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Cover Picture:
This infrared image of Saturn was taken with the adaptive optics system NAOS and the infrared camera CONICA at the
8.2 meter telescope YEPUN of the VLT on Cerro Paranal in Chile (ESO). The image was taken shortly after first light
of NAOS- CONICA in November 2001. With this device the diffraction-limited angular resolution of the large telescope
is reached. The consortium responsible for development and construction of CONICA was led by the MPIA. A detailed
description is given on p. 13 – 17.
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Objectives of the Institute

From the formation and evolution of the Universe as a
whole to the formation of stars and planets, it is the goal
of the MPIA to advance astrophysical research on world
standards by building telescopes and their auxiliary in-
struments, by direct observations, and by interpretation of
the data obtained. Technological developments concen-
trate on the instrumentation for the optical and infrared
wavelength range as well as for ground-based and satelli-
te-borne observations.

The scientific work of one scientific department aims
on understanding the formation and evolution of gala-
xies, their nuclei, and stellar populations from the big
bang up to now. The research goal of the second depart-
ment is to study star formation as well as to detect pla-

nets around other stars and study their formation and pro-
perties.

A Retrospect

In 1967, the Senate of the Max Planck Society decided
to establish the Max Planck Institute for Astronomy in
Heidelberg with the intention to enable astronomical re-
search in Germany to catch up with international stan-
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Fig. I.1: The Max Planck Institute for Astronomy in Heidelberg
with the Landessternwarte and the Neckar river valley in the
background.



dards. Two years later, the Institute commenced its work
in temporary accommodation on the Königstuhl, and in
1975 it moved into its new buildings (Fig. I.1). As a long-
term goal, MPIA was assigned with the construction and
operation of two efficient observatories, one in the nort-
hern and one in the southern hemisphere. For the northern
site, the Calar Alto Mountain (height: 2168 meters), in the
province of Almería in southern Spain, was chosen, offe-
ring good climatic and meteorological conditions for
astronomical observations. In 1972, the German-Spanish
Astronomical Center (DSAZ) was established, generally
known as the Calar Alto Observatory.

Between 1975 and 1984, the 1.23m reflector financed
by the German Research Society (DFG) as well as the 2.2m
and the 3.5m telescopes started operation on Calar Alto.
With the Calar Alto Observatory, the MPIA commands one
of the two most efficient observatories in Europe.

Today, MPIA operates the Calar Alto Observatory,
which is available to all German astronomers, and takes

care to maintain the observatory’s international competi-
tive capacity. This includes the development of new in-
struments for the telescopes and the preparation of obser-
ving programs.

The original plans to build a southern observatory on
the Gamsberg in Namibia could not be realized for politi-
cal reasons. The 2.2m telescope intended for this location
has instead been loaned to the European Southern Obser-
vatory (ESO) for a period of 25 years. Since 1984, it has
been in operation on La Silla in Chile, where 25 % of its
observing time is granted to astronomers within the Max
Planck Society.

Since it was established, MPIA has been involved in
extraterrestrial research, too. In particular, an early start in
infrared astronomy associated with these activities has be-
en of great significance for the later development of the
Institute as a whole. In the 1970’s, two photometers were
developed and built at MPIA which flew successfully on
board the two solar probes HELIOS 1 and 2. At about the
same time, the THISBE infrared telescope (Telescope of
Heidelberg for Infrared Studies by Balloon-borne Experi-
ments) was developed. It was carried by a high-altitude
research balloon up to a height of 40 km where mid/far in-
frared observations are possible.
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Fig. I.2: The Calar Alto Observatory. A view from the west
shows the domes of the Schmidt telescope, the 1.23m telesco-
pe, the 2.2m telescope and the 3.5m telescope (from left to
right).



MPIA was participating significantly in the world’s
first Infrared Space Observatory (ISO) of the European
Space Agency ESA: ISOPHOT, one of four scientific in-
struments on board of ISO, was built under the coordina-
ting leadership of a principal investigator at the Institute.
For over two years, ISO provided excellent data. It was
switched off on 8 April 1998, after its coolant supply had
been exhausted.

