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Main points of this talk

• Good inference requires

‣ a forward model,  Data = f(APs)

‣ a probabilistic representation of the results, P(APs | Data) .... 

‣ ... requiring a probabilistic model of uncertainties,  P(Data | APs)

• Good inference requires us to

‣ use all data/information available

‣ achieve self-consistent solutions

AP = astrophysical parameter, e.g. Teff, [Fe/H], AV
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An opportunity and a problem

• Opportunity:  parallaxes (ϖ) potentially allow accurate 
inference of absolute stellar magnitudes ...

... but only if AV can be estimated

Notation:
p = (“photons”) normalized SED, e.g. colours
Φ = astrophysical parameters (APs), here just  AV and Teff
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As the q-constraint depends fundamentally on AV rather than
A0, we need to express the former in terms of the latter. This will
be done in section 3.5. It turns out that for F,G,K stars with extinc-
tions up to 3.5 mag, the difference between A0 and AV is less than
0.2 mag.

The artificial reddening will be done using using the specific
extinction curves from Fitzpatrick (1999) with R0 = 3.1.

2.3 Forward model

The forward model predicts the observed stellar spectral energy
distribution, p, given the stellar astrophysical parameters, φ. How
many astrophysical parameters we need to consider for an accu-
rate prediction depends in particular on the type of stars we want to
model and on the resolution of p. Note that p is a normalized SED,
i.e. it contains no apparent magnitude information. Here the SED is
a set of colours derived from broad band photometry, so I limit the
parameters to A0 and T , p̂ = f (A0 , T ). All other APs are assumed
either to be fixed (R0) or to have negligible impact on the normal-
ized SED ([Fe/H] and log g). While [Fe/H] has a significant and
usable effect on broad U -band photometry (e.g. Ivezić et al. 2008),
its impact on the redder bands considered here is minimal and is ne-
glected. log g is an even weaker parameter (Bailer-Jones 2010a) so
its variance too is neglected. the SED The method can nonetheless
be generalized to incorporate these extra parameters as appropriate.

The forward model is calculated by a smooth fit to a set of tem-
plates using the method developed for the ILIUM algorithm (Bailer-
Jones et al. 2010a). It involves fitting a two-dimensional smoothing
spline (a thin-plate spline) as a function of AV and T for each ele-
ment of p separately.

2.4 The likelihood model

The likelihood of the spectral data given the astrophysical param-
eters is P (p|φ) = P (p|A0 , T ). Assuming Gaussian errors on a
measurement of p = (p1 , . . . , pi , . . . , pI) with covariance matrix
Cp, the likelihood model is an I -dimensional Gaussian

P (p|φ) ∝ e−D2/2 = exp

„
−1

2
[p − f (φ)]T C−1

p [p − f (φ)]

«
.

(4)

If the elements of p were uncorrelated then Cp = diag(σ2
pi

), where
σpi is the expected error in pi, so the exponent could be simplified
to

D 2 =
i=IX

i=1

»
pi − f i(φ)

σpi

–2

. (5)

2.5 Parallax/magnitude (q) constraint

As outlined in the introduction, simple geometry and the defini-
tion of absolute magnitude and extinction places the following con-
straint on noise-free quantities

V + 5 log " = MV + AV − 5 (6)

(I assume we measure the apparent magnitude in the V band, al-
though any other band would do). The goal is to use this equation
to constrain MV and AV from noisy measurements of parallax and
magnitude. To do this we need a noise model. For brevity define

q ≡ V + 5 log " . (7)
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Figure 1. Illustration of using the parallax and apparent magnitude (q =
V +5 log !) to constrain extinction and absolute magnitude. Here we mea-
sure q = −1 (which corresponds to a V = 14 star at 1 kpc, for example,
or to a V = 19 star at 10 kpc, etc.). If this were a noise-free measurement,
it would constrain the solution (MV, AV) to lie on the solid black line.
But as q is a noisy measurement – here a Gaussian with σq = 0.4 (inset)
– all solutions have a finite probability, decreasing with distance from the
line. Specifically, any slice perpendicular to the line has the Gaussian pro-
file show in the inset panel, the red dotted lines in both plots showing the 1
and 2 sigma levels for this value of σq .

