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Charles Darwin, 1809 - 1882

1. Geospiza rmagnirostis 2. Geospiza Fortis
3, Geospiza patvula 4, Cetthidea alivacea

Finches from Galapagos Archipelago

David Lack. Darwin’s Finches. Cambridge University Press, Cambridge (UK) 1947
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Three necessary conditions for Darwinian evolution are:

1. Multiplication,
2. Variation, and

3. Selection.

Variation through mutation and recombination operates on the genotype
whereas the phenotype is the target of selection.

One important property of the Darwinian scenario is that variations in the
form of mutations or recombination events occur uncorrelated with their
effects on the selection process.



Three necessary conditions for Darwinian evolution are:

1. Multiplication,
1. Variation, and

1. Selection.

Charles Darwin, 1809-1882

All three conditions are fulfilled not only by cellular organisms
but also by nucleic acid molecules - DNA or RNA - in suitable
cell-free experimental assays:

Darwinian evolution in the test tube



Darwin's mechanism explains optimization and adaptation.

natural selection /s vivo and in evolution experiments

Darwin's mechanism cannot explain increases in complexity.

complexity of bacteria < protists < plants, animals, fungi
increasing complexity o increasing genetic information

increasing genetic information < increasing DNA lengths
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populations in compartments
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DNA
eukaryotes
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human societies

Eors Szathmary, John Maynard Smith. The major evolutionary transitions.
Nature 374:227-232, 1995

John Maynard Smith, Eors Szathmary. The major transitions in evolution.
Oxford University Press, New York 1995



Biological evolution of higher organisms 1s an exceedingly
complex process not because the mechanism of selection is
complex but because cellular metabolism and control of
organismic functions is highly sophisticated.

The Darwinian mechanism of selection does neither require
organisms nor cells for its operation.

Make things as simple as possible,

but not simpler.
Albert Finstein, 1950 (?)

Occam's razor: Sir William Hamilton, 1852
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Scarcity is not the mother of inventionl



1. Darwin's natural selection
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Generalization of the logistic equation to n variables yields selection
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2. Mutation and selection
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Mutation and (correct) replication as parallel chemical reactions

M. Eigen. 1971. Naturwissenschaften 58:465,
M. Eigen & P. Schuster.1977-78. Naturwissenschaften 64:541, 65:7 und 65:341
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Nature 374:227-232, 1995

John Maynard Smith, Eors Szathmary. The major transitions in evolution.
Oxford University Press, New York 1995



Consequences of the error threshold phenomenon

Replicase ribozymes are not accurate enough for faithful
replication of RN A molecules of its own lengths.

Cooperation of two or more RNA molecules 1s required
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Cooperative RNA replicators



3. A model for transitions



1 8jel Moy}

dy =
=

[{]

[v] uonin|os 3001s

«— Op

3JNIXIW uoldeal

";-'-;Ks'. ‘ 8

[XI'Iv]

0

(M1SD) 1010831 ue) PALINS PJ A[SNONUNUOD 9y T,

«—



Q.Q..w.

*~ — A
1 | _
>|_|x\ — Nx\,knw,,ﬁ
-
A+ X, + X \gv 2K + X, g=1,...,n
A — O
X,&. — I, 9=1,....n

Toy model for the analysis of competition and cooperation



A+ X +X —

n? catalytic terms




X5 X5
X, X3
X, = X &= Xy = - &= X1 = X,
kj
A + x‘\. + X,TL — Mx\ + X,TLW 17=1,...,n, b.B_HOQ n

n catalytic terms



A
A + X, 22X, j=1,....n
A+ X + X — 2X;, + X4 7=1,....n, jmodn
A — 2
.

g, 9=1,....n

Toy model for the analysis of competition and cooperation



Al =a and [X;| = 2;;5=1,...,n
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In case of compatibility and linear equations we obtain 2" solution.
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4. Cooperation tames competition
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5. Effects of stochasticity
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stochastic cooperation with n = 2




stochastic hypercycles with n =3
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Initial values Counted states of final outcomes

X1(0)  X»(0) Nsg, me__“_ N @) Ns,
1 1 385.1+23.6 1481.0+36.8 1719.6 +37.8 6414.3 +53.8
2 1 77.44+9.1 1822.6 £41.6 367.6 £17.0 7733.3 +38.3
1 2 71.6 = 8.5 280.6 £20.0 2075.8+£28.9 7572.04+39.2
3 1 15.04+2.9 1900.4 4+ 30.9 74.6 +10.0 8009.0 4 35.3
1 3 14.0 + 3.7 53.1+4.8 2180.5+48.4 7752.34+53.8
2 2 149 +26 303.7 £ 16.0 3545 +23.8 9326.8+44.9
3 3 0 70.2 £10.0 106.2 +£10.9 982344+ 15.7
4 4 0 1214+ 2.6 28.0 £5.0 9959.9 + 6.4
5 5 0 25+1.1 6.3+2.6 9991.2 + 3.0

Choice of parameters: f; = 0.011 [M-'t'1]; £, =0.009 [M-t];

k, =0.0050 [M2t1]; k,=0.0045 [M2t1];
a,=200; r=0.5[Vt']; a(0)=0

Competition and cooperation with n =2



Initial values Counted states of final outcomes

X1(0)  X»(0) Nsg, me__“_ N @) Ns,
1 1 385.1+23.6 1481.0+36.8 1719.6 +37.8 6414.3 +53.8
2 1 77.44+9.1 1822.6 £41.6 367.6 £17.0 7733.3 +38.3
1 2 71.6 = 8.5 280.6 £20.0 2075.8+£28.9 7572.04+39.2
3 1 15.04+2.9 1900.4 4+ 30.9 74.6 +10.0 8009.0 4 35.3
1 3 14.0 + 3.7 53.1+4.8 2180.5+48.4 7752.34+53.8
2 2 149 +26 303.7 £ 16.0 3545 +23.8 9326.8+44.9
3 3 0 70.2 £10.0 106.2 +£10.9 982344+ 15.7
4 4 0 1214+ 2.6 28.0 £5.0 9959.9 + 6.4
5 5 0 25+1.1 6.3+2.6 9991.2 + 3.0