International Cooperation in Ground-based
Astronomy

Together with the University of Arizona and Italian in-
stitutes, MPIA is one of the major partners in an interna-
tional consortium, which is building the Large Binocular
Telescope (LBT, Fig. I.3). The LBT is a double telescope,
with two mirrors of 8.4 m diameter each, fixed on a com-
mon mount. Together, the two mirrors have a light-gathe-
ring power equivalent to a single 11.8 m mirror. This will
make the LBT the world’s most powerful single telesco-
pe. Furthermore, the double telescope is planned to be

used for interferometric observations. In this case, its spa-
tial resolution will correspond to that of a single mirror
22.8 m across. First light with only one primary mirror is
currently planned for mid-2004. One year later, the entire
telescope will be put into operation.

Under the leadership of the Landessternwarte Heidel-
berg, the German partners are building a near-infrared
spectrograph for the LBT, called LUCIFER(see Chapter
III). MPIA will supply the entire detector package and de-
velop the overall design of the cooling system. Integration
and tests of the instrument will also be carried out in the
laboratories of MPIA.

Simultaneously, planning of the LBT interferometer,
which will be equipped with an adaptive optics system,
is in full swing. For this instrument, MPIA is develo-
ping the optics of the LINC beam combiner, which fi-
nally will allow interferometry over a wavelength range
between 0.6 mm and 2.2 mm. This requires an extreme-
ly demanding optical design. Moreover, an informal
consortium with colleagues from the Universität Köln
and the Astrophysical Institute Arcetri in Italy was for-
med.
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Fig. I.3: Presentation of the mounting of the Large Binocular
Telescope in November 2001. (image: Carlucci)



Building new instruments for Calar Alto and the LBT
as well as for the ESO Very Large Telescope (VLT) is a
major part of the MPIA’s activities (see Chapter III). For
this purpose, the Institute is equipped with ultra-modern
precision mechanics and electronics workshops.

Participation in multinational observatories and pro-
jects are of major importance, too. In the year under re-
port, the high-resolution infrared camera CONICA was put
into operation at the ESO Very Large Telescope (VLT) on
Cerro Paranal in Chile (Fig. I.4). This camera, equipped
with an adaptive optics system, has fully met the expecta-
tions, being one of the highlights of the Institute’s activi-
ties in 2001 (see Chapter II.1).

Construction of MIDI, an interferometric instrument
for the VLT, was progressing well. From 2002 on, this
trend-setting instrument will allow for the first time the
interferometric coupling of two big telescopes in the in-
frared.

The MPIA is also participating in the Sloan Digital
Sky Survey (SDSS). This is the hitherto most extensive
sky survey, imaging about a quarter of the entire sky in
five wavelength ranges. The final catalogue will provide
positions and colors of an estimated one hundred milli-
on celestial bodies as well as redshifts of about one mil-
lion galaxies and quasars. The observations are perfor-
med using a 2.5m telescope, which was specially built
for this purpose, located at Apache Point Observatory in
New Mexico (Fig. I.5). The project is conducted by an
international consortium of American, Japanese and
German institutes. In Germany, the MPIA at Heidelberg
and the MPI for Astrophysics in Garching are involved.
In exchange for material and financial contributions
from the MPIA, a team of scientists at the Institute gets
full access to the data. After a testing phase of a little
more than a year, the survey officially started in April
2000.
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Fig. I.4: The Very Large Telescope, situated in the Chilean
Andes. (Image: ESO)



Adaptive Optics and Interferometry

Research concentrates on the “traditional” visible
spectral range as well as on the infrared, attributing much
importance to the advancement of new techniques. So,
e.g., the Institute is contributing considerably to the new
technique of adaptive optics systems by the development
of the ALFA system using an artificial laser guide star.
Currently, this field of research is being carried on by de-
veloping a multiconjugate adaptive optics system
(Chapter III). Experience gained in this work will be in-
corporated into the development of new instruments for
the Very Large Telescope and the Large Binocular
Telescope.

The establishment of the German Center for
Infrared and Optical Interferometry (Frontiers of
Interferometry in Germany, or FrInGe for short), located
at MPIA, also emphasizes the Institute’s consequent ori-

entation towards future astronomical techniques.
Recently, infrared and optical interferometry has globally
experienced a great impetus. Most of it is due to the latest
success of the Very Large Telescope Interferometer (VL-
TI). Here, the MIDI and AMBER instruments will soon
yield first scientific data.

