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Abstract
The GSP-Phot core algorithm Aeneas employs an MCMC to estimate parameters.
Apart from the MCMC acceptance rate, another important quality control of MCMC
chains is their autocorrelation length. We investigate several different estimators for
MCMC autocorrelation length, in order to find one which provides the most stable
results given the relatively short MCMC chains produced by Aeneas. We find that
we can estimate τ reliably from the short Aeneas MCMC chain by modelling the
MCMC chain itself as an Ornstein-Uhlenbeck process. Early test results suggest that
8 < τ < 25 may be a good quality control, ruling out most cases of multimodality
and failed convergence.
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1 Introduction

In this TN, we discuss the estimation and interpretation of autocorrelation length from a given
MCMC chain. We are interested in the autocorrelation length in order to obtain a parameter
for testing the quality of MCMC chains produced by GSP-Phot’s core algorithm Aeneas. This
should enable us to easily and automatically identify cases where the MCMC chain has not
converged or is multimodal, thus enabling us to flag potentially problematic results. One partic-
ular problem we are facing is that Aeneas’ MCMC chains are unusually short, due to technical
limitations on computational cost. Typically, Aeneas’ MCMC chains have only 100-140 itera-
tions. This will cause substantial problems for standard methods estimating the autocorrelation
length.

Before we embark on different methods for estimating the autocorrelation length of an MCMC
chain, we first want to briefly discuss the basics of autocorrelation lengths and what we can
learn from them about MCMC chains. This discussion will largely follow Sokal (1997).

By definition, an MCMC (“Markov chain Monte Carlo”) is a Markov chain. That means, if
X = {x1, x2, . . . , xN} is an MCMC chain of N iterations, then the joint probability P (X)
factorises as

P (X) = P (x1, x2, . . . , xN) (1)

= P (xN |x1, . . . , xN−1)P (xN−1|x1, . . . , xN−2) . . . P (x3|x1, x2)P (x2|x1)P (x1) (2)

= P (xN |xN−1)P (xN−1|xN−2) . . . P (x3|x2)P (x2|x1)P (x1) . (3)

In simple words, any points xn of a Markov chain (e.g. an MCMC) only depends on its direct
predecessor, xn−1, but not the entire history of the chain. Such a stochastic process is called
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an AR(1) process.1 Moreover, if the MCMC chain has converged, then it is also stationary,
meaning that it does oscillate around the best-fit values but does not run off to infinity anymore.

For any Markov chain X = {x1, x2, . . . , xN}, such as an MCMC, we can define its autocovari-
ance function,

C(t) = 〈(xn − µX)(xn+t − µX)〉 , (4)

where µX is the true mean of X (not the estimated mean). Obviously, C(0) is the true variance
ofX . From this autocovariance function, we can obtain the normalised autocorrelation function,

ρ(t) =
C(t)

C(0)
. (5)

In practice, this autocorrelation function can usually be approximated by an exponential (Sokal,
1997),

ρ(t) =
C(t)

C(0)
∝ e−|t|/τexp , (6)

where τexp is the exponential autocorrelation length. This naming convention is to distinguish
τexp from the integrated autocorrelation length, which is defined as

τint =
1

2
+
∞∑
t=1

ρ(t) =
1

2

∞∑
t=−∞

ρ(t) . (7)

In general, τexp and τint can have values of completely different orders of magnitudes. These
two different concepts of autocorrelation lengths have two different meanings (Sokal, 1997):

• The exponential autocorrelation length, τexp, tells us how many iterations the system
requires to attain equilibrium after it has been disturbed. Such a disturbance could
be the initial guess or a clipping applied to the MCMC chain. This is generally
called “burn-in” or “convergence” and Sokal (1997) recommends to discard 20τexp

samples after any such disturbance.

• The integrated autocorrelation length, τint, controls the “redundancy” of the MCMC
chain when it is in equilibrium. As we show in Appendix A, the autocorrelations
in the MCMC chain do not compromise mean estimates but concerning parameter
uncertainties, the MCMC sample variance is too large by a factor of ≈ 2τint. The
reason is that the sample variance estimate divides by N instead of the number
of “effectively independent” samples, which is only N

2τint
< N . That is important

to know when estimating the parameter uncertainties from the MCMC chain or to
define the thin-out factor of the MCMC chain.