Since equation 6 only holds in the absence of noise, consider the
random variable

x = q − (MV + AV − 5) . (8)

The noise model for x is P (x|MV , AV), which has expectation
value zero and variance σ2

q , the variance in q ( MV and AV are not
measured so contribute no noise). For simplicity I choose to model
this as a one-dimensional Gaussian in x, Nx(0, σq). For a given
star (fixed MV and AV), P (x|MV , AV) has its maximum when
the measurement q equals MV + AV − 5 (i.e. x = 0). The further
a measurement of q is away from this value the less probable it
is. As q is the only measured term in equation 8 it follows that
P (x|MV , AV) = P (q|MV , AV).

Now consider P (q|MV , AV) as a function of MV and AV for
a given measurement q, as shown in Fig. 1. We can think of propos-
ing trial solutions for MV and AV: the further they lie from the
solid line, the lower P (q|MV , AV) (inset in Fig. 1). How quickly
the probability drops off depends on σq . With the Gaussian approx-
imation of the noise model for q we have

P (q|MV , AV) = Nx[0, σq(V , ")] (9)
= Nx[q − (MV + AV − 5), σq(V , ")] .

This gives a probabilistic constraint on MV and AV from a mea-
surement of q, quantified by the known statistics of the noise in the
photometry and parallaxes. As noted in section 2.2, we can write
AV as a function of A0 and T , so this q constraint can be written
P (q|MV , A0 , T ).

Note that this does not constrain MV or AV to have astro-
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q ≡ 

• Problem:  AV is degenerate with Teff when inferred from broad 
band photometry
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AP estimation from BVJHK colours (only)

• real data;  “true” APs shown as red cross
• “true” Teff from Valenti & Fischer (2005) from high-res. spectroscopy
• artificially reddened colours
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As the q-constraint depends fundamentally on AV rather than
A0, we need to express the former in terms of the latter. This will
be done in section 3.5. It turns out that for F,G,K stars with extinc-
tions up to 3.5 mag, the difference between A0 and AV is less than
0.2 mag.

The artificial reddening will be done using using the specific
extinction curves from Fitzpatrick (1999) with R0 = 3.1.

2.3 Forward model

The forward model predicts the observed stellar spectral energy
distribution, p, given the stellar astrophysical parameters, φ. How
many astrophysical parameters we need to consider for an accu-
rate prediction depends in particular on the type of stars we want to
model and on the resolution of p. Note that p is a normalized SED,
i.e. it contains no apparent magnitude information. Here the SED is
a set of colours derived from broad band photometry, so I limit the
parameters to A0 and T , p̂ = f (A0 , T ). All other APs are assumed
either to be fixed (R0) or to have negligible impact on the normal-
ized SED ([Fe/H] and log g). While [Fe/H] has a significant and
usable effect on broad U -band photometry (e.g. Ivezić et al. 2008),
its impact on the redder bands considered here is minimal and is ne-
glected. log g is an even weaker parameter (Bailer-Jones 2010a) so
its variance too is neglected. the SED The method can nonetheless
be generalized to incorporate these extra parameters as appropriate.

The forward model is calculated by a smooth fit to a set of tem-
plates using the method developed for the ILIUM algorithm (Bailer-
Jones et al. 2010a). It involves fitting a two-dimensional smoothing
spline (a thin-plate spline) as a function of AV and T for each ele-
ment of p separately.

2.4 The likelihood model

The likelihood of the spectral data given the astrophysical param-
eters is P (p|φ) = P (p|A0 , T ). Assuming Gaussian errors on a
measurement of p = (p1 , . . . , pi , . . . , pI) with covariance matrix
Cp, the likelihood model is an I -dimensional Gaussian

P (p|φ) ∝ e−D2/2 = exp
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2
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If the elements of p were uncorrelated then Cp = diag(σ2
pi

), where
σpi is the expected error in pi, so the exponent could be simplified
to

D 2 =
i=IX

i=1
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pi − f i(φ)
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2.5 Parallax/magnitude (q) constraint

As outlined in the introduction, simple geometry and the defini-
tion of absolute magnitude and extinction places the following con-
straint on noise-free quantities

V + 5 log " = MV + AV − 5 (6)

(I assume we measure the apparent magnitude in the V band, al-
though any other band would do). The goal is to use this equation
to constrain MV and AV from noisy measurements of parallax and
magnitude. To do this we need a noise model. For brevity define

q ≡ V + 5 log " . (7)
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Figure 1. Illustration of using the parallax and apparent magnitude (q =
V +5 log !) to constrain extinction and absolute magnitude. Here we mea-
sure q = −1 (which corresponds to a V = 14 star at 1 kpc, for example,
or to a V = 19 star at 10 kpc, etc.). If this were a noise-free measurement,
it would constrain the solution (MV, AV) to lie on the solid black line.
But as q is a noisy measurement – here a Gaussian with σq = 0.4 (inset)
– all solutions have a finite probability, decreasing with distance from the
line. Specifically, any slice perpendicular to the line has the Gaussian pro-
file show in the inset panel, the red dotted lines in both plots showing the 1
and 2 sigma levels for this value of σq .