Interferometric instruments enable ground-based teles-
copes to reach unprecedented spatial resolution. More-
over, precise astrometry will allow the detection of mo-
ving celestial objects, particularly the motion of stars cau-
sed by orbiting planets.

In interferometry, the process of planning and scheduling
observations, data reduction and interpretation are much
more tightly connected than in traditional astronomy. In
fact, the technique of data interpretation is strongly influen-
ced by the very design of the instrument - and vice versa.

For these reasons, FrInGe was created in September
2001. Its goal is to co-ordinate efforts by German institu-
tions in this field. FrInGe will gather tools and software
developed by participating institutes. A team at the MPIA,
e.g., is currently developing software for planning inter-
ferometric observations, called SimVLTI.

Apart from MPIA, the following institutes are partici-
pating in FrInGe: the Astrophysikalische Institut Potsdam
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Fig. I.5: The 2.5m telescope of the Sloan Digital Sky Survey
(image: SDSS)



(AIP), the Astrophysikalische Institut and Universitäts-
sternwarte der Universität Jena (AIU), the Kiepenheuer-
Institut für Sonnenphysik in Feiburg (KIS), the MPI für
extraterrestrische Physik in Garching (MPE), the MPI für
Radioastronomie in Bonn (MPIfR) and the I. Physikali-
sche Institut der Universität zu Köln (UK).

Another goal of FrInGe is defining the next generation
of interferometric instruments. This includes the extensi-
on of VLTI and contributions to the planned space inter-
ferometer DARWIN.

FrInGe will seek to establish cooperation with other in-
terferometric centers in Europe. The long-term perspec-
tive is to establish a European interferometric center for
infrared and optical interferometry.

Extraterrestrial Research

For one thing, current activities at MPIA include ex-
ploiting the scientific results of the ISO mission.

During the last year of the ISO post-operative phase
(starting 1998), activities in program development and ca-
libration analysis for version 10 of the automatic data ana-
lysis have been completed within the framework of the
ISOPHOT data center at MPIA. This was the last upgrade
of the software used at the ISO data center VILSPA in
Spain to create the ISO Legacy Archive.

In the year under report, eight visitors used the
ISOPHOT data center in Heidelberg for several days. By
the end of 2001, about 190 publications based on ISOPHOT

data have appeared in refereed journals, corresponding to
an analysis of about 25% of the scientific data base. In
summer, preparations for the five-year long active archi-
ve phase started which follows the post-operative phase.
During this active archive phase, the remaining 75% of
the data will be analyzed and the accuracy and user fri-
endliness of the ISO data archive will be increased. In ad-
dition, the ISO data base will be expanded to be part of a
globally accessible “virtual observatory” for all wave-
length ranges.

Concerning the scientific aspect, there were quite a
number of important studies, including observations of
interstellar icy dust grains (Chapter IV.1), the completion
of studies on intergalactic dust (Chapter IV.2) and obser-
vations of comet Hale-Bopp (Chapter IV.3).

The experience gained with ISOPHOT was decisive for
the MPIA’s significant participation in the construction of
the PACS infrared camera and spectrometer (Chapter
III). This instrument will operate on board the European
HERSCHEL infrared observatory (formerly the Far
Infrared and Submillimeter Telescope, FIRST). The launch
of this 3.5m space telescope is planned for 2007.

Furthermore, the Institute is expected to participate in
the development of the successor to the HUBBLE space te-
lescope, the so-called New Generation Space Telescope
(NGST) (Fig. I.6). The NGST is planned to be equipped
with a third focal-plane instrument, an instrument for the

mid-infrared range from 5 - 28 mm. This consists of a
high-resolution camera and a spectrometer of medium re-
solution. The instrument will be built fifty percent each by
American and European institutes, which will be granted
guaranteed observation time in exchange for their contri-
butions. As part of the European consortium, the MPIA
offers the development of all cryo-mechanics for the po-
sitioning of optical components such as gratings, filter
wheels and mirrors in the cryo-vacuum (with a tempera-
ture of about 7K). Due to the successful development of
ISOPHOT and PACS, the Institute is well prepared for this
task. In the last quarter of the year under report, a phase A
study financed by ESA started under the leadership of
ATC Edinburgh; to this study, MPIA will contribute the
cryo-mechanics and electric design packages.