1AR(1) means that the stochastic process is autoregressive of first order, i.e., xn only depends on xn−1.
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We can now see that the autocorrelation length is a very important quantity in order to draw
reliable conclusions from an MCMC chain. We need to have an idea of τ to set an a priori
length of the MCMC chain before running it, to know how many samples we need to discard
for burn-in, and to know how much to thin out the MCMC chain before estimating parameter
uncertainties.

Figure 1: Autocorrelation length τ vs. stepsize of proposal distribution for a Metropolis-Hastings algorithm. The
underlying posterior was designed as logP (x) = −x2/2 for the sake of simplicity. At each stepsize, 200 MCMC
chains were simulated, each having 5 000 iterations.

Let us further discuss a toy example in order to get a more intuitive feeling for the autocorre-
lation length of an MCMC. Let us consider a Metropolis-Hastings algorithm for some variable
x whose posterior probability we simply set as logP (x) = −x2/2, i.e., a unit Gaussian. For
a Metropolis-Hastings algorithm, the choice of the stepsize of its proposal distribution is very
delicate. If we choose the stepsize too small, the MCMC can only make tiny steps and takes
ages to go anywhere. In such a case, we expect a large autocorrelation length. If this was the
only effect at work, then starting from a very small stepsize and increasing it should therefore
decrease the autocorrelation length. However, if the stepsize becomes too large, the MCMC
can overshoot and thus run away from the posterior maximum, or take ages to return to it. In
this case, we expect the autocorrelation length to eventually start to increase again, if the step-
size becomes too large. Figure 1 shows simulation results that indeed confirm this behaviour.
There is a sweet spot, an optimal choice of the stepsize, which minimises the autocorrelation
length. Choosing that stepsize will also minimise our computational cost because it minimises
the number of samples we need to discard in burn-in and that we need to thin out before esti-
mating parameters.2

2This “optimal” stepsize may minimise the autocorrelation length and thus the computational effort, but it is
not obvious how good the parameter estimation will be.
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2 The acor method

In their emcee paper, Foreman-Mackey et al. (2013) recommend using the acor method3 to
estimate τint. Given a time series X = {xn}Nn=1, e.g., a univariate MCMC chain of length N ,
the autocovariance function C(t) is estimated by

Ĉ(t) =
1

N − t

N−t∑
n=1

(xm+t − µ̂) (xm − µ̂) , (8)

where µ̂ = 1
N

∑N
n=1 xn is the estimated mean of X (not the true mean). The latter makes

the difference to the definition of the theoretical autocovariance function in Eq. (4), where we
operate with true instead of estimated values. Furthermore, the chain is no of finite length N .
Both effects will be a huge source of numerical noise in practice. Obviously, Ĉ(0) will just be
the total estimated variance of the time series X . The integrated autocorrelation length, τ , is
then estimated similarly to Eq. (7)

τint = 1 + 2
N∑
t=1

Ĉ(t)

Ĉ(0)
. (9)

While Eq. (9) is reasonably straightforward to implement, it is numerically highly unstable.
Even if τint itself may have a small value (say τint = 10) we may still need many more MCMC
samples (say millions) to get a reliable estimate of τint. As already mentioned, the reason for this
numerical instability is the noise in the estimates of µ̂ and Ĉ(t), which propagate nonlinearly
into Eq. (9).

Figure 2: Numerical instability of Eq. (9). Top panel: Univariate MCMC chain as Teff vs. iteration number. Bottom
panel: Estimate of τ from Eq. (9) vs. number of MCMC samples used. The red area marks τint < 0.

3http://www.math.nyu.edu/faculty/goodman/software/acor
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This numerical instability is demonstrated in Fig. 2, using an actual MCMC chain from GSP-
Phot Aeneas. While we can see from the top panel that the MCMC has clearly converged and
thus exhibits no trends, the bottom panel shows us that the estimate of τint remains unstable
even if we use thousands of MCMC samples. The value given by Eq. (9) varies between -300
and 200, without any evidence of convergence. More importantly, while τint < 0 is in principle
possible for a time series with strong anticorrelations, in practice it usually indicates numerical
instability due to a lack of MCMC samples. This is even more dramatic if we consider the
limitation on computational cost imposed on GSP-Phot by DPCC, which implies that we cannot
run the MCMC for more than 200-300 iterations.

