From Darwin's Natural Selection to Reproducing Molecular Networks

Peter Schuster

Institut für Theoretische Chemie, Universität Wien, Austria

The Santa Fe Institute, Santa Fe, New Mexico, USA and

Heidelberg Initiative for the Origin of Life

Heidelberg, 01.06.2016

Web-Page for further information:

http://www.tbi.univie.ac.at/~pks

Prologue

small molecules

vesicles, composoms,

David Lack. Darwin's Finches. Cambridge University Press, Cambridge (UK) 1947

Voyage on HMS Beagle, 1831 - 1836

Charles Darwin, 1809 - 1882

Genotype, Genome

GCGGATTTAGCTCAGTTGGGAGAGCGCCAGACTGAAGATCTGGAGGTCCTGTGTTCGATCCACAGAATTCGCACCA

Biochemistry Structural Biology Molecular Biology Molecular Evolution Molecular Genetics Systems Biology Bioinfomatics

> Genetics Epigenetics Environment

> > Development

Cell Biology Developmental Biology Neurobiology Microbiology Botany and Zoology Anthropology Ecology

Phenotype

Three necessary conditions for Darwinian evolution are:

- 1. Multiplication,
- 2. Variation, and
- 3. Selection.

whereas the phenotype is the target of selection. Variation through mutation and recombination operates on the genotype

One important property of the Darwinian scenario is that variations in the form of mutations or recombination events occur uncorrelated with their

effects on the selection process.

Three necessary conditions for Darwinian evolution are:

- 1. Multiplication,
- .. Variation, and
- 1. Selection.

Charles Darwin, 1809-1882

but also by nucleic acid molecules - DNA or RNA - in suitable All three conditions are fulfilled not only by cellular organisms cell-free experimental assays:

Darwinian evolution in the test tube

humans

termites

John Maynard Smith, Eörs Szathmáry. The major transitions in evolution. Oxford University Press, New York 1995

Eörs Szathmáry, John Maynard Smith. The major evolutionary transitions. Nature 374:227-232, 1995

	nrimate concieties	solitary individuals	protists	asexual clones	prokaryotes	RNA	independent replicators	replicating molecules
1	ļ	₩	₩	₩	₩	₩	₩	₩
	human concieties	colonies	animals, plants, fungi	sexual clones	eukaryotes	DNA	chromosomes	populations in compartments

organismic functions is highly sophisticated. complex but because cellular metabolism and control of complex process not because the mechanism of selection is Biological evolution of higher organisms is an exceedingly

organisms nor cells for its operation The Darwinian mechanism of selection does neither require

Albert Einstein, 1950 (?)

Occam's razor: Sír William Hamilton, 1852

Make things as simple as possible, but not simpler.

- 1. Darwin's natural selection
- 2. Mutation and selection
- 3. A model for transitions
- 4. Cooperation tames competition
- 5. Effects of stochasticity
- 6. Scarcity is **not** the mother of invention!

1. Darwin's natural selection

- 2. Mutation and selection
- 3. A model for transitions
- 4. Cooperation tames competition
- 5. Effects of stochasticity
- 6. Scarcity is not the mother of invention!

(A) + X = 2 X

$$\frac{dx}{dt} = fx \implies x(t) = x(0)e^{ft}$$

exponential growth

 $(A) + X \rightarrow 2 X$

 $x(t), y(t) / C \longrightarrow$ 0.00 0.25 0.50 0.75 1.00 0 exponential growth 20 40 - time t ---: logistic growth 60 80 100

Pierre-François Verhulst, 1804-1849

 $\begin{array}{c} (A)+X \rightarrow 2X \\ 2X \rightarrow \otimes \end{array}$

Was known 30 years before the 'Origin of Species'