The Institute is participating in a satellite experiment
proposed to NASA by Johns Hopkins University,
Baltimore. This telescope, known as PRIME (Primordial
Explorer), is intended to map a large part of the sky down
to a magnitude of 24.5 in the wavelength range between
0.9 and 3.4 mm. PRIME would be a predecessor of NGST
(New Generation Space Telescope), the planned succes-
sor to the HUBBLE Space Telescope. It would comprise a
75 cm telescope moving around Earth in a polar orbit at
650 km altitude. The telescope’s focal plane is split by
three mirrors into four wavelength channels, which are
equipped with newly developed infrared arrays.

Prime could scan a quarter of the entire sky within
three years with an unprecedented accuracy, providing
new findings in virtually every field of modern astro-
nomy. For example, the telescope could detect at least
1000 supernovae of type Ia in the redshift range 1 < z < 5
and measure their light curves, as well as finding hun-
dreds of brown dwarfs at distances up to 1000 parsecs, ex-
trasolar planets the size of Jupiter at distances up to 50
parsecs, quasars with redshifts up to z = 25 and protoga-
laxies up to z = 20.

An industry feasibility study of the PRIME telescope
was completed in the middle of the year and the project
was submitted by the German side to the consultative pa-
nel of the DLR. In an international cooperation of the par-
ticipating institutes, the phase A report was completed and
sent to NASA in December. NASA will decide on the pro-
ject in July 2002. MPIA is to provide the telescope.

With this widely spread instrumentarium, MPIA will
continue to contribute significantly to astronomical rese-
arch.
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Teaching and Public Relations 

The Institute’s tasks also include informing the general
public about results of astronomical research. Members of
the Institute give talks at schools, adult education centers
and planetaria. They also appear at press conferences or
on radio and televisions programs, in particular on the oc-
casion of astronomical events, which attract major public
attention. Numerous groups of visitors come to the MPIA
on the Königstuhl and to the Calar Alto Observatory.

Since 1976, a regular one-week teacher training course is
held in autumn at the MPIA which is very popular among
teachers of physics and mathematics in Baden-Württem-
berg.

Finally, the monthly astronomical journal Sterne und
Weltraum (Stars and Space), co-founded by Hans Elsässer
in 1962, is published at the MPIA. This journal is inten-
ded for the general public but also offers a lively forum
both for professional astronomers and for the large com-
munity of amateurs in this field.
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Fig. I.6:  Possible design of the NGST. (image: Lockheed-Martin)



The central issue of all cosmological and astronomical
research deals with the formation and evolution of the
universe as a whole as well as of stars and galaxies, the
Sun and its planets. The MPIA’s research program is ori-
ented to these questions.

In the field of galactic research, the Institute concen-
trates on star formation in huge interstellar clouds of gas
and dust. In the field of extragalactic astronomy, the focus
is on large-scale structure of the universe, the search for
primordial galaxies and the investigation of active gala-
xies and quasars. These are remote stellar systems with
enormous luminosities. The observational research is sup-
ported by a group of theoreticians who use computer si-
mulations to reconstruct processes in the universe exten-
ding over tens of thousands or millions of years. Thus, a
fertile synthesis of observation and theory is achieved at
the MPIA.

Galactic Research

A central field of galactic research at the MPIA is star
formation. The first stages of this process take place in the
interiors of dust clouds, and hence remain hidden from
our view in visible light. Infrared radiation, however, can
penetrate the dust, which is why the early stages of star
formation are being studied preferentially in this wave-
length range.

Using ISOPHOT, it was possible to detect very cold and
dense regions within large dust clouds. These are proto-
stellar cores, which are on the verge of collapse or alrea-
dy contracting to form stars. In the year under report, ob-
servations of Bok globules – small, compact dark clouds
in which only few stars can form - were of special interest
(Chapter IV.1). There were also new findings on the for-
mation and evolution of binary stars – another important
research field at the Institute (Chapter IV.1).