Since equation 6 only holds in the absence of noise, consider the
random variable

x = q − (MV + AV − 5) . (8)

The noise model for x is P (x|MV , AV), which has expectation
value zero and variance σ2

q , the variance in q ( MV and AV are not
measured so contribute no noise). For simplicity I choose to model
this as a one-dimensional Gaussian in x, Nx(0, σq). For a given
star (fixed MV and AV), P (x|MV , AV) has its maximum when
the measurement q equals MV + AV − 5 (i.e. x = 0). The further
a measurement of q is away from this value the less probable it
is. As q is the only measured term in equation 8 it follows that
P (x|MV , AV) = P (q|MV , AV).

Now consider P (q|MV , AV) as a function of MV and AV for
a given measurement q, as shown in Fig. 1. We can think of propos-
ing trial solutions for MV and AV: the further they lie from the
solid line, the lower P (q|MV , AV) (inset in Fig. 1). How quickly
the probability drops off depends on σq . With the Gaussian approx-
imation of the noise model for q we have

P (q|MV , AV) = Nx[0, σq(V , ")] (9)
= Nx[q − (MV + AV − 5), σq(V , ")] .

This gives a probabilistic constraint on MV and AV from a mea-
surement of q, quantified by the known statistics of the noise in the
photometry and parallaxes. As noted in section 2.2, we can write
AV as a function of A0 and T , so this q constraint can be written
P (q|MV , A0 , T ).

Note that this does not constrain MV or AV to have astro-
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forward model data covariance

P(ϕ|p)
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Information beyond
the spectrum

•  Use of complementary information

• p constrains Teff and AV

• q constrains MV + AV

• HRD prior constrains MV and Teff
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As the q-constraint depends fundamentally on AV rather than
A0, we need to express the former in terms of the latter. This will
be done in section 3.5. It turns out that for F,G,K stars with extinc-
tions up to 3.5 mag, the difference between A0 and AV is less than
0.2 mag.

The artificial reddening will be done using using the specific
extinction curves from Fitzpatrick (1999) with R0 = 3.1.

2.3 Forward model

The forward model predicts the observed stellar spectral energy
distribution, p, given the stellar astrophysical parameters, φ. How
many astrophysical parameters we need to consider for an accu-
rate prediction depends in particular on the type of stars we want to
model and on the resolution of p. Note that p is a normalized SED,
i.e. it contains no apparent magnitude information. Here the SED is
a set of colours derived from broad band photometry, so I limit the
parameters to A0 and T , p̂ = f (A0 , T ). All other APs are assumed
either to be fixed (R0) or to have negligible impact on the normal-
ized SED ([Fe/H] and log g). While [Fe/H] has a significant and
usable effect on broad U -band photometry (e.g. Ivezić et al. 2008),
its impact on the redder bands considered here is minimal and is ne-
glected. log g is an even weaker parameter (Bailer-Jones 2010a) so
its variance too is neglected. the SED The method can nonetheless
be generalized to incorporate these extra parameters as appropriate.

The forward model is calculated by a smooth fit to a set of tem-
plates using the method developed for the ILIUM algorithm (Bailer-
Jones et al. 2010a). It involves fitting a two-dimensional smoothing
spline (a thin-plate spline) as a function of AV and T for each ele-
ment of p separately.

