Stellar parameter estimation in the Gaia Data Processing and Analysis Consortium

Coryn Bailer-Jones (MPIA Heidelberg) on behalf of DPAC Coordination Unit 8

> Stellar spectroscopy conference MPIA April 2015

Gaia spectroscopy

wavelength / nm

Observed uncalibrated BP/RP spectra

Graphics: ESA/DPAC/Astrium

Observed uncalibrated BP/RP spectra

Graphics: ESA/DPAC/Astrium/ C. Jordi & J.-M. Carrasco

wavelength / nm

Simulated radial velocity spectra (RVS)

photon counts + offset

Observed early RVS spectrum

Graphics: ESA/DPAC/Astrium/ D. Katz, O. Marchal, C. Soubiran

- probabilistic source classification
 - classes: star, binary, quasar, galaxy, ...
 - data: BP/RP; photometry; position, parallax, proper motion
- astrophysical parameter (AP) estimation
 - for single and binary stars, quasars, and galaxies
 - data: BP/RP; RVS; parallax (for stars)
- use of various stellar libraries (plus calibration against standards)
- novelty detection (outlier analysis)

AP estimation system (Apsis) in Gaia

For details see: Bailer-Jones et al. (2013)

Acronym	Name	
DSC	Discrete Source Classifier	
ESP	Extended Stellar Parametrizer:	
-CS	ESP – Cool Stars	
-ELS	ESP – Emission Line Stars	
-HS	ESP – Hot Stars	
-UCD	ESP – Ultra Cool Dwarfs	
FLAME	Final Luminosity Age and Mass Estimator	
GSP-Phot	Generalized Stellar Parametrizer – Photometry	
GSP-Spec	Generalized Stellar Parametrizer – Spectroscopy	
MSC	Multiple Star Classifier	
OA	Outlier Analysis	
OCA	Object Clustering Algorithm	
QSOC	Quasar Classifier	
TGE	Total Galactic Extinction	
UGC	Unresolved Galaxy Classifier	

Preliminary fitting of BP/RP spectra

black = Gaia data red = model fit (GSP-Phot/Aeneas with Phoenix)

- is a function of true parameters, magnitude, no. observations
- internal RMS residuals for FGKM stars (wide range of other APs)

AP	G=15	G=19
T _{eff} / K	70 - 170	90 - 630
A ₀ / mag	0.07 - 0.14	0.15 - 0.35
Fe/H] / dex	0.15 - 0.3	0.3 - 0.6
logg / dex	0.2 - 0.4	0.15 - 0.45

- class probabilities, T_{eff}, A₀, logg, [Fe/H], (R₀, [α/Fe], …)
 - derived M_G, luminosity, mass, radius, age (precision highly variable)
 - uncertainty estimates, posterior PDF in some cases
 - multiple sets of estimates (different methods, data, spectral libraries)
 - use of parallax and physical reality (e.g. HRD) in some cases
- additional AP estimates for specific types of stars
 - e.g. emission line stars, ultra cool dwarfs

- **GRI** (mid 2016): nothing planned
- GR2 (early 2017): T_{eff}, A₀ based on BP/RP; integrated BP/RP photometry
- GR3 (2018): main APs based on BP/RP and RVS; BP/RP and RVS
- **GR4** (2019): as GR3 but with improved precision and calibration; more detailed APs
- Final release (2022): improvement of all data products; groundbased auxiliary data

- Gaia has a significant spectroscopic capability
- The Gaia catalogue will contain
 - ► T_{eff}, A₀, logg, [Fe/H], some individual abundances, physical parameters
 - multiple parameter estimates: different data/methods/libraries
- Large numbers of objects (variable precision)
 - 10⁹ stars from low res. spectrophotometry (330-1050 nm; G < 20)
 - ▶ 10⁷ stars from high res. spectroscopy (847-871 nm; G_{RVS} < 12)

RVS, end-of-mission, pre-launch, SNR

BP/RP, end-of-mission, pre-launch, SNR

Stellar libraries

Name	N	$T_{\rm eff}/{ m K}$	$\log g/\det$	[Fe/H]/dex	Ref.	Notes
OB stars	1296	15000-55000	1.75-4.75	0.0-0.6	1	TLUSTY code; NLTE, mass loss, v _{micro}
Ap/Bp stars	36	7000-16000	4.0	0.0	2	LLmodels code, chemical peculiarities
A stars	1450	6000-16000	2.5 - 4.5	0.0	3	LLmodels code, $[\alpha/\text{Fe}] = 0.0, +0.4$
MARCS	1792	2800-8000	-0.5 - 5.5	-5.0 - 1.0	4	Galactic enrichment law for $[\alpha/Fe]$
Phoenix	4575	3000-10000	-0.5 - 5.5	-2.5 - 0.5	5	$\Delta T_{\rm eff} = 100 \ {\rm K}$
UCD	2560	400-4000	-0.5 - 5.5	-2.5 - 0.5	6	various dust models
C stars MARCS	428	4000-8000	0.0 - 5.0	-5.0 - 0.0	7	[C/Fe] depends on [Fe/H]
Be	174	15000-25000	4.0	0.0	8	range of envelope to stellar radius ratios
WR	43	25 000-51 000	2.8 - 4.0	0.0	9	range of mass loss rates
WD	187	6000-90000	7.0-9.0	0.0	10	WDA & WDB
MARCS NLTE	33	4000-6000	4.5-5.5	0.0	11	NLTE line profiles
MARCS RVS	146 394	2800-8000	-0.5 - 5.5	-5.0 - 1.0	12	variations in individual elements abundances
3D models	13	4500-6500	2.0 - 5.0	-2.0-0.0	13	StaggerCode models and Optim3D code
SDSS stars	50 000	3750-10000	0.0 - 5.5	-2.5 - 0.5	14	semi-empirical library
Emission line stars	1620	—	—	—	15	semi-empirical library (see Sect. 5.4)

Notes. *N* is the number of spectra in the library. Ap/Bp are peculiar stars; UCD are ultracool dwarfs; WR are Wolf Rayet stars; WD are white dwarfs.

References. 1) Bouret et al. (2008); 2) Kochukhov & Shulyak (2008); 3) Shulyak et al. (2004); 4) Gustafsson et al. (2008); 5) Brott & Hauschildt (2005); 6) Allard et al. (2001); 7) Masseron, priv. comm.; 8), 9) Martayan et al. (2008); 10) Castanheira et al. (2006); 11) Korn et al., priv. comm.; 12) Recio-Blanco et al., priv. comm.; 13) Chiavassa et al. (2011); 14) Tsalmantza & Bailer-Jones (2010b); 15) Lobel et al. (2010).