Extragalactic Research

Extragalactic research is dealing with galaxies and clu-
sters of galaxies. In this field, one of the major tasks is to
reconstruct galactic evolution. What was the star formati-
on rate in the early universe? Did galaxies merge, thereby
reducing their total number in the course of billions of
years? And how did dark matter affect these processes?
These are only three of the crucial questions.

In this context, great progress was made thanks to the
Faint Infrared Extragalactic Survey (FIRES). It combines
images of the HUBBLE Space Telescope in visible light
with new near-infrared images obtained with the Very
Large Telescope (VLT) of the European Southern Obser-
vatory (ESO). Up to now, these are the deepest and best
images in this wavelength region. The goal is, among
other things, to determine the magnitude distribution, si-
zes and shapes of galaxies over a wide redshift range and
the evolution of their stellar masses. First results confirm
the strategy of the method and have already revealed a
number of interesting facts (Chapter IV.2).

Dark matter is still a great mystery to cosmologists. So
far, neither its nature nor its spatial distribution is known.
In collaboration with colleagues from Great Britain,
astronomers at MPIA have mapped the spatial distributi-
on of dark matter in superclusters of galaxies (Chapter
II.3). At the same time, theoreticians investigated how
dark matter could have advanced or even initiated the for-
mation of galaxies in the early universe. This work illust-
rates again fundamental deficits in the understanding of
dark matter and its role in the evolution of the universe.

12 I.2 Scientific Questions
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At the end of 2001, the infrared camera CONICA, built un-
der the leadership of the MPIA, was put into operation
at the ESO Very Large Telescope. Together with the ad-
aptive optics system NAOS, built in France, the instru-
ment reaches the theoretical resolution limit of the te-
lescope. Thus, European astronomers are setting new
standards for ground-based near infrared observati-
ons.

The four telescopes of the VLT (Fig. II.1) provide spa-
ce for a total of twelve scientific instruments at both of
their Nasmyth foci and at the Cassegrain focus. NAOS-
CONICA is used at the Nasmyth focus of the telescope na-
med YEPUN (Venus or Evening Star in English) and is de-
signed for the near infrared region.

CONICA (Coudé Near Infrared camera) was built under
the leadership of the MPIA in collaboration with scientists
of the MPI für extraterrestrische Physik (Garching) and of

the ESO. The adaptive optics system NAOS (Nasmyth
Adaptive Optics System) was built in France.

Before “first light” at the telescope (Fig II.2), ten years
of planning and construction had passed during which
new developments kept requiring conceptual modificati-
ons. The most fundamental of these was necessary when
ESO decided to install CONICA at the Nasmyth focus (fo-
cal ratio of f/15) instead of the Coudé focus (f/51). At the
same time, ESO decided to attach CONICA rigidly to an ad-
aptive optics system.
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II.1 NAOS-CONICA: the High Performance Camera for the VLT

I

VLT Control Center
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Fig. II.1: Schematic illustration of the VLT and its instruments
(in parentheses the dates of the prospective “first light”). The
VST (Survey Telescope) is a 2.5m-telescope with a very large
field of view, which will be used for wide area surveys. In the
lower part, three smaller so-called auxiliary telescopes are to be
seen which will be employed for interferometry in addition to
the large telescopes. (ESO)



Constructing CONICA involved an estimated 40 man-
years of work. ESO took over the material costs of about
2.3 million D-Mark while the MPIs contributed their
workshop equipment and the expertise of their staff.

CONICA provides several different operation modes
(Fig. II.3):

Direct imaging: A total of seven cameras with diffe-
rent focal ratios provide almost perfect imaging capa-
bility. They are mounted on a big wheel with which
they can be inserted into the optical beam. Four came-
ras are operating in the 1 – 2.5 mm wavelength region
and three in the 2 – 5 mm region. The image scale va-
ries between 0.11 arc seconds per detector pixel at f/6.4
and 0.014 arc seconds per pixel at f/51. The field of
view also depends on the focal ratio and decreases
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Fig. II.2: The Heidelberg team during the set-up of CONICA at the
Nasmyth focus of the YEPUN telescope. (MPIA)
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from 73 × 73 arc seconds (f/6.4) to 14 × 14 arc seconds
(f/51).

Polarimetry: Measuring the degree and angle of pola-
rization gives important clues about, e.g., the spatial dis-
tribution of circumstellar dust. For this kind of observati-
ons CONICA is provided with four wire grid analyzers and
two Wollaston prisms. The entire instrument can be rota-
ted to arbitrary position angles on the sky.