Generalization of the logistic equation to *n* variables yields selection

$$\frac{\mathrm{d}x}{\mathrm{d}t} = f x \left(1 - \frac{x}{C} \right) \implies \frac{\mathrm{d}x}{\mathrm{d}t} = f x - \frac{x}{C} f x$$
$$f x \equiv \Phi(t), C = 1: \quad \frac{\mathrm{d}x}{\mathrm{d}t} = x \left(f - \Phi \right)$$

generalization of the logistic equation to *n* variables yields selection

$$\frac{\mathrm{d}\Phi}{\mathrm{d}t} = \langle f^2 \rangle - \langle \bar{f} \rangle^2 = \mathrm{var}\{f\} \ge 0$$

$$\frac{\mathrm{d}x_{j}}{\mathrm{d}t} = x_{j} \left(f_{j} - \sum_{i=1}^{n} f_{i} x_{i} \right) = x_{j} \left(f_{j} - \Phi \right) ; \quad \Phi = \sum_{i=1}^{n} f_{i} x_{i}$$

$$X_1, X_2, \dots, X_n$$
: $[X_i] = x_i; \quad \sum_{i=1}^n x_i = C = 1; \quad f_i = f(X_i)$

$$(\mathsf{A}) + \mathsf{X}_i \rightarrow 2 \mathsf{X}_i; \quad i = 1, 2, \dots, n$$

before the development of molecular biology mutation was treated as a "deus ex machina"

$$f_1 = 1$$
, $f_2 = 2$, $f_3 = 3$, $f_4 = 7$

1. Darwin's natural selection

2. Mutation and selection

- 3. A model for transitions
- 4. Cooperation tames competition
- 5. Effects of stochasticity
- 6. Scarcity is not the mother of invention!

M. Eigen & P. Schuster. 1977-78. Naturwissenschaften 64:541, 65:7 und 65:341 M. Eigen. 1971. Naturwissenschaften 58:465. Mutation and (correct) replication as parallel chemical reactions

 $\frac{\mathrm{d}x_{j}}{\mathrm{d}t} = \sum_{i=1}^{n} W_{ji} x_{i} - x_{j} \Phi ; \ j = 1, 2, \dots, n$

M. Eigen & P. Schuster. 1977-78. Naturwissenschaften 64:541, 65:7 und 65:341 M. Eigen. 1971. Naturwissenschaften 58:465. Mutation and (correct) replication as parallel chemical reactions

 $\frac{\mathrm{d}x_{j}}{\mathrm{d}t} = \sum_{i=1}^{n} W_{ji} x_{i} - x_{j} \Phi ; \ j = 1, 2, \dots, n$

faster sequenc

The error threshold in replication and mutation

of a hammerhead viroid. Science 323:1308. Selma Gago, Santiago F. Elena, Ricardo Flores, Rafael Sanjuán. 2009. Extremely high mutation rate

John Maynard Smith, Eörs Szathmáry. The major transitions in evolution. Oxford University Press, New York 1995

Eörs Szathmáry, John Maynard Smith. The major evolutionary transitions. Nature 374:227-232, 1995

primate societies	solitary individuals	protists	asexual clones	prokaryotes	RNA	independent replicators	replicating molecules
₩	₩	₽	₩	₩	₩	↓	₽
human societies	colonies	animals, plants, fungi	sexual clones	eukaryotes	DNA	chromosomes	populations in compartments

Consequences of the error threshold phenomenon

Replicase ribozymes are not accurate enough for faithful replication of RNA molecules of its own lengths.

Cooperation of two or more RNA molecules is required

Cooperative RNA replicators

Nilesh Vaidya, Michael L. Manapar, Irene A. Chen, Ramon Xulvi_Brunet, Eric J. Hayden and Niles Lehman. Spontaneous network formation among cooperative RNA replicators. Nature 491:73-77, 2012

- 1. Darwin's natural selection
- 2. Mutation and selection

3. A model for transitions

- 4. Cooperation tames competition
- 5. Effects of stochasticity
- 6. Scarcity is not the mother of invention!