2.4 The likelihood model

The likelihood of the spectral data given the astrophysical param-
eters is P (p|φ) = P (p|A0 , T ). Assuming Gaussian errors on a
measurement of p = (p1 , . . . , pi , . . . , pI) with covariance matrix
Cp, the likelihood model is an I -dimensional Gaussian

P (p|φ) ∝ e−D2/2 = exp
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2
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p [p − f (φ)]
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If the elements of p were uncorrelated then Cp = diag(σ2
pi

), where
σpi is the expected error in pi, so the exponent could be simplified
to

D 2 =
i=IX

i=1

»
pi − f i(φ)

σpi
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. (5)

2.5 Parallax/magnitude (q) constraint

As outlined in the introduction, simple geometry and the defini-
tion of absolute magnitude and extinction places the following con-
straint on noise-free quantities

V + 5 log " = MV + AV − 5 (6)

(I assume we measure the apparent magnitude in the V band, al-
though any other band would do). The goal is to use this equation
to constrain MV and AV from noisy measurements of parallax and
magnitude. To do this we need a noise model. For brevity define

q ≡ V + 5 log " . (7)
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Figure 1. Illustration of using the parallax and apparent magnitude (q =
V +5 log !) to constrain extinction and absolute magnitude. Here we mea-
sure q = −1 (which corresponds to a V = 14 star at 1 kpc, for example,
or to a V = 19 star at 10 kpc, etc.). If this were a noise-free measurement,
it would constrain the solution (MV, AV) to lie on the solid black line.
But as q is a noisy measurement – here a Gaussian with σq = 0.4 (inset)
– all solutions have a finite probability, decreasing with distance from the
line. Specifically, any slice perpendicular to the line has the Gaussian pro-
file show in the inset panel, the red dotted lines in both plots showing the 1
and 2 sigma levels for this value of σq .

Since equation 6 only holds in the absence of noise, consider the
random variable

x = q − (MV + AV − 5) . (8)

The noise model for x is P (x|MV , AV), which has expectation
value zero and variance σ2

q , the variance in q ( MV and AV are not
measured so contribute no noise). For simplicity I choose to model
this as a one-dimensional Gaussian in x, Nx(0, σq). For a given
star (fixed MV and AV), P (x|MV , AV) has its maximum when
the measurement q equals MV + AV − 5 (i.e. x = 0). The further
a measurement of q is away from this value the less probable it
is. As q is the only measured term in equation 8 it follows that
P (x|MV , AV) = P (q|MV , AV).

Now consider P (q|MV , AV) as a function of MV and AV for
a given measurement q, as shown in Fig. 1. We can think of propos-
ing trial solutions for MV and AV: the further they lie from the
solid line, the lower P (q|MV , AV) (inset in Fig. 1). How quickly
the probability drops off depends on σq . With the Gaussian approx-
imation of the noise model for q we have

P (q|MV , AV) = Nx[0, σq(V , ")] (9)
= Nx[q − (MV + AV − 5), σq(V , ")] .

This gives a probabilistic constraint on MV and AV from a mea-
surement of q, quantified by the known statistics of the noise in the
photometry and parallaxes. As noted in section 2.2, we can write
AV as a function of A0 and T , so this q constraint can be written
P (q|MV , A0 , T ).

Note that this does not constrain MV or AV to have astro-
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q ≡

1) parallax, apparent 
magnitude (q)

2) HRD
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Probabilistic inference
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physically “sensible” values (e.g. the line continues to negative AV

in Fig. 1). This may be done by the HRD prior and/or a prior on
extinction.

2.6 Hertzsprung–Russell Diagram (HRD) prior

The HRD prior, P (MV, T ), gives the relative probabilities of find-
ing stars in different parts of the HRD. The fact that this (MV, T )
plane is far from being uniformly populated is potentially useful in
constraining stellar APs: if MV were known to lie in some range
with some probability, for example, T would correspondingly be
constrained. This is pertinent information independent of the spe-
cific photometric or parallax measurement.

The form we adopt for the HRD depends on the assumed stel-
lar population and can be constructed in a number of different ways.
We could, for example, take an observed sample and normalize the
relative density of stars to give P (MV, T ). Alternatively we could
set the probability at each point to be inversely proportional to the
speed of evolution of all types of stars through that point. In this
article I will construct the HRD prior using a simulated population
of stars evolved with a specified star formation rate, initial mass
function and metallicity distribution (section 3.4 and Fig. 9).