3 Autocorrelation length of an OU process

Figure 2 clearly demonstrates that the acor method is not stable enough to provide useful
estimates of MCMC autocorrelation length for Aeneas. Instead, we now want to investigate an-
other method for estimating τ , which should be more stable (but possibly more biased) because
it makes the additional (possibly incorrect) assumption that the MCMC chain, X = {xn}Nn=1,
is a stationary Gaussian AR(1) process. In simple words, we assume that the MCMC chain
itself originates from some kind of model, such that we can obtain a more robust estimate of the
autocorrelation length by first fitting the model and then deriving τ from the model’s properties.

3.1 Definition of a stationary Gaussian AR(1) process

A Gaussian AR(1) process, X = {xn}Nn=1, is defined by the recursive relation

xn+1 = φxn + zn+1 , (10)

where Z = {zn}Nn=1 is Gaussian white noise with mean µ and variance σ2 that drives the
process. In general, the constant φ can have any real value. For instance, if φ = 1, this is a
random walk. However, if the constant φ satisfies |φ| < 1, the Gaussian AR(1) process is called
stationary. In this case, the time series will converge to the mean value µ

1−φ with variance σ2

1−φ2 .
Moreover, if the process is not only stationary (|φ| < 1) but also 0 < φ < 1 holds true, then this
is called an Ornstein-Uhlenbeck (OU) process (Uhlenbeck & Ornstein, 1930; Gillespie, 1996).

In our particular case, we want to use the OU process to model an MCMC chain and to infer the
autocorrelation length. For that, we already assume that the MCMC chain has converged and
any MCMC samples from the burn-in phase have been discarded. This can be accommodated
into the AR(1) model by setting µ = 0, such that there are no trends anymore. Note that the
formal definition of a converged MCMC chain is that of a stationary Markov process, which is a
stationary AR(1) process. There are only two additional assumptions here, namely Gaussianity
and 0 < φ < 1.4 Any or both of these additional assumptions can be violated in practice.

4For φ = 0, the MCMC chain would be completely uncorrelated, i.e., xn would be independent of x−1. Any
φ > 0 introduces autocorrelations.
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For instances, “banana-shaped” MCMC contours that can appear in the Teff-A0 parameter space
would be a definite signature of non-Gaussianity. Likewise, the MCMC chain could exhibit
anticorrelations, which would violate 0 < φ < 1 (see below).

3.2 Autocovariance function of an OU process

Let the Gaussian AR(1) process be stationary, i.e., |φ| < 1. We then obtain for the first element
of the autocovariance function that

C(0) = 〈(xn − 〈xn〉)2〉 = 〈x2n〉 =
1

N

N∑
n=1

x2n = σ2 , (11)

where we have used 〈xn〉 = µ = 0, which reflects our working assumption that the MCMC
chain has converged and that there are no trends in X . Note that we are working with the true
mean here. This is the major advantage of coming up with an explicit model for the MCMC
chain. Let us calculate the next element of the autocovariance function,

C(1) = 〈(xn − 〈xn〉) (xn+1 − 〈xn+1〉)〉 = 〈xnxn+1〉 . (12)

We now use Eq. (10) to replace xn+1 by φxn + zn+1 and obtain

C(1) = 〈xn (φxn + zn+1)〉 = φ〈x2n〉+ 〈xnzn+1〉 = φσ2 , (13)

where we have used the previous result 〈x2n〉 = C(0) = σ2 and 〈xnzn+1〉 = 0 because Z is
Gaussian white noise and does not correlate with xn. Continuing these calculations, we would
find that the autocovariance function is given by

C(t) = φtσ2 . (14)

If we now further restrict the stationarity condition |φ| < 1 to strictly positive values, 0 < φ < 1,
i.e., we make this an OU process, we can rewrite the autocovariance function as an exponential,

C(t) = σ2et lnφ = σ2e−t/τexp , (15)

where the exponential autocorrelation length is given by

τexp = − 1

lnφ
. (16)

Similarly, inserting Eq. (14) into Eq. (7), we obtain for the integrated autocorrelation length of
an AR(1) process that

τint =
1

2
+
∞∑
t=1

φt = −1

2
+
∞∑
t=0

φt =
1

1− φ
− 1

2
. (17)
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Obviously, for an OU process, there is a clearly defined relation between τint and τexp, as is
shown in Fig. 3. For τexp > 2, we have τint ≈ τexp, but as τexp approaches zero, τint will approach
1
2
. In practice, we will always have τexp > 2 (or else the MCMC chain should be flagged as

bad anyway) such that τint ≈ τexp makes our life easier and we only need to talk about a single
autocorrelation length τ ≈ τint ≈ τexp. Therefore, “all we need to do” is to find a way to
efficiently fit an OU model to our given MCMC chain. This fit will provide an estimate of φ
and thus an estimate of τ .