The continuously fed stirred tank reactor (CFSTR)

Toy model for the analysis of competition and cooperation

$\mathbf{A} + \mathbf{X}_j + \mathbf{X}_i \quad \xrightarrow{k_{ji}} \quad 2\mathbf{X}_j + \mathbf{X}_i; \ i, j = 1, \dots, n$

 n^2 catalytic terms

n catalytic terms

 $\mathbf{A} + \mathbf{X}_j + \mathbf{X}_{j+1} \xrightarrow{k_j} \mathbf{2X}_j + \mathbf{X}_{j+1}; \ j = 1, \dots, n, \ j \ \text{mod} \ n$

 $X_n \Leftrightarrow X_1 \Leftrightarrow X_2 \Leftrightarrow \cdots \Leftrightarrow X_{n-1} \Leftrightarrow X_n$

Toy model for the analysis of competition and cooperation

In case of compatibility and linear equations we obtain 2^n solution.

stationary solutions:
$$\overline{x}_j = 0$$
 or $(f_j + k_j \overline{x}_{j+1}) \overline{a} - r = 0$

$$\frac{\mathrm{d}x_j}{\mathrm{dt}} = x_j \left((f_j + k_j x_{j+1})a - r \right), \ j = 1, \dots, n, \ j \mod n$$

$$\begin{bmatrix} \mathbf{A} \end{bmatrix} = a \text{ and } [\mathbf{X}_j] = x_j; \ j = 1, \dots, n$$
$$\frac{\mathrm{d}a}{\mathrm{d}t} = -a \left(\sum_{j=1}^n (f_j + k_j x_{j+1}) x_j + r \right) + a_0 r$$

$\overline{a} = \alpha = \frac{1}{2} \left(a_0 \right)$	selection cooperation	extinction	name		$f_2 > f_1$ and $k_2 < k_1$ increasing a_0 -values
$(a_0 + \psi - \sqrt{(a_0 + \psi)^2 - 4r\phi})$	$S_1^{(2)}$ S_2	S_0	symbol	_	k ₁
$(a_0 + \psi)^2$	$\frac{r}{f_2} = 0$ $\alpha = \frac{r - f_2 \alpha}{k_2 \alpha}$	n_{0} 0	stationa \overline{a} \overline{x}_1	O selection	extinction
$-4r\phi$) $a_0 - \frac{r}{f_2}$ $\frac{f_2 \alpha}{\alpha} = \frac{r - f_1 \alpha}{k_1 \alpha}$	0	stationary values $\overline{i} \qquad \overline{x}_1 \qquad \overline{x}_2$	N	Ь N
r		> 0	stab	$S_1^{(3)} \leftrightarrow S_2^{(3)}$	$S_0 \leftrightarrow S_1^{(3)}$
$r \leq (a_0 + \psi)^2 / 4\phi$	$\frac{r}{f_2} \le a_0 \le \frac{r}{f_2} + \frac{f_2 - f_1}{k_1}$ $\frac{r}{f_2} + \frac{f_2 - f_1}{k_1} \le a_0$	$0 \le a_0 \le \frac{r}{2}$	stability range	1 O 2 cooperation	> Selection

$$\overline{a} = \alpha = \frac{1}{2} \left(a_0 + \psi - \sqrt{(a_0 + \psi)^2 - 4r\phi} \right) \qquad r \leq (a_0)$$
$$\psi = \sum_{i=1}^n \frac{f_i}{k_i} \text{ and } \phi = \sum_{i=1}^n \frac{1}{k_i}$$

f_3
\vee
f_2
\vee
f_1
and
k_3
\wedge
k_2
\wedge
k_1

increasing a_0 -values

name	symbol		S	stationary values		stability range
		<u>n</u>	$\frac{x}{1}$	\overline{x}_2	\overline{x}_3	
extinction	S_0	0p	0	0	0	$0 \le a_0 \le \frac{r}{f_3}$
selection	$S_{1}^{(3)}$	$\frac{r}{f_3}$	0	0	<u>+</u>	$\frac{r}{f_3} \le a_0 \le \frac{r}{f_3} + \frac{f_3 - f_2}{k_2}$
exclusion	$S_2^{(1)}$	<u>4</u>	0	$a_0 - \frac{r}{f_3} - \frac{f_3 - f_2}{k_2} = \frac{f_3 - f_3}{k_2}$	$\frac{-f_2}{2}$	$\frac{r}{f_3} + \frac{f_3 - f_2}{k_2} \le a_0 \le \frac{r}{f_3} + \frac{f_3 - f_2}{k_2} + \frac{f_3 - f_1}{k_1}$
cooperation	S_3	R	$\frac{r-f_3\alpha}{k_3\alpha}$	$\frac{r-f_1\alpha}{k_1\alpha}$	$\frac{f_2\alpha}{2\alpha}$	$\frac{r}{f_3} + \frac{f_3 - f_2}{k_2} + \frac{f_3 - f_1}{k_1} \le a_0$