2.7 Probabilistic combination

We are now in a position to derive an expression for P (A0, T |p, q)
in terms of quantities we have just introduced. From Bayes’ theo-
rem

P (A0, T |p, q) =
P (p, q|A0, T )P (A0, T )

P (p, q)
(10)

and from the rule of joint probabilities

P (p, q|A0, T ) = P (p|q, A0, T )P (q|A0, T ) . (11)

As p and q are independent measurements1 we can write
P (p|q, A0, T ) = P (p|A0, T ). This and equation 11 allow us to
write equation 10 as

P (A0, T |p, q) =
P (p|A0, T ) P (q|A0, T ) P (A0) P (T )

P (p, q)
(12)

where I have also assumed that A0 and T are unconditionally inde-
pendent. The terms P (A0), P (T ), P (p, q) are the inevitable priors
over these APs or measurements. The first term in the numerator is
the likelihood (section 2.4). The second term we need to further de-
compose, plus we want to introduce some dependence on MV so
that we can incorporate the HRD and the q constraint. A general
rule of probability allows us to write this term as a marginalization
over MV

P (q|A0, T ) =

Z

V

P (q|MV, A0, T ) P (MV|A0, T ) dMV . (13)

The first term in the integral is the q constraint. As A0 is indepen-
dent of MV and T , we can rewrite the second term in the integral
as

P (MV|A0, T ) = P (MV|T ) =
P (MV, T )

P (T )
. (14)

1 Here I only assume that p and q are independent when conditioned on
A0 and T , although normally we would further assume them to be uncondi-
tionally independent. This is the case when p is a normalized SED, as then
it bears no distance or apparent magnitude information.

(Another way of thinking about this is to note that given T , A0 tells
us nothing additional about MV.) P (MV, T ) is the HRD prior.

Substituting equation 14 into equation 13 and that into equa-
tion 12 gives the final result

P (A0, T |p, q) = (15)

P (p|A0, T )
| {z }

likelihood

P (A0)
P (p, q)
| {z }

priors

Z

MV

P (q|MV, A0, T )
| {z }

q constraint

P (MV, T )
| {z }

HRD prior

dMV

| {z }
HRD/q factor

where we see that P (T ) has cancelled. This equation can be seen
as a product of three terms. The first term is the likelihood func-
tion. The second term comprises priors over the extinction and the
data. Of these, P (p, q) is not relevant (for AP estimation) because
the data are already given. The third term is an integral over two
factors: the combined astrometric/photometric noise model (q con-
straint) and the HRD prior. The integral marginalizes over the un-
known MV leaving a term which is a function of A0 and T .

Given measurements of p and q we can sample the terms in
equation 15 on a grid of A0 and T in order to map the full PDF.
We can also separately marginalize over A0 and T in order to get
one-dimensional PDFs for each AP, i.e.

P (T |p, q) =

Z

A0

P (A0, T |p, q)dA0 (16)

and likewise for A0. If appropriate we may then summarize this
with the mean and a confidence interval.

If we lack information (or don’t want to use it) then some
terms in equation 15 simplify. For example, if we have no mea-
surement of q then we can set the q constraint to a constant. In that
case the integral over MV makes the HRD prior into a prior on just
T . If we don’t want to use an informative prior on the extinction
we can set P (A0) to be constant. Likewise, if we don’t want to use
the HRD prior, then this is equivalent to setting P (MV, T ) to a flat
distribution (!). In practice the q constraint is only effective if we
use it together with the HRD prior and/or the extinction prior.

Throughout the rest of this paper I will use a uniform extinc-
tion prior. As it is separable in equation 15, we can easily imagine
the effect of introducing this prior subsequently. I will show two
sets of results for P (A0, T |p, q) based on two different sets of as-
sumptions (priors). The first is a uniform HRD prior and constant
q constraint, in which case the posterior PDF is just equal to the
likelihood function (renormalized), i.e. the APs are inferred using
only the spectrum, p. I will therefore refer to this as the p-model.
This is the baseline against which I will analyse the effect of using
the HRD/q factor, using specific models for the q constraint and
HRD prior described in the next section. I will refer to this as the
pq-model.

It may be useful to recognise that when p and q are uncon-
ditionally independent (the normal case), we can interpret equa-
tion 15 as the combination of two separate estimates of the PDF
over (A0, T ) given each of p and q. We can see this when we use
Bayes’ theorem to rewrite the right hand side of equation 12 as

P (A0, T |p, q) =
P (A0, T |p)P (A0, T |q)

P (A0, T )
. (17)

The p-model is simply P (A0, T |p).
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Bayes’ theorem
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physically “sensible” values (e.g. the line continues to negative AV

in Fig. 1). This may be done by the HRD prior and/or a prior on
extinction.

2.6 Hertzsprung–Russell Diagram (HRD) prior

The HRD prior, P (MV, T ), gives the relative probabilities of find-
ing stars in different parts of the HRD. The fact that this (MV, T )
plane is far from being uniformly populated is potentially useful in
constraining stellar APs: if MV were known to lie in some range
with some probability, for example, T would correspondingly be
constrained. This is pertinent information independent of the spe-
cific photometric or parallax measurement.

