Heuristic design of filter systems using an evolutionary algorithm

Coryn A.L. Bailer-Jones

Max-Planck-Institut für Astronomie, Heidelberg Carnegie Mellon University, Pittsburgh

PWG Meeting, Leiden, 9-10 October 2003

thanks to Jos de Bruijne for helpful discussions and comparisons

Filter design problem

... to design a filter system to simultaneously determine *multiple* astrophysical parameters (APs) across a *wide* parameter space subject to instrumental *contraints* ...

Considerations

- multiple conflicting demands on filter system
- modifications of existing filter systems (designed for more restricted goals) is not necessarily appropriate
- manual design complex, and gives no idea of optimality (is there a better system subject to same constraints?)
- cast as a mathematical optimization problem:
 - parametrize filter system
 - establish a figure-of-merit of filter system performance
 - maximise this as a function of the filter system parameters
 - pure gradient methods get stuck in local minima

Evolutionary algorithms

- population-based methods overcome local optima and permit a more efficient search of the parameter space
- 1 individual in population = 1 candidate filter system
- Evolutionary Algorithms (EAs) use the principle of natural selection from biological evolution
 - Genetic Algorithms (GAs), Evolutionary Strategies (ESs), Evolutionary Programming (EPs)
- genetic operators
 - reproduction: recombination; mutation (exploration)
 - selection (exploitation)
- provides a stochastic (but not random) search
- population evolves towards optimum (or optima)

Heuristic filter design (HFD) model

- figure-of-merit / fitness function:
 - solving a full regression model to test every filter system too slow and unnecessary
 - construct a measure of ability of filter system to maximally "separate" stars with a range of APs represented by a (synthetic) grid
 - grid showing variance in T_{eff} , logg, [Fe/H], A_V
 - use a simple instrument model to simulate counts and errors in candidate filter systems
- fixed instrument parameters and number of filters (but number of "effective" filters can vary)
- evolve population and find fittest filter system

HFD model

Filter system representation

Each filter system consists of / filters each with 3 parameters:

- c central wavelength
- w half width at half maximum
- *t* fractional integration time (of total available for all filters)

Generalised Gaussian profile with $\gamma = 4$

$$y = \exp(-\ln 2 [(\lambda - c)/w]^{\gamma})$$

Instrument model

- photon count model (photsim)
- end 2002 instruments (CUO-116)
- simple aperture photometry
- source, sky and R/O noise
- end-of-mission mean values

Toloscopo aporturo aroa	m^2
Telescope aperiule alea	III Z
Total integration time	S
Instrument response	
CCD response	
CCD readout noise	e-
Effective background	G mag

BBP	MBP
0.7	0.25
1200	16500
6*Ag	3*Al
CCD1b+3	CCD2+3
205	226
23.12	19.05

Fitness: SNR distance

SNR distance of star r from neighbour n:

$$d_{r,n}^{2} = \sum_{i} \frac{(p_{i,n} - p_{i,r})^{2}}{\sigma_{i,n}^{2} + \sigma_{i,r}^{2}}$$

 $p_{i,n}$ = photon counts in filter *i* for star *n*

 $\sigma_{i,n}$ = expectation of error in $p_{i,n}$

photon counts (and errors) are area normalised, i.e. $\Sigma_i p_{i,n} = 1$ (generalization of forming colours)

Fitness: AP gradient

SNR-distance does not take account of the APs. But the **AP gradient** does:

$$\frac{d_{r,n}}{\Delta \phi_{j,n,r}} \qquad \Delta \phi_{j,n,r} = \begin{array}{l} \text{difference in AP } j \\ \text{between star n and r} \end{array}$$

This is appropriate for a single AP but obvious generalization to multiple APs does not work:

Extension to multiple APs is more complex. Must allow for:

- simultaneous effects of APs on data
- degenerate effects of APs on data
- very different magnitude effects on data (eg. T_{eff} vs. [Fe/H])

Fitness: vector separation

For each source, a, and each AP, *j*, find nearest neighbour (NN) which differ only in *j* ("isovars"), e.g. b and c

Calculate angle, α , between vectors: Nearer to 90° => better separation (less degeneracy)

Calculate magnitude of **cross product**:

$$V_{a,b,c} = d_{a,b} d_{a,c} \sin \alpha$$

N.B. vectors are SNR-weighted, i.e. if $\mathbf{c} = (c_1, c_2, \dots c_j, \dots)$ then

$$C_{i} = \frac{p_{i,c} - p_{i,a}}{\sqrt{\sigma_{i,c}^{2} + \sigma_{i,a}^{2}}}$$

Fitness: final measure

Cross product: $V_{a,b,c} = d_{a,b} d_{a,c} \sin \alpha$

Now use concept of AP-gradients (plus weighting of APs to boost significance of weak APs esp. [Fe/H] and logg)

$$f_{a,b,c} = V_{a,b,c} \xrightarrow{W_b W_c} \longrightarrow weight for AP j, i.e. that which differs between a and c} \Delta \phi_{a,b} \Delta \phi_{a,c} \longrightarrow difference in AP j between a and c$$

J APs => J NNs per source => J(J-1)/2 cross products per source

Fitness =
$$\sum_{a} \sum_{b,c} f_{a,b,c}$$

sum over all NNs for source and for all sources in grid

Genetic operators

Selection

Individuals from parent population (generation g) selected (with replacement) with probability proportional to fitness. *Elitism* used to guarantee selection of best few.