Figure 3: Mathematical relation between τint and τexp for an OU process.

3.3 Fitting the OU process without measurement errors

We now discuss how to fit an OU process to a given univariate MCMC chain, X = {xn}Nn=1.
Let us emphasise that the MCMC chain itself has no measurement errors. The values of the
MCMC samples are known perfectly, without any uncertainty.

For a general AR(1) process with µ 6= 0, the likelihood function is given by

L = p(x1, x2, . . . , xN |µ, σ2) , (18)

which we can factorise using the conditional probabilities such that

L = p(xN |xN−1, . . . , x1, µ, σ2)p(xN−1|xN−2, . . . , x1, µ, σ2) . . . p(x2|x1, µ, σ2)p(x1|µ, σ2) .
(19)

Given that this is an AR(1) process, i.e., a Markov chain, any xn only depends explicitly on its
direct predecessor xn−1 such that we can drop all others and obtain

L = p(xN |xN−1, µ, σ2)p(xN−1|xN−2, µ, σ2) . . . p(x2|x1, µ, σ2)p(x1|µ, σ2) . (20)

= p(x1|µ, σ2)
N∏
n=2

p(xn|xn−1, µ, σ2) . (21)

Technical Note 8
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Note that the likelihood does not completely factorise, since the observations xn are not statisti-
cally independent of each other by definition of Eq. (10). In the case of an OU process, we thus
obtain

−2 logL = (N − 2) log σ2 +
N∑
n=2

(xn − µ− φxn−1)2

σ2
. (22)

The ordinates for fitting observation xn are provided by its own previous observations. In other
words, the time series is fitting itself, it is “autoregressive”. If we further use µ = 0, reflecting
our assumption of a converged MCMC chain, we finally obtain the objective function

χ2 = −2 logL = (N − 2) log σ2 +

∑N
n=2(xn − φxn−1)2

σ2
. (23)

Such an OU process without measurement errors is trivial to fit and the result is fully analytical.
Since σ2 is constant for all xn and thus cancels out, we obtain the estimates

∂χ2

∂φ
= −2

∑N
n=2(xn − φxn−1)xn−1

σ2
= 0 ⇔ φ̂ =

∑N
n=2 xnxn−1∑N
n=2 x

2
n−1

(24)

∂χ2

∂σ2
=
N − 2

σ2
−
∑N

n=2(xn − φxn−1)2

σ4
= 0 ⇔ σ̂2 =

∑N
n=2(xn − φ̂xn−1)2

N − 2
(25)

from which we are actually only interested in φ̂. Therefore, we obtain a fully analytic estimate
of the autocorrelation length,

τ̂ = − 1

ln φ̂
or τ̂ =

1

1− φ̂
− 1

2
. (26)

Figure 4 shows that this OU estimator is drastically more stable than the acor method. We
only need around 1 000 MCMC samples to obtain a stable estimate of the autocorrelation length
(τ̂ ≈ 21.4 in this case). However, even for only a few hundred MCMC samples – as are given
by Aeneas – the estimate of τ is drastically less volatile and we may even take it as a useful
result.

3.4 Simulations for short MCMC chains

The previous tests in Figs. 2 and 4 used real Aeneas MCMC chains from fitting synthetic BP/RP
spectra (cycle 11 simulations). However, these chains were artificially elongated to have 5 000
iterations, whereas in practice Aeneas MCMC chains will only have 100 iterations.

In order to get a more realistic impression of the OU method, we now simulate MCMC chains
of 100 iterations. These chains now do not come from Aeneas but they are simulations drawn

Technical Note 9
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Figure 4: Estimates of τ from Eq. (26) vs. number of MCMC samples used. The red area marks τ < 0.

Figure 5: Estimates of τ from Eq. (26) based on MCMC chains of 100 iterations. 1 000 such MCMC chains were
simulated. Left panel: Estimates of τ from a single MCMC chain. Right panel: Estimates of τ from ensemble of
100 walkers. The vertical dashed lines indicate the true value of τ = 25.
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from an OU process with a known true autocorrelation length of τ = 25. This value of τ is
inspired by Fig. 4. Can we use the OU method to reliably estimate τ?