The form we adopt for the HRD depends on the assumed stel-
lar population and can be constructed in a number of different ways.
We could, for example, take an observed sample and normalize the
relative density of stars to give P (MV, T ). Alternatively we could
set the probability at each point to be inversely proportional to the
speed of evolution of all types of stars through that point. In this
article I will construct the HRD prior using a simulated population
of stars evolved with a specified star formation rate, initial mass
function and metallicity distribution (section 3.4 and Fig. 9).

2.7 Probabilistic combination

We are now in a position to derive an expression for P (A0, T |p, q)
in terms of quantities we have just introduced. From Bayes’ theo-
rem

P (A0, T |p, q) =
P (p, q|A0, T )P (A0, T )

P (p, q)
(10)

and from the rule of joint probabilities

P (p, q|A0, T ) = P (p|q, A0, T )P (q|A0, T ) . (11)

As p and q are independent measurements1 we can write
P (p|q, A0, T ) = P (p|A0, T ). This and equation 11 allow us to
write equation 10 as

P (A0, T |p, q) =
P (p|A0, T ) P (q|A0, T ) P (A0) P (T )

P (p, q)
(12)

where I have also assumed that A0 and T are unconditionally inde-
pendent. The terms P (A0), P (T ), P (p, q) are the inevitable priors
over these APs or measurements. The first term in the numerator is
the likelihood (section 2.4). The second term we need to further de-
compose, plus we want to introduce some dependence on MV so
that we can incorporate the HRD and the q constraint. A general
rule of probability allows us to write this term as a marginalization
over MV

P (q|A0, T ) =

Z

V

P (q|MV, A0, T ) P (MV|A0, T ) dMV . (13)

The first term in the integral is the q constraint. As A0 is indepen-
dent of MV and T , we can rewrite the second term in the integral
as

P (MV|A0, T ) = P (MV|T ) =
P (MV, T )

P (T )
. (14)

1 Here I only assume that p and q are independent when conditioned on
A0 and T , although normally we would further assume them to be uncondi-
tionally independent. This is the case when p is a normalized SED, as then
it bears no distance or apparent magnitude information.

(Another way of thinking about this is to note that given T , A0 tells
us nothing additional about MV.) P (MV, T ) is the HRD prior.

Substituting equation 14 into equation 13 and that into equa-
tion 12 gives the final result

P (A0, T |p, q) = (15)

P (p|A0, T )
| {z }

likelihood

P (A0)
P (p, q)
| {z }

priors

Z

MV

P (q|MV, A0, T )
| {z }

q constraint

P (MV, T )
| {z }

HRD prior

dMV

| {z }
HRD/q factor

where we see that P (T ) has cancelled. This equation can be seen
as a product of three terms. The first term is the likelihood func-
tion. The second term comprises priors over the extinction and the
data. Of these, P (p, q) is not relevant (for AP estimation) because
the data are already given. The third term is an integral over two
factors: the combined astrometric/photometric noise model (q con-
straint) and the HRD prior. The integral marginalizes over the un-
known MV leaving a term which is a function of A0 and T .

Given measurements of p and q we can sample the terms in
equation 15 on a grid of A0 and T in order to map the full PDF.
We can also separately marginalize over A0 and T in order to get
one-dimensional PDFs for each AP, i.e.

P (T |p, q) =

Z

A0

P (A0, T |p, q)dA0 (16)

and likewise for A0. If appropriate we may then summarize this
with the mean and a confidence interval.

If we lack information (or don’t want to use it) then some
terms in equation 15 simplify. For example, if we have no mea-
surement of q then we can set the q constraint to a constant. In that
case the integral over MV makes the HRD prior into a prior on just
T . If we don’t want to use an informative prior on the extinction
we can set P (A0) to be constant. Likewise, if we don’t want to use
the HRD prior, then this is equivalent to setting P (MV, T ) to a flat
distribution (!). In practice the q constraint is only effective if we
use it together with the HRD prior and/or the extinction prior.