=> intermediate population (IP)

Mutation

Parameters of each individual $\{c_i, w_i, t_i\}$ in IP mutated with a finite probability:

 $c_{i}(g+1) = c_{i}(g) + N(0,\sigma_{c})$

 $t_{i}(g+1) = t_{i}(g)[1 + N(0,\sigma_{t})]$

 $h_i(g+1) = h_i(g)[1 + N(0,\sigma_h)] => children (next generation)$

Stellar grid

logg	$T_{eff} / K (SpT)$							
4.5 4.0 3.5	3500 MV	4750 KV	5750 GV	6750 FV	8500 AV	15000 BV	35000 O V	Purpose: to represent how data depend upon APs
3.0				6000 RRLyr	8500 BHB			17 T _{eff} / logg
2.5			5500 GIII			15000 BIa		combinations at
2.0		4500 KIII	5500 F Ia					each of 5 [Fe/H] and extinction
1.5					8500 AI			values
1.0	3500 MIII		5000 GI					=> 425 sources
0.5								BaSeL 2.2 library
0.0	3500 MIa							+ Fitzpatrick (1999) extinction curves
	[Fe/I	H]:	+0.5	0.0	-0.5	-1.5	-2.5	
	A_V :		0.0	0.2	2.0	5.0	10.0	noise-free data

HFD application

Free parameters: 3*I

central wavelength, c / Å half width at half max., h / Å fractional integration time, t

EA parameters

size of population, K	200
size of elite	10
number of generations	200
probability of mutation	0.4
σ[c] min./max. / Å	25/500
σ [h] min./max.	0.05/0.5
σ[t] min./max.	0.05/0.5

Strategy parameters: 3*K

 $\sigma[c], \sigma[h], \sigma[t]$ per filter system

Limits of search domain:

- λ limits from CCD/instrument QE
- 80 Å < h < 4000 Å
- no limits on t (just normalization)

Applications:

- 1. BBP with 5 filters (G=20)
- 2. MBP with 10 filters (G=20)

BBP-5 system

BBP-5 system

BBP-5 system

- broad filters (bright limit: fitness α sum photons collected)
- overlapping filters
- 4 effective filters (1 almost "turned off")

MBP-10 system

MBP-10 system

MBP-10 system

- broad, overlapping filters
- 6-8 effective filters:
- 2 almost identical to 2 others
- 3 almost "turned off" (t = 0.01-0.015, but broad, so may not be irrelevant)
- Cf. 4 APs requiring minimum of 5 filters

AP variations have broad band effects

HFD reproducibility

Best MBP-10 filter system found in each of 5 runs with different initial filter systems

- MBP: often 5 effective filters
- BBP: two set of solutions with 3 and 4 effective filters
- good fitness repoducibility in best FSs (<10% variation for BBP and MBP)
- reasonable FS reproducibility (esp. with few filters or APs, small grid)

Effects of modifications

Change to BBP setup

restrict fitness sum to T_{eff} and A_V

Effect

3 broad, overlapping filters covering whole wavelength range

Change to MBP setup

Effect

restrict fitness sum to T_{eff} and A_V (grid remains unchanged) restrict grid to $T_{eff} < 8000$ K all sources at G=15

more time allocated to bluest filter

much broader blue filter many more (~ 8) effective filters*

*Faint limit: fitness $\alpha 1/\sqrt{N}$ (*N* = no. filters), relevant for MBP G=20 Bright limit: fitness independent of *N*, relevant for MBP G=15

MBP-10 at G=15

Comparison with 2B and 1X

Conclusions

- Filter design principles
 - vector separation figure-of-merit to maximise SNR-distance between all sources and minimise degeneracy between APs
 - evolutionary operators to efficiently search filter parameter space
- HFD gives a strong preference for:
 - broad filters (AP signatures spread over large part of spectrum)
 - overlapping filters covering whole wavelength range
 - => better use of higher dimensional data space and limited resources
- much higher fitnesses achievable than 2B, 1X or 2F (with this fitness function and grid)
- HFD filters should permit simple AP-estimation models

Future work

- Short term
 - get feedback, esp. on fitness function
 - some effects need to be investigated:
 - tendency to "remove" filters (fitness dependence at faint magnitudes?)
 - "over-separating" some sources at the expense of others?
 - improve grid
 - verification of filter systems with AP-estimation models (ANN, MDM)
 - proposal of specific MBP and BBP systems
- Long term
 - inclusion of other APs (extension of grid)
 - inclusion of "contaminants"
 - addition of fixed filters (e.g. RVSM, ground-based J,H,K)
 - use of multiobjective optimization methods with EAs