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Filter design problem

... to design a filter system to 

simultaneously determine 

multiple astrophysical parameters (APs)

across a wide parameter space 

subject to instrumental contraints ...



Considerations

� multiple conflicting demands on filter system

� modifications of existing filter systems (designed for more 
restricted goals) is not necessarily appropriate

� manual design complex, and gives no idea of optimality (is 
there a better system subject to same constraints?)

� cast as a mathematical optimization problem:

� parametrize filter system

� establish a figure-of-merit of filter system performance 

� maximise this as a function of the filter system parameters

� pure gradient methods get stuck in local minima



Evolutionary algorithms

� population-based methods overcome local optima and 
permit a more efficient search of the parameter space

� 1 individual in population = 1 candidate filter system

� Evolutionary Algorthms (EAs) use the principle of natural 
selection from biological evolution 

� Genetic Algorithms (GAs), Evolutionary Strategies (ESs), 
Evolutionary Programming (EPs)

� genetic operators

� reproduction: recombination; mutation (exploration)

� selection (exploitation)

� provides a stochastic (but not random) search

� population evolves towards optimum (or optima)



Heuristic filter design (HFD) model

� figure-of-merit / fitness function:

� solving a full regression model to test every filter system too slow 
and unnecessary

� construct a measure of ability of filter system to maximally “separate” 
stars with a range of APs represented by a (synthetic) grid

� grid showing variance in Teff, logg, [Fe/H], AV

� use a simple instrument model to simulate counts and errors in 
candidate filter systems

� fixed instrument parameters and number of filters (but 
number of “effective” filters can vary)

� evolve population and find fittest filter system



 HFD model

initialise population

simulate counts (and errors) from 
each star in each filter system

calculate fitness of
each filter system

select fitter filter systems
(probability     fitness)

mutate filter system
parameters

α



Filter system representation

Each filter system consists of I  filters each with 3 parameters:

   c       central wavelength
   w      half width at half maximum
   t        fractional integration time (of total available for all filters)

Generalised Gaussian
profile with γ = 4

y = exp(− ln2 [(λ−c)/w]γ )



Instrument model

BBP MBP

Telescope aperture area m^2 0.7 0.25
Total integration time s 1200 16500
Instrument response 6*Ag 3*Al
CCD response CCD1b+3 CCD2+3
CCD readout noise e- 205 226
Effective background G mag 23.12 19.05

CCD2
CCD3

6*Ag

CCD1b

� photon count model (photsim)� end 2002 instruments (CUO-116)� simple aperture photometry� source, sky and R/O noise� end-of-mission mean values



Fitness: SNR distance
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SNR distance of star r from neighbour n:

pi,n = photon counts in filter i 
         for star n

σi,n = expectation of error in pi,n 

photon counts (and errors) are area
normalised, i.e. Σi pi,n = 1
(generalization of forming colours)



Fitness: AP gradient
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SNR-distance does not take account of the APs.
But the AP gradient does:
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This is appropriate for a single AP but obvious 
generalization to multiple APs does not work:

Extension to multiple APs is more complex. Must allow for:

� simultaneous effects of APs on data� degenerate effects of APs on data� very different magnitude effects on data (eg. Teff vs. [Fe/H])



Fitness: vector separation
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For each source, a, and each AP, j,
find nearest neighbour (NN) which
differ only in j (“isovars”), e.g. b and c

Calculate angle, α, between vectors:
Nearer to 90° => better separation

   (less degeneracy)

Calculate magnitude of 
cross product:

Va,b,c = da,b da,c sin α
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N.B. vectors are SNR-weighted,
i.e. if c = (c1, c2, ... ci, ...) then



Fitness: final measure

Cross product:   Va,b,c = da,b da,c sin α

Now use concept of AP-gradients 
(plus weighting of APs to boost significance of weak APs esp. [Fe/H] and logg)

J APs  =>  J NNs per source  =>  J(J-1)/2 cross products per source

f a,b,c

� V a,b,c

w b w c

��
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��

a,c difference in AP j between a and c

weight for AP j, i.e. that which differs between a and c

Σa Σb,c  fa,b,c
Fitness  = sum over all NNs for source

and for all sources in grid



Genetic operators

Selection

Individuals from parent population (generation g) selected (with 
replacement) with probability proportional to fitness.  Elitism used 
to guarantee selection of best few.