$$\overline{a} = \alpha = \frac{1}{2} \left(a_0 + \psi - \sqrt{(a_0 + \psi)^2 - 4r\phi} \right) \qquad r \le (a_0 + \psi)^2 / 4\phi$$
$$\psi = \sum_{i=1}^n \frac{f_i}{k_i} \text{ and } \phi = \sum_{i=1}^n \frac{1}{k_i}$$

- 1. Darwin's natural selection
- 2. Mutation and selection
- 3. A model for transitions
- 4. Cooperation tames competition
- 5. Effects of stochasticity
- 6. Scarcity is not the mother of invention!

Competition and cooperation with n = 3

phase of competition and selection

 $\mathsf{A}(t),\, \mathsf{X}_1(t),\, \mathsf{X}_2(t),\, \mathsf{X}_3(t)$

Competition and cooperation with n = 3

phase of cooperation

 $A(t), X_1(t), X_2(t), X_3(t)$

$$n = 3$$

 $k_1 = k_2 = k_3 = 2, r = 0.01, a_0 = 1$
 $a(0) = 0, x_1(0) = 0.05,$
 $x_2(0) = x_3(0) = 0.01$

$$n = 2$$

 $k_1 = k_2 = 2, r = 0.01, a_0 = 1$
 $a(0) = 0, x_1(0) = 0.05, x_2(0) = 0.01$

$$n = 4$$

 $k_1 = k_2 = k_3 = k_4 = 2, r = 0.01, a_0 = 1$
 $a(0) = 0, x_1(0) = 0.05, x_2(0) = x_4(0) = 0.01$
 $n = 5$
 $k_1 = k_2 = k_3 = k_4 = k_5 = 3, r = 0.01, a_0 = 1$
 $n = 5$
 $k_1 = k_2 = k_3 = k_4 = k_5 = 3, r = 0.01, a_0 = 1$
 $a(0) = 0, x_1(0) = 0.011, x_2(0) = 0.01$
 $x_2(0) = x_3(0) = x_4(0) = x_5(0) = 0.01$

- 1. Darwin's natural selection
- 2. Mutation and selection
- 3. A model for transitions
- 4. Cooperation tames competition
- 5. Effects of stochasticity
- 6. Scarcity is not the mother of invention!

stochastic cooperation with n = 2

Choice of other parameters: $a_0 = 200$; r = 0.5 [Vt⁻¹]

 $k_1 = k_2 = 0.002$ [M⁻¹t⁻¹]

stochastic hypercycles with n = 5

stochastic hypercycles with n = 4

competition and cooperation with n = 2

▶	Competition	
	and	-
►	petition and cooperation with	•
	on with	•
	n = 2)

Choice of parameters:
$$f_1 = 0.011 \text{ [M}^{-1}\text{t}^{-1}\text{]}$$
; $f_2 = 0.009 \text{ [M}^{-1}\text{t}^{-1}\text{]}$;
 $k_1 = 0.0050 \text{ [M}^{-2}\text{t}^{-1}\text{]}$; $k_2 = 0.0045 \text{ [M}^{-2}\text{t}^{-1}\text{]}$;
 $a_0 = 200$; $r = 0.5 \text{ [V}\text{t}^{-1}\text{]}$; $a(0) = 0$