Spectroscopy: The spectral energy distribution of the
infrared radiation allows one to determine temperatures,
velocities, redshifts and also the chemical compositions
of cosmic bodies and clouds of gas and dust. For this pur-
pose, CONICA contains four so-called grisms – optical ele-
ments consisting of a prism and a diffraction grating.
They allow spectroscopy with low resolution (200 < l/∆l
< 1000) over the whole range from 1 – 5 mm.

In addition, there are a number of other optical ele-
ments. CONICA has about 40 color filters which are mo-
unted in two additional wheels and which can be inserted
individually into the optical beam. They also include se-
veral narrow band filters as well as a tunable Fabry-Perot
etalon which allow to search for the spectral signatures of
certain substances. Moreover, slits and coronographic
masks can be inserted into the focal plane. The latter is
used to occult bright objects which outshine neighboring
faint objects.

Another interesting element is a tunable dispersion
corrector consisting of two double prisms which can be
rotated against one another. They are used to correct at-
mospheric dispersion effects (the wavelength dependent
refraction of light by air). The corrector is working in a
wavelength range between 1 and 2.5 mm down to zenith
distances of 60 degrees.

Observing in the infrared region puts special demands
on the instruments as all bodies at room temperature emit
thermal radiation in this wavelength region. To avoid
blinding the instrument by its own thermal emission, it
has to be cooled down significantly. A closed cycle cooler
cools the optical system as well since the cameras down
to –210 degrees Celsius and the detector down to –240
degrees Celsius. This cryostat turned out to be a major
problem concerning the stability of the entire instrument
as during long exposures the entire camera is rotating on
the telescope in order to compensate for the apparent sky
rotation. Therefore care had to be taken that the instru-
ment weighing 1 ton was not flexing mechanically by mo-
re than a few thousandths of a millimeter during this mo-
tion. Meeting this requirement was especially difficult for
the thermally insulated cold part of CONICA.

Adaptive Optics

The turbulence of the atmosphere prevents large teles-
copes from reaching their theoretical resolution, the so-
called diffraction limit, because the light of a celestial bo-
dy passing the different atmospheric layers experiences
spatially and temporally rapidly changing disturbances
(“seeing”). Thus, the originally flat wavefront undulates
during its passage through the atmosphere, similar to a
flag fluttering in the wind. As a result, longer-exposure
images get blurred.

An adaptive optics system is corrects seeing effects du-
ring the observations (cf. Annual Report 1998, p. 38).
This is achieved by a tip-tilt mirror, which compensates
for the motion of the image point on the detector.
Moreover, the “distorted” wave front is straightened by a
flexible mirror, whose surface is distorted in such a way,
that it shows exactly the opposite pattern of the wave
front. After being reflected by this adaptive mirror the di-
stortion of the wave front is eliminated and an undistorted
diffraction limited image appears on the detector.

However, this method only works under certain condi-
tions. For one thing, NAOS requires a reference star with
a certain minimum brightness within the field of view.
The limiting magnitude in the visible range is 18 mag, and
14 mag at 2.2 mm. The seeing has to be below about 2 arc
seconds for NAOS to work optimally. NAOS corrects the
field of view within 60 arc seconds of the reference star,
but the quality of the correction decreases with increasing
distance to the reference star (anisoplanatism). The quali-
ty of the correction also declines with decreasing brightn-
ess of the reference star and increasing seeing.

NAOS-CONICA Compared to HUBBLE

This list of restrictions and requirements for employing
adaptive optics should not give the impression that this
technique could only be used in a very limited way. Even
the first results demonstrate impressively that NAOS-
CONICA will be in serious competition with the HUBBLE

Space Telescope in many cases. Obviously, CONICA has
fundamental advantages: The diameter of the VLT’s pri-
mary mirror is 3.4 times as large as that of the HST. Thus,
the diffraction limit at a given wavelength is smaller by
the same factor for the VLT, while the light gathering area
is ten times as large for the VLT. At a wavelength of 2.2
mm, NAOS-CONICA reaches a limiting magnitude of about
25 mag in an one hour exposure. Moreover, newly deve-
loped detectors, can be employed on a ground-based tele-
scope much faster and more cheaply than on HUBBLE.