Throughout the rest of this paper I will use a uniform extinc-
tion prior. As it is separable in equation 15, we can easily imagine
the effect of introducing this prior subsequently. I will show two
sets of results for P (A0, T |p, q) based on two different sets of as-
sumptions (priors). The first is a uniform HRD prior and constant
q constraint, in which case the posterior PDF is just equal to the
likelihood function (renormalized), i.e. the APs are inferred using
only the spectrum, p. I will therefore refer to this as the p-model.
This is the baseline against which I will analyse the effect of using
the HRD/q factor, using specific models for the q constraint and
HRD prior described in the next section. I will refer to this as the
pq-model.

It may be useful to recognise that when p and q are uncon-
ditionally independent (the normal case), we can interpret equa-
tion 15 as the combination of two separate estimates of the PDF
over (A0, T ) given each of p and q. We can see this when we use
Bayes’ theorem to rewrite the right hand side of equation 12 as

P (A0, T |p, q) =
P (A0, T |p)P (A0, T |q)

P (A0, T )
. (17)

The p-model is simply P (A0, T |p).
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physically “sensible” values (e.g. the line continues to negative AV

in Fig. 1). This may be done by the HRD prior and/or a prior on
extinction.

2.6 Hertzsprung–Russell Diagram (HRD) prior

The HRD prior, P (MV, T ), gives the relative probabilities of find-
ing stars in different parts of the HRD. The fact that this (MV, T )
plane is far from being uniformly populated is potentially useful in
constraining stellar APs: if MV were known to lie in some range
with some probability, for example, T would correspondingly be
constrained. This is pertinent information independent of the spe-
cific photometric or parallax measurement.

The form we adopt for the HRD depends on the assumed stel-
lar population and can be constructed in a number of different ways.
We could, for example, take an observed sample and normalize the
relative density of stars to give P (MV, T ). Alternatively we could
set the probability at each point to be inversely proportional to the
speed of evolution of all types of stars through that point. In this
article I will construct the HRD prior using a simulated population
of stars evolved with a specified star formation rate, initial mass
function and metallicity distribution (section 3.4 and Fig. 9).

2.7 Probabilistic combination

We are now in a position to derive an expression for P (A0, T |p, q)
in terms of quantities we have just introduced. From Bayes’ theo-
rem

P (A0, T |p, q) =
P (p, q|A0, T )P (A0, T )

P (p, q)
(10)

and from the rule of joint probabilities

P (p, q|A0, T ) = P (p|q, A0, T )P (q|A0, T ) . (11)

As p and q are independent measurements1 we can write
P (p|q, A0, T ) = P (p|A0, T ). This and equation 11 allow us to
write equation 10 as

P (A0, T |p, q) =
P (p|A0, T ) P (q|A0, T ) P (A0) P (T )

P (p, q)
(12)

where I have also assumed that A0 and T are unconditionally inde-
pendent. The terms P (A0), P (T ), P (p, q) are the inevitable priors
over these APs or measurements. The first term in the numerator is
the likelihood (section 2.4). The second term we need to further de-
compose, plus we want to introduce some dependence on MV so
that we can incorporate the HRD and the q constraint. A general
rule of probability allows us to write this term as a marginalization
over MV

P (q|A0, T ) =

Z

V

P (q|MV, A0, T ) P (MV|A0, T ) dMV . (13)

The first term in the integral is the q constraint. As A0 is indepen-
dent of MV and T , we can rewrite the second term in the integral
as

P (MV|A0, T ) = P (MV|T ) =
P (MV, T )

P (T )
. (14)

1 Here I only assume that p and q are independent when conditioned on
A0 and T , although normally we would further assume them to be uncondi-
tionally independent. This is the case when p is a normalized SED, as then
it bears no distance or apparent magnitude information.

(Another way of thinking about this is to note that given T , A0 tells
us nothing additional about MV.) P (MV, T ) is the HRD prior.

Substituting equation 14 into equation 13 and that into equa-
tion 12 gives the final result

P (A0, T |p, q) = (15)

P (p|A0, T )
| {z }

likelihood

P (A0)
P (p, q)
| {z }

priors

Z

MV

P (q|MV, A0, T )
| {z }

q constraint

P (MV, T )
| {z }

HRD prior

dMV

| {z }
HRD/q factor

where we see that P (T ) has cancelled. This equation can be seen
as a product of three terms. The first term is the likelihood func-
tion. The second term comprises priors over the extinction and the
data. Of these, P (p, q) is not relevant (for AP estimation) because
the data are already given. The third term is an integral over two
factors: the combined astrometric/photometric noise model (q con-
straint) and the HRD prior. The integral marginalizes over the un-
known MV leaving a term which is a function of A0 and T .

