space (6D to V~18)

Accuracy = 10 μ as @ V=15: \Rightarrow distances to <1% for 20 million stars \Rightarrow transverse velocities to 1km/s at 20 kpc Physical stellar properties (multiband photometry)

First year of science operations should be complete by June 2012 Venus transit ...