On the other hand, the space telescope also has evident
advantages. It does not depend on fields with a suitable
reference star, and the resolution hardly varies over the
entire field of view. Besides that, there are wavelength re-
gions where the atmosphere is not transparent, like aro-
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und 1.4 mm and 1.9 mm or in wide ranges between 2.5 mm
and 3.4 mm as well as between 4.2 mm and 4.7 mm. In the-
se regions, observations from the ground are impossible.
Finally, HUBBLE is not affected by the brightness of the
night sky.

First Results and Future Tasks

As a first test object for NAOS-CONICA, the telescope
was aimed at an unnamed star of 8 mag in the Milky Way.
The uncorrected image showed a seeing of 0.5 arc se-
conds. Immediately after turning on NAOS, the stellar
image shrunk (Fig. II.4). At 1.2 and 2.2 mm wavelength,
the system almost reached the theoretical diffraction limit
with resolutions of 0.04 and 0.07 arc seconds, respective-
ly, in the first attempt. 

An image of the star cluster NGC 3603 compared to a
HUBBLE image is showing the potential of the new came-
ra (Fig. II.5). A magnificent image of Saturn was taken as
well (Fig. II.6). It is a superposition of two images, taken
at 1.6 mm and 1.2 mm with 20 and 24 seconds exposure ti-
mes, respectively. Saturn’s moon Tethys (seen below) was
used as a reference object for the adaptive optics. The re-
solution is 0.07 arc seconds, corresponding to 410 kilo-
meters at the location of the planet. A high-resolution
image of the Jovian moon Io was also obtained (Fig. II.7).
It was taken with an exposure time of 230 seconds
through a small-band filter at 2.166 mm wavelength
(Bracket-gamma line). Although the disk of the moon has
an apparent diameter of only 1.2 arc seconds, many sur-
face features of the volcanically active moon can be
recognized at 0.068 arc seconds resolution, corresponding
to 210 kilometers on Io.

NAOS-CONICA will stay as an instrument at the YEPUN

telescope and will be available to guest observers.
Astronomers of both MPIs are granted 45 observing
nights in return for their efforts. The French colleagues,
too, will get a number of guaranteed observing nights.
The new instrument can be used for a multitude of rese-
arch areas, such as:
● Study of the formation and evolution of galaxies and

galaxy clusters, whose spectra are highly redshifted
due to the large distances involved.

● Observation of the centers of active galaxies harboring
black holes, which presumably are surrounded by lar-
ge masses of dust.
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Fig. II.4: Below: The first image taken with NAOS-CONICA.
Left: the uncorrected image; right: after turning on the adaptive
optics. Above: A three-dimensional illustration of the intensity
distribution of both images. (ESO) 



● Discovery of very low-mass stars and brown dwarfs,
radiating mainly in the infrared region.

● Study of star formation regions where the young stars
frequently are obscured by clouds of dust, which are
transparent in the infrared region.

● Study of circumstellar dusty disks, in which planets
may be forming.

Discovery and direct observation of extrasolar planets.
In the infrared, the brightness contrast between star and
planet is significantly smaller than in visible light. 

(Rainer Lenzen, P. Bizenberger, M. Hartung, 
W. Laun,N. Münch, R.-R. Rohloff, C. Storz, 

K. Wagner)
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Fig. II.5: The star cluster NGC 3603, imaged by the HUBBLE

Space Telescope (left) and NAOS-CONICA (right). (NASA/ESO) 

Fig. II.6:  Saturn, photographed in the near infrared with 0.07 arc
seconds resolution. (ESO)

Fig. II.7: Jupiter’s moon Io, photographed at 2.166 mm wave-
length. The resolution is 0.068 arc seconds. (ESO)



In the course of the large Sloan Digital Sky Survey
(SDSS), carried out by American, German and Japanese
astronomers, the most distant quasar to date has been
discovered. It has radiated the light, which we detect
today at a time when the Universe was only about 700
million years old. Astronomers at the MPIA obtained a
spectrum of this celestial object using the Very Large
Telescope (VLT) of the European Southern Observatory
(ESO). The spectrum shows that the quasar is still loca-
ted within the mainly neutral intergalactic matter,
which filled the very early Universe. Thus, astronomers
succeeded for the first time in reaching with their ob-
servations the boundary of the ”genuine“ primordial
matter.

