Bayesian inference of stellar parameters and interstellar extinction using parallaxes and multiband photometry

Coryn A.L. Bailer-Jones @ MPIA, Heidelberg AG, Bonn, 14 Sept. 2010

Main points of this talk

- AP = astrophysical parameter, e.g. T_{eff} , [Fe/H], Av
- Good inference requires
 - ▶ a forward model, Data = f(APs)
 - ▶ a probabilistic representation of the results, P(APs | Data)
 - ... requiring a *probabilistic model* of uncertainties, P(Data | APs)
- Good inference requires us to
 - use all data/information available
 - achieve self-consistent solutions

An opportunity and a problem

Opportunity: parallaxes (\$\overline{\ove\verline{\overlin{\verline{\overline{\overline{\overline{\over\

$$\mathbf{q} = \mathbf{V} + 5\log\varpi = \mathbf{M}_{\mathrm{V}} + \mathbf{A}_{\mathrm{V}} - 5$$

... but only if $A_{\rm V}$ can be estimated

• Problem: A_V is degenerate with T_{eff} when inferred from broad band photometry

Notation: $\mathbf{p} = (\text{``photons''}) \text{ normalized SED, e.g. colours}$ $\mathbf{\Phi} = \text{astrophysical parameters (APs), here just } A_V \text{ and } T_{\text{eff}}$

• artificially reddened colours

- Use of complementary information
 - **p** constrains T_{eff} and A_V
 - q constrains $M_V + A_V$

$$\mathbf{q} \equiv V + 5\log\varpi = M_{\rm V} + A_{\rm V} - 5$$

log(Effective Temperature / K)

• HRD prior constrains M_V and T_{eff}

Probabilistic inference

AP estimation from BVJHK colours

AP estimation from BVJHK colours + q, HRD

Numerical improvement by use of q and HRD

5280 stars with T_{eff} = 4700–6600 K, A_V = 0–2.5 mag

Precision: 90% confidence interval

- $logT_{eff}$ improvement: 0.055 dex to 0.038 dex
- A_v improvement: 0.63 mag to 0.43 mag

Accuracy: mean absolute residual (estimated minus true)

- logT_{eff} improvement: 0.025 dex to 0.015 dex
- A_v improvement: 0.29 mag to 0.19 mag

Application to 85 000 Hipparcos/2MASS stars

BVJHK only

Application to 85 000 Hipparcos/2MASS stars

BVJHK, parallax, HRD

Coryn Bailer-Jones, MPIA Heidelberg

Drawbacks of conventional approaches

Why modelling of y(AP | Data) (e.g. ANN, SVM) is a bad idea

- it's an inverse problem
 - may not be unique
 - cumbersome to fit and inflexible with heterogeneous inputs
- methods are invariably non-probabilistic
 - cannot recognize degeneracies, multiple solutions or give errors bars in any sensible way
- cannot naturally/explicitly incorporate domain knowledge or prior information \Rightarrow maybe inconsistent, unphysical solutions

Summary and Conclusions

- Good inference needs a *forward* model and a *probabilistic* model of the uncertainties
- You do have information beyond the SED, so use it!
- Use of parallax, HRD improves T_{eff}, A_V accuracy by 35% on Hipparcos/2MASS data (BVJHK)
- Method gives full PDF over solutions
- AP estimation by conventional (inverse) approach (e.g. with ANN, SVM etc.) has significant disadvantages
- Plan to use in Gaia data processing
- http://tinyurl.com/qmethod (MNRAS, accepted)