Initial values	values		Counted states of final	of final outcomes	S
$X_1(0)$	$X_2(0)$	N_{S_0}	$N_{S_1^{(1)}}$	$N_{S_1^{(2)}}$	N_{S_2}
1	1	385.1 ± 23.6	1481.0 ± 36.8	1719.6 ± 37.8	6414.3 ± 53.8
2	Ц	77.4 ± 9.1	1822.6 ± 41.6	367.6 ± 17.0	7733.3 ± 38.3
1	2	71.6 ± 8.5	280.6 ± 20.0	2075.8 ± 28.9	7572.0 ± 39.2
ω	Ц	15.0 ± 2.9	1900.4 ± 30.9	74.6 ± 10.0	8009.0 ± 35.3
1	ယ	14.0 ± 3.7	53.1 ± 4.8	2180.5 ± 48.4	7752.3 ± 53.8
2	2	14.9 ± 2.6	303.7 ± 16.0	354.5 ± 23.8	9326.8 ± 44.9
ω	ယ	0	70.2 ± 10.0	106.2 ± 10.9	9823.4 ± 15.7
4	4	0	12.1 ± 2.6	28.0 ± 5.0	9959.9 ± 6.4
ы	ъ	0	2.5 ± 1.1	6.3 ± 2.6	9991.2 ± 3.0

►	Competition	
	and	_
•	<u>coo</u>	
-	Deution and cooperation with	
	WITU	
	=	
	2)

Choice of parameters:
$$f_1 = 0.011 \text{ [M}^{-1}\text{t}^{-1}\text{]}$$
; $f_2 = 0.009 \text{ [M}^{-1}\text{t}^{-1}\text{]}$;
 $k_1 = 0.0050 \text{ [M}^{-2}\text{t}^{-1}\text{]}$; $k_2 = 0.0045 \text{ [M}^{-2}\text{t}^{-1}\text{]}$;
 $a_0 = 200$; $r = 0.5 \text{ [V}\text{t}^{-1}\text{]}$; $a(0) = 0$

–	Competition	
	and	-
▶	and cooperation with	. •
	With	•
	n = 2)

Choice of parameters:
$$f_1 = 0.011 \text{ [M}^{-1}\text{t}^{-1}\text{]}; f_2 = 0.009 \text{ [M}^{-1}\text{t}^{-1}\text{]};$$

 $k_1 = 0.0050 \text{ [M}^{-2}\text{t}^{-1}\text{]}; k_2 = 0.0045 \text{ [M}^{-2}\text{t}^{-1}\text{]};$
 $a_0 = 200; r = 0.5 \text{ [V}\text{t}^{-1}\text{]}; a(0) = 0$

Initial values	values		Counted states of final	of final outcomes	S
$X_1(0)$	$X_2(0)$	N_{S_0}	$N_{S_1^{(1)}}$	$N_{S_1^{(2)}}$	N_{S_2}
1	1	385.1 ± 23.6	1481.0 ± 36.8	1719.6 ± 37.8	6414.3 ± 53.8
2	1	77.4 ± 9.1	1822.6 ± 41.6	367.6 ± 17.0	7733.3 ± 38.3
1	2	71.6 ± 8.5	280.6 ± 20.0	2075.8 ± 28.9	7572.0 ± 39.2
ω	Ц	15.0 ± 2.9	1900.4 ± 30.9	74.6 ± 10.0	8009.0 ± 35.3
1	ယ	14.0 ± 3.7	53.1 ± 4.8	2180.5 ± 48.4	7752.3 ± 53.8
2	2	14.9 ± 2.6	303.7 ± 16.0	354.5 ± 23.8	9326.8 ± 44.9
ω	ယ	0	70.2 ± 10.0	106.2 ± 10.9	9823.4 ± 15.7
4	4	0	12.1 ± 2.6	28.0 ± 5.0	9959.9 ± 6.4
ы	ъ	0	2.5 ± 1.1	6.3 ± 2.6	9991.2 ± 3.0

 $a(0) = 0, x_1(0) = x_2(0) = 10$

- 1. Darwin's natural selection
- 2. Mutation and selection
- 3. A model for transitions
- 4. Cooperation tames competition
- 5. Effects of stochasticity
- 6. Scarcity is not the mother of invention!