Figure 5 (left panel) shows that estimation of τ is rather noisy from a single MCMC chain of
100 iterations. However, it is still much better than the acor method. Fortunately, in Aeneas,
we are not only given a single MCMC chain, but rather an ensemble of 100 emcee walkers.
We can therefore obtain an ensemble estimate of τ . We have two options: First, we could get
a direct ensemble average of τ̂ itself, i.e., we estimate a separate τ̂w for every walker and then
obtain τ̂ensemble = 1

W

∑W
w=1 τ̂w. Second, we could obtain an ensemble average of φ̂ and calculate

τ̂ from that. Obviously, the second approach is more robust because it can compensate for some
walkers w getting φ̂w < 0 as long as the overall ensemble average,

φ̂ensemble =
1

W

W∑
w=1

φ̂w , (27)

remains strictly positive such that τ̂ = − 1

ln φ̂ensemble
is still defined. Conversely, the first approach

will fail as soon as a single walker has φ̂w ≤ 0. As Fig. 5 (right panel) shows, the ensemble
estimate of Eq. (27) is much better than the single-chain estimate. Therefore, the ensemble
estimate of τ is to be favoured.

Unfortunately, the right panel of Fig. 5 also clearly shows that the ensemble estimate of τ is
biased low.5 The reason is very simple: The MCMC chains have only 100 iterations and thus
they are too short to estimate an autocorrelation length of τ = 25. Figure 6 shows that if we
increase the length of the MCMC chains from 100 to 5 000 iterations, we indeed obtain unbiased
estimates of τ .6

Figure 6: Same as Fig. 5 but now for MCMC chains of 5 000 iterations instead of only 100.

It is totally unrealistic to run Aeneas for 5 000 iterations because that would exceed the DPCC
5Most likely, also the single-chain estimate is biased low, but we cannot see it due to the noise level.
6Remember from Fig. 2 that the acor method still gives horribly volatile estimates for 5 000 MCMC samples.
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limitations on computational cost by more than an order of magnitude. In Fig. 7, we investigate
the bias in τ as a function of number of MCMC iterations. So far, Aeneas was run for 100 fit
iterations. As of the cycle 19 software delivery (RAN-031, RAN-032), this number has been
mildly increased to 140 fit iterations. In both cases, the MCMC chains are clearly too short to
obtain an unbiased estimate of τ . Even in the most optimistic scenario, Aeneas will never run
longer than 1 000 fit iterations, which would still give biased estimates of τ according to Fig. 7.

Figure 7: Bias in ensemble estimate of τ as a function of number of MCMC iterations. Note that this bias is not
a problem of the OU method but it originates from the MCMC chains being too short in comparison to the true
underlying autocorrelation length of τ = 25 used in these simulations (horizontal dashed line).

Figure 8 also shows that, for fixed length of MCMC chains, the bias gets stronger if the true
value of τ increases. This conforms with our understanding of this bias. Moreover, Fig. 8 shows
that the bias is a monotonic one-to-one mapping between true and estimated values, which
makes it possible to apply a bias correction. Such a bias correction would make no additional
assumptions – apart from that of an OU process which we have already invoked anyway. As
shown in Fig. 8 (red lines), the debiasing functions can be well approximated as

τ debiased
100 = 0.73626441 · τ̂100 + 0.04498744 · τ̂ 2100 (28)

τ debiased
140 = 0.83312381 · τ̂140 + 0.02810098 · τ̂ 2140 (29)

for MCMC chains of lengths 100 and 140 iterations, respectively. Note again, that these bias
correction functions make no additional assumptions other than the OU process and are only
valid for MCMC chains of lengths N = 100 and N = 140, respectively.

However, there may be a better way to estimate τ , which may completely avoid this “finite-
chain-length bias”. To see this, we need to go back to Eq. (17). Instead of summing over an
infinitely long chain, we set the MCMC chain length N as the upper limit of the summation,
such that Eq. (17) now reads

τ̂int(N) =
1

2
+

N∑
t=1

φ̂t = −1

2
+

N∑
t=0

φ̂t =
1− φ̂N+1

1− φ̂
− 1

2
. (30)

Technical Note 12
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Figure 8: Debiasing τ for MCMC chains of 100 iterations (left panel) and 140 iterations (right panel). Error
bars were estimated by simulating 100 MCMC chains in every configuration. The diagonal dashed line indicates
unbiased estimates. Red lines show the debiasing functions defined in Eqs. (28) and (29).