=> intermediate population (IP)

Mutation

Parameters of each individual {ci, wi, ti} in IP mutated with a finite 
probability: 

ci (g+1) = ci (g) + N(0,σc)

hi (g+1) = hi (g)[1 + N(0,σh)]            =>   children (next generation)

ti (g+1) = ti (g)[1 + N(0,σt)]



Stellar grid

Purpose: 
  to represent
  how data depend 
  upon APs

17 Teff / logg 
combinations at 
each of 5 [Fe/H]
and extinction
values
=> 425 sources

BaSeL 2.2 library
+ Fitzpatrick (1999)
extinction curves

noise-free data



HFD application

Free parameters: 3*I

central wavelength, c / Å
half width at half max., h / Å
fractional integration time, t

EA parameters

size of population, K 200
size of elite 10
number of generations 200
probability of mutation 0.4

25/500
0.05/0.5
0.05/0.5

Strategy parameters: 3*K

σ[c] min./max. / Å
σ[h] min./max.
σ[t]  min./max.

σ[c], σ[h], σ[t] per filter system

Limits of search domain:� λ limits from CCD/instrument QE� 80 Å < h < 4000 Å� no limits on t (just normalization)

Applications:

1. BBP with 5 filters (G=20) 
2. MBP with 10 filters (G=20)



BBP-5 system

maximum fitness

minimum fitness

mean fitness

median fitness



BBP-5 system

Evolution of all filter system 
parameters 
(200*5 for each parameter type
at each generation)



BBP-5 system

red = filter transmission 
         x fractional
         integration time

blue = Instrument*CCD 
           QE (scaled)

� broad filters (bright limit: fitness  α  sum photons collected)� overlapping filters� 4 effective filters (1 almost “turned off”)



MBP-10 system

maximum fitness

minimum fitness

mean fitness

median fitness



MBP-10 system

Evolution of all filter system 
parameters 
(200*10 for each parameter type
at each generation)



MBP-10 system

red = filter transmission 
         x fractional
         integration time

blue = CCD QE (scaled)

� broad, overlapping filters 6-8 effective filters:
 -  2 almost identical to 2 others  
 -  3 almost “turned off” (t = 0.01-0.015, but broad, so may not be irrelevant) 
 -  Cf. 4 APs requiring minimum of 5 filters



AP variations have broad band effects
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HFD reproducibility

Best MBP-10 filter
system found in
each of 5 runs with
different initial
filter systems

! MBP: often 5 effective filters" BBP: two set of solutions with 3 and 4 effective filters# good fitness repoducibility in best FSs (<10% variation for BBP and MBP)$ reasonable FS reproducibility (esp. with few filters or APs, small grid)



Effects of modifications

Change to BBP setup Effect

3 broad, overlapping filters covering
    whole wavelength range 

Change to MBP setup Effect

more time allocated to bluest filter
    (grid remains unchanged)

much broader blue filter
all sources at G=15

restrict fitness sum to Teff and AV

restrict fitness sum to Teff and AV

restrict grid to Teff < 8000 K

many more (~ 8) effective filters*

*Faint limit: fitness  α  1/√N  (N = no. filters), relevant for MBP G=20
Bright limit: fitness independent of N, relevant for MBP G=15



MBP-10 at G=15



Comparison with 2B and 1X

2B Fitness=11.7 1X Fitness=15.4

HFD BBP Fitness=28.9 HFD MBP Fitness=133.5



Conclusions

% Filter design principles

& vector separation figure-of-merit to maximise SNR-distance between 
all sources and minimise degeneracy between APs

' evolutionary operators to efficiently search filter parameter space

( HFD gives a strong preference for:

) broad filters (AP signatures spread over large part of spectrum)

* overlapping filters covering whole wavelength range

=>  better use of higher dimensional data space and limited resources

+ much higher fitnesses achievable than 2B, 1X or 2F (with 
this fitness function and grid)

, HFD filters should permit simple AP-estimation models



Future work

- Short term

. get feedback, esp. on fitness function

/ some effects need to be investigated:

0 tendency to “remove” filters (fitness dependence at faint magnitudes?)

1 “over-separating” some sources at the expense of others?

2 improve grid

3 verification of filter systems with AP-estimation models (ANN, MDM)

4 proposal of specific MBP and BBP systems

5 Long term

6 inclusion of other APs (extension of grid)

7 inclusion of “contaminants”

8 addition of fixed filters (e.g. RVSM, ground-based J,H,K)

9 use of multiobjective optimization methods with EAs