Given measurements of p and q we can sample the terms in
equation 15 on a grid of A0 and T in order to map the full PDF.
We can also separately marginalize over A0 and T in order to get
one-dimensional PDFs for each AP, i.e.

P (T |p, q) =

Z

A0

P (A0, T |p, q)dA0 (16)

and likewise for A0. If appropriate we may then summarize this
with the mean and a confidence interval.

If we lack information (or don’t want to use it) then some
terms in equation 15 simplify. For example, if we have no mea-
surement of q then we can set the q constraint to a constant. In that
case the integral over MV makes the HRD prior into a prior on just
T . If we don’t want to use an informative prior on the extinction
we can set P (A0) to be constant. Likewise, if we don’t want to use
the HRD prior, then this is equivalent to setting P (MV, T ) to a flat
distribution (!). In practice the q constraint is only effective if we
use it together with the HRD prior and/or the extinction prior.

Throughout the rest of this paper I will use a uniform extinc-
tion prior. As it is separable in equation 15, we can easily imagine
the effect of introducing this prior subsequently. I will show two
sets of results for P (A0, T |p, q) based on two different sets of as-
sumptions (priors). The first is a uniform HRD prior and constant
q constraint, in which case the posterior PDF is just equal to the
likelihood function (renormalized), i.e. the APs are inferred using
only the spectrum, p. I will therefore refer to this as the p-model.
This is the baseline against which I will analyse the effect of using
the HRD/q factor, using specific models for the q constraint and
HRD prior described in the next section. I will refer to this as the
pq-model.

It may be useful to recognise that when p and q are uncon-
ditionally independent (the normal case), we can interpret equa-
tion 15 as the combination of two separate estimates of the PDF
over (A0, T ) given each of p and q. We can see this when we use
Bayes’ theorem to rewrite the right hand side of equation 12 as

P (A0, T |p, q) =
P (A0, T |p)P (A0, T |q)

P (A0, T )
. (17)

The p-model is simply P (A0, T |p).
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AP estimation from BVJHK colours
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AP estimation from BVJHK colours + q, HRD
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Numerical improvement by use of q and HRD

5280 stars with Teff = 4700–6600 K, AV = 0–2.5 mag

Precision: 90% confidence interval
• logTeff improvement: 0.055 dex to 0.038 dex

• AV improvement: 0.63 mag to 0.43 mag

Accuracy: mean absolute residual (estimated minus true)
• logTeff improvement: 0.025 dex to 0.015 dex

• AV improvement: 0.29 mag to 0.19 mag
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Application to 85 000 Hipparcos/2MASS stars
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Application to 85 000 Hipparcos/2MASS stars7000 6000 5000

10
8

6
4

2
0

−2
−4

T (p−model) / K

M
_V

 (p
−m

od
el

) /
 m

ag

0.0

0.2

0.4

0.6

0.8

1.0

7000 6000 5000

10
8

6
4

2
0

−2
−4

T (pq−model) / K

M
_V

 (p
q−

m
od

el
) /

 m
ag

0.0

0.2

0.4

0.6

0.8

1.0

BVJHK, parallax, HRD

N
or

m
al

iz
ed

 s
te

lla
r 

de
ns

ity



Coryn Bailer-Jones, MPIA Heidelberg

Drawbacks of conventional approaches

Why modelling of y(AP | Data) (e.g. ANN, SVM) is a bad idea

• it’s an inverse problem

‣ may not be unique

‣ cumbersome to fit and inflexible with heterogeneous inputs

• methods are invariably non-probabilistic

• cannot recognize degeneracies, multiple solutions or give errors 
bars in any sensible way

• cannot naturally/explicitly incorporate domain knowledge or 
prior information ⇒ maybe inconsistent, unphysical solutions
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Summary and Conclusions

• Good inference needs a forward model and a probabilistic 
model of the uncertainties

• You do have information beyond the SED, so use it!

• Use of parallax, HRD improves Teff, AV accuracy by 35% on 
Hipparcos/2MASS data (BVJHK)

• Method gives full PDF over solutions

• AP estimation by conventional (inverse) approach (e.g. with 
ANN, SVM etc.) has significant disadvantages

• Plan to use in Gaia data processing

• http://tinyurl.com/qmethod (MNRAS, accepted)

http://tinyurl.com/qmethod
http://tinyurl.com/qmethod