John Maynard Smith, Eörs Szathmáry. The major transitions in evolution. Oxford University Press, New York 1995

Eörs Szathmáry, John Maynard Smith. The major evolutionary transitions. Nature 374:227-232, 1995

primate societies	solitary individuals	protists	asexual clones	prokaryotes	RNA	independent replicators	replicating molecules
↓	₩	₩	₩	↓	₩	↓	₩
human societies	colonies	animals, plants, fungi	sexual clones	eukaryotes	DNA	chromosomes	populations in compartments

How Does Complexity Arise in Evolution

Nature's recipe for mastering scarcity, abundance, and unpredictability

hree temporal characteristics of terrestrial environments abundance of resources, as well as unpredictability. In were mentioned in the article's subtitle: *scarcity* and

ate innovation, and her recipe to master unpredictability is deal with scarcity, she takes advantage of abundance to cresummary, we have argued that nature uses optimization to tinkering and modular design.

Peter Schuster. *Complexity* 2 (1): 22-30, 1996

and in Technology **Major Transitions in Evolution**

What They Have in Common and Where They Differ

tion as used, for example, in mathematical models of symbiosis or hypercycles [2,3] mechanisms suppressing natural selection, the simplest one is catalyzed reproduc retained individuality is highly variable in the different transitions. There are several cellular protists to multicellular organisms with cell differentiation and development, an RNA world to chromosomes, from RNA as gene and catalyst to DNA and protein, by Maynard Smith and Szathmáry lead, for example, from independent replicators of forced to cooperate. They have lost their independence although the degree of we are dealing with a new unit in which the previous competitors are integrated and populations according to the Darwinian mechanism of selection. After the transition transition the individuals reproduced and evolved independently, and competed in metabolic, and organizational changes they share a common principle: Before the mate to human societies. Although the transitions involve very different molecular, from solitary individuals to insect colonies with cast systems, and finally from prifrom prokaryotes to eukaryotes, from asexual clones to sexual populations, from uni-1995 in a monograph by Maynard Smith and Szathmáry [1]. Major transitions listed and discussion of possible mechanisms for such transitions has been presented in the origin of new hierarchical levels of organization. The first systematic survey tion but stepwise. The steps are called major transitions and coincide with he complexity of organisms has not increased gradually in biological evolu-

Peter Schuster is the Editor-in-Chief of Complexity at the Institut für Theoretische Chemie der Universität Wien, Währingerstraße 17, Wien 1090, Austria (e-mail: pks@tbi.univie.ac.at)

PETER SCHUSTER

Complexity **21**(4): 7-13, 2016

Symbiosis

symbiosis are known, for example, the eral other examples of three-way majority of mitochondrial genes being way symbiosis seem to be rare [25]. systematic studies on ants-fungi-bacond class of endosymbionts [23]. Sevpened in the cells of plants and algae stored in the nuclear genome and the endosymbiosis [12] in eukaryotic where the chloroplasts represent a seconly in mitochondria. The extension to dative phosphorylation is performed strong metabolic interaction since oximutual dependence is caused by the reproduce autonomously but strong cellular nucleus and the mitochondria cells of animals and fungi where the teria systems [24]. Examples of fourthree cooperating partners has hap-The presumably most common form is

Austerity versus abundance

require abundant resources plausible that the result will be the erative interactions in biology and the of cooperative interaction. Other coopwhich admittedly is based on an easy the formation of symbiontic units, tions. The model was conceived for the formation of cooperative systems whereas abundant resources allow for small resources give rise to selection sitions has nicely demonstrated that true innovation and major transitions same: Scarcity drives optimization but harder to model but it seems highly nology based economics are much complex interaction networks in techto understand and to formalize mode and in this way initiate major transi-In summary, the toy model for tran-

Complexity **21** (4): 13 (2016)

Thank you for your attention!

Coworkers

Peter Stadler, Bärbel M. Stadler, Universität Leipzig, GE
Paul E. Phillipson, University of Colorado at Boulder, CO
Walter Fontana, Harvard Medical School, MA
Martin Nowak, Harvard University, MA
Christian Reidys, Viginia Tech, Blacksburn, VA

Ivo L.Hofacker, Christoph Flamm, Universität Wien, AT

Christian Forst, Los Alamos National Laboratory, NM

Web-Page for further information:

http://www.tbi.univie.ac.at/~pks