By design, this estimator explicitly takes into account the finite length of the MCMC chain,
exploiting the nice mathematical properties of the geometric series. Is this sufficient to avoid the
“finite-chain-length bias”? Figure 9 shows that the “finite-chain-length bias” is indeed reduced
slightly but unfortunately it is still very prominent. Therefore, the estimator of Eq. (30) offers
no real benefit.

Figure 9: Same as Fig. 5 but using Eq. (30) to estimate τ .

4 Autocorrelation length as MCMC quality control

How can we use the autocorrelation length as a quality control? Figure 10 shows that for most
of the stars in that test data set, the estimated autocorrelation lengths range between 10 and 15,

Technical Note 13
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corresponding to debiased values of ca. 12 to 20 (c.f. right panel of Fig. 8). However, not all
stars fall into that range. There are also a few examples (14 out of 10 000) where τ takes very
large or even negative values.7 All these examples are shown in Fig. 11 and we can clearly see
that almost all of these MCMC chains exhibit multimodalities or prominent tails, indicating a
lack of convergence.

Figure 10: Distributions of (biased) autocorrelations lengths for Teff, A0, log g, [Fe/H] based on 10 000 stars from
Main Stellar Library PHOENIX at G = 15.

For comparison, Fig. 12 shows 20 randomly selected examples where 8 < τ < 25 for all
autocorrelation lengths of all four parameters. These clearly look much more well behaved
than those examples shown in Fig. 11. In fact, while Fig. 12 only displays 20 examples, we
visually inspected a total of 100 random examples and found that only ≈ 2% exhibit minor
signs of failed convergence and another ≈ 4% exhibit multimodalities. These findings suggest
that 8 < τ < 25 may be a good way to rule out the most ill-behaved MCMC chains.

5 Conclusions

The acor method advocated in Foreman-Mackey et al. (2013) is clearly not useful for GSP-
Phot Aeneas, given the short lengths of these MCMC chains. The estimated autocorrelation
lengths are so volatile that they are totally useless. Conversely, the OU method provides much
more stable estimates of MCMC autocorrelation length. The reason is that the OU method
makes rather severe assumptions by modelling the converged MCMC chain as a stationary
Gaussian AR(1) process (Ornstein-Uhlenbeck process) without any trends. This model leads to
an exponentially suppressed autocovariance function, whose autocorrelation length can be cal-
culated fully analytically from the given MCMC samples. Let us emphasise that the OU method
may lead to biased estimates of the MCMC autocorrelation length, namely if the MCMC chain
is no OU process. This can obviously happen, if the MCMC chain itself is non-Gaussian. As an
example, the strong degeneracy between Teff and A0 can take a “banana-shaped” contour, that
is clearly non-Gaussian, thus violating the OU model assumptions.

7A negative value of τ̂ can occur if φ̂ensemble > 1, i.e., if the MCMC chain appears to be non-stationary.
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Figure 11: Examples of stars with negative or very large values of τ . For each corner plot, the autocorrelation
lengths for all four APs are quoted in the top right corner.
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Figure 12: Randomly chosen examples of stars with 8 < τ < 25. For each corner plot, the autocorrelation lengths
for all four APs are quoted in the top right corner.
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For the cycle 19 software delivery (cycle 2 operations, RAN-031, RAN-032) it was decided to
implement the OU model, using an emcee ensemble estimate of φ via Eq. (27), from which
τ̂ = − 1

ln φ̂ensemble
is computed. Furthermore, it was decided not to implement the debiasing of

τ̂ via Eq. (29) because this can be done offline later. Preliminary tests showed that most stars
have 10 < τ < 15 and that 8 < τ < 25 may be a good quality control to rule out most of bad
MCMC chains which have not converged or exhibit strong multimodalities.
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A Uncertainty estimates and integrated autocorrelation length

In this appendix, we want to discuss the impact of autocorrelations onto MCMC parameter
estimation. Our discussion follows Sokal (1997) with some additional explanations.