Choice of parameters: f; = 0.011 [M-'t'1]; £, =0.009 [M-t];

k, =0.0050 [M2t1]; k,=0.0045 [M2t1];
a,=200; r=0.5[Vt']; a(0)=0

Competition and cooperation with n =2



Initial values Counted states of final outcomes

X1(0)  X3(0) N, me__u Zﬂu Ns,
1 1 385.1+236 1481.0+36.8 1719.6+37.8 6414.34+53.8
2 1 77.4+9.1 1822.6 +41.6 367.6 +17.0 7733.3 +38.3
1 2 71.6 £ 8.5 280.6 4 20.0 2075.8 289 7572.04+39.2
3 1 15.0+ 29 1900.4 4+ 30.9 74.6 +10.0 8009.0 £+ 35.3
1 3 14.0 + 3.7 53.1+4.38 2180.5+ 484 7752.3+53.8
2 2 149426 303.7 +16.0 35454+ 23.8 09326.8 +-44.9
3 3 0 70.2 +10.0 106.2 +10.9 9823.4 + 15.7
4 4 0 121+ 2.6 28.0 +5.0 09599+ 6.4
5 5 0 254+1.1 6.3+ 2.6 9991.2 + 3.0

Choice of parameters: f; = 0.011 [M-'t'1]; £, =0.009 [M-t];

k, =0.0050 [M2t1]; k,=0.0045 [M2t1];
a,=200; r=0.5[Vt']; a(0)=0

Competition and cooperation with n =2
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6. Scarcity is not the mother of invention!
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Zaldua I., Equisoain J.J., Zabalza A., Gonzalez E.M., Marzo A., Public University of Navarre -
Own work, https://commons.wikimedia.org/w/index.php?curid=46386894
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a plant cell



How Does Gomplexity Arise In Evolution

Nature’s recipe for mastering scarcity, abundance, and unpredictability

hree temporal characteristics of terrestrial environments

were mentioned in the article’s subtitle: scarcity and

abundance of resources, as well as unpredictability. In
summary, we have argued that nature uses optimization to
deal with scarcity, she takes advantage of abundance to cre-
ate innovation, and her recipe to master unpredictability is
tinkering and modular design.

Peter Schuster. Complexity 2 (1): 22-30, 1996



“ THE SIMPLY Gmm—uuﬂ

Major Transitions in Evolution
and in Technology

What They Have in Common and Where They Differ

he complexity of organisms has not increased gradually in biological evolu-

tion but stepwise. The steps are called major transitions and coincide with

the origin of new hierarchical levels of organization. The first systematic survey
and discussion of possible mechanisms for such transitions has been presented in
1995 in a monograph by Maynard Smith and Szathmary [1]. Major transitions listed
by Maynard Smith and Szathmdry lead, for example, from independent replicators of
an RNA world to chromosomes, from RNA as gene and catalyst to DNA and protein,
from prokaryotes to eukaryotes, from asexual clones to sexual populations, from uni-
cellular protists to multicellular organisms with cell differentiation and development,
from solitary individuals to insect colonies with cast systems, and finally from pri-
mate to human societies. Although the transitions involve very different molecular,
metabolic, and organizational changes they share a common principle: Before the
transition the individuals reproduced and evolved independently, and competed in
populations according to the Darwinian mechanism of selection. After the transition PETER SCHUSTER
we are dealing with a new unit in which the previous competitors are integrated and

forced to cooperate. They have lost their independence although the degree of
retained individuality is highly variable in the different transitions. There are several
mechanisms suppressing natural selection, the simplest one is catalyzed reproduc- Peter Schuster is the Editor-in- Chief of

tion as used, for example, in mathematical models of symbiosis or hypercycles [2,3]. Complexity at the Institut fiur
Thearetische Chemie der Universitat

Wien, Wahringerstrafie 17, Wien 1090,

QQS@N&R&Q N H Ah_.v \Nl H W R NO H @ Austria (e-mail: pks@tbi.univie.ac.at)



Symbiosis

The presumably most common form is
the endosymbiosis [12] in eukaryotic
cells of animals and fungi where the
cellular nucleus and the mitochondria
reproduce autonomously but strong
mutual dependence is caused by the
majority ol mitochondrial genes being
stored in the nuclear genome and
strong meltabolic interaction since oxi-
dative phosphorylation is performed
only in mitochondria. The extension to
three cooperating partners has hap-
pened in the cells of plants and algae
where the chloroplasts represent a sec-
ond class of endosymbionts [23]. Sev-
eral other examples of three-way
symbiosis are known, for example, the
systematic studies on ants-fungi-bac-
teria systems [24]. Examples ol four-
way symbiosis seem to be rare [25].

Austerity versus abundance

In summary, the toy model for tran-
sitions has nicely demonstrated that
small resources give rise to selection
whereas abundant resources allow for
the formation of cooperative systems
and in this way initiate major transi-
tions. The model was conceived for
the formation of symbiontic units,
which admittedly is based on an easy
to understand and to formalize mode
of cooperative interaction. Other coop-
erative interactions in biology and the
complex interaction networks in tech-
nology based economics are much
harder to model but it seems highly
plausible that the result will be the
same: Scarcity drives optimization but
true innovation and major transitions
require abundant resources

Complexity 21 (4): 13 (2016)
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