Let X = {x1, x2, . . . , xN} be a given MCMC chain, say values of Teff from GSP-Phot Aeneas.
How do we obtain an estimate of the value of Teff and its uncertainty? The parameter estimate
itself is simply given by the estimated mean of all MCMC samples,

x̂ =
1

N

N∑
n=1

xn . (31)

This mean estimator is not compromised by the autocorrelations in the MCMC chain. It is
unharmed and if enough samples have been discarded after initialisation, it will provide unbi-
ased estimates. However, the autocorrelations in the MCMC chain have a profound impact onto
the uncertainty estimate of x.8 Since the covariance between any two terms xi and xj in the

8Note that Sokal (1997) consider the uncertainty in x̂ instead of x, which gives a factor
√
N difference between

the two estimates. For parameter estimation from MCMC, we are interested in the uncertainty of x but not in
the uncertainty of its mean value. The latter would decrease towards zero as the number of MCMC samples is
increased, regardless of the data quality.
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summation of Eq. (31) is given by Eq. (14), we have

C(i, j) = C(|i− j|) = σ2φ|i−j| = σ2e−|i−j|/τexp . (32)

As we know, if X had no correlations whatsoever, the variance of the sum of Eq. (31) would
simply be the sum of the variances, such that we would obtain σ̂2 = 1

N
· N · σ2 = σ2. In the

presence of covariances, described by a covariance matrix Σ, the variance of the sum is rather
eT · Σ · e, where e = (1, 1, . . . , 1)T . We therefore obtain the variance of the sum of Eq. (31),

σ̂2 =
1

N

N∑
i,j=1

C(i, j) =
1

N

N∑
i,j=1

C(|i− j|) . (33)

The term C(|i − j|) clearly only depends on t = i − j, which ranges from t = −(N − 1) to
t = N − 1. For fixed t = i − j, the term C(|i − j|) is constant and does not depend on which
values of i and j actually produce t = i − j. Now, if the value of t = i − j is fixed, then there
are N − |t| different combinations of i and j that can produce this value of t. We can therefore
write

σ̂2 =
1

N

N−1∑
t=−(N−1)

(N − |t|)C(|t|) (34)

=
N−1∑

t=−(N−1)

(
1− |t|

N

)
C(|t|) . (35)

Given that C(|t|) ∝ e−|t|/τexp and assuming that τexp � N , we can approximate |t|
N
C(|t|) �

C(|t|) such that we obtain

σ̂2 ≈
N−1∑

t=−(N−1)

C(|t|) = C(0)
N−1∑

t=−(N−1)

C(|t|)
C(0)

. (36)

Using Eq. (7), we can finally approximate

σ̂2 ≈ 2τintC(0) = 2τintσ
2 , (37)

i.e., the sample variance estimated from the MCMC chain is too large by a factor of ≈ 2τint.
The reason is that the sample variance estimate normalises by the factorN , whereas the number
of “effectively independent” samples is only N

2τint
< N . In other words, the autocorrelations in

the MCMC chain lead the sample variance to overestimate the actual variance.

If we want to take the OU model literally, we can return to Eq. (35) and compute a precise
result for the factor by which we need to correct the sample variance. Splitting the two terms
and using C(|t|) = σ2φ|t|, we obtain

σ̂2 = σ2

 N−1∑
t=−(N−1)

φ|t| − 1

N

N−1∑
t=−(N−1)

|t|φ|t|
 (38)
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= σ2

(
−1 + 2

N−1∑
t=0

φt − 2

N

N−1∑
t=0

tφt

)
(39)

= σ2

(
−1 + 2

1− φN

1− φ
− 2

N

(N − 1)φN+1 −NφN + φ

(1− φ)2

)
(40)

= σ2

(
−1 + 2

1− φN

1− φ
− 2

N

φ− φN+1 +NφN+1 −NφN

(1− φ)2

)
(41)

= σ2

(
−1 + 2

1− φN

1− φ
− 2

N

φ(1− φN)−NφN(1− φ)

(1− φ)2

)
(42)

= σ2

(
φ− 1

1− φ
+

2− 2φN

1− φ
+

2φN

1− φ
− 2φ(1− φN)

N(1− φ)2

)
(43)

= σ2

(
1 + φ

1− φ
− 2φ(1− φN)

N(1− φ)2

)
. (44)

We can use this factor to correct the sample variance σ̂2 in order to obtain the actual variance
σ2.
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