After the Big Bang, the Universe was filled with a hot
ionized gas, in which protons and electrons were moving
around freely. Only after about 300 000 years, had the me-
dium cooled down enough for atoms to form. This hap-
pened at a redshift of z = 1100 to 1500, the exact value de-
pending on the cosmological model. After this recombi-
nation phase, the gas in the entire Universe was neutral.
In this medium, consisting almost exclusively of hydro-
gen and helium, the first stars, galaxies and quasars for-
med. The UV-radiation, which they emitted, ionized their
surroundings anew. This so-called re-ionization marks the
phase of the very first structure formation within the ear-
ly Universe, which made it bright again.

The Re-ionization Phase

When and how the re-ionization phase occurred, is a
fundamental issue of present-day cosmology, which until
now could only be addressed theoretically. According to
present models, re-ionization occurred at redshifts bet-
ween z = 6 and z = 20, that is, several hundred million
years after the Big Bang. However, this value is very un-
certain, as re-ionization was a very complex process.
Computer simulations have to take into account, e.g., gas
dynamics, star formations processes, atomic and molecu-
lar processes as well as radiative transport phenomena.
Moreover, it is not clear whether the dominating contri-
bution to re-ionization came from the UV radiation of hot
stars or of accreting black holes.

One of the uncertainty factors is, the stellar mass fun-
ction. Very probably, it had a different shape at that time
than it has today because the gas did not contain heavy
elements. There is some evidence that the fraction of mas-
sive stars was larger in the first stellar generation than to-

day. As a result, there were more supernova explosions
which significantly affected the enrichment of the surro-
unding medium with heavy elements as well as the num-
ber of energetic ionizing UV photons. The evolution of
the re-ionization phase is additionally complicated by in-
homogeneities of the gas, clumping locally into denser
clouds, or of the dark matter whose nature is still unkno-
wn to us but which acted in a way as “condensation
seeds” for the forming galaxies.

According to current ideas, the re-ionization phase can
probably be roughly divided into three stages: First,
single regions of ionized gas (HII regions) formed around
the stars or quasars. In a second stage, these regions over-
lapped, strongly increasing the intensity of the UV radia-
tion. During the third stage, the still existing neutral hy-
drogen within dense regions finally became ionized, too.
In such models, the second stage sets in at a redshift aro-
und z = 7 and the third stage at z = 6.

Observing the Most Distant Quasars

In the end, a clear picture of this earliest phase of struc-
ture formation in the Universe can only be obtained by
observations. But detection and spectroscopic studies of
objects with redshifts larger than z = 6 became possible
only recently. The Sloan Digital Sky Survey (SDSS, see
below) offers the possibility to find the proverbial needles
within a haystack while the new generation of large tele-
scopes provides the necessary capability to study them in
detail.

With the SDSS, it is possible, among other things, to
detect quasars by their characteristic spectral energy dis-
tribution. Quasars are very compact central regions of ga-
laxies harboring a massive black hole. This is surrounded
by a disk of hot gas which is radiating very intensely in
the UV region. As quasars are the most luminous celesti-
al objects known they should still be observable at reds-
hifts z > 6.

In the year under report, two new distance record hol-
ders among the quasars were discovered within the data
of the SDSS. In subsequent observations with the Keck
telescope their redshifts were determined to be z = 6.28
and z = 5.99. The most distant quasar, which was desig-
nated SDSS 1030+0524, is thus seen at a time when the
age of the Universe was only 5 % of its present value, that
is, about 700 million years (q0 = 0.5, H0 = 65 km/s/Mpc)

Simultaneously to the Keck observations, astronomers
of MPIA observed the record holder SDSS 1030+0524 in
the near infrared, using the ISAAC camera at the VLT (Fig.
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II.8). Moreover, they obtained spectra of both quasars,
using ISAAC and FORS 2 also at the VLT (Fig. II.9).

The spectrum of SDSS 1030+0524 exhibits a dramatic
effect: the Lyman-a emission line emitted by the quasar it-
self is redshifted on its way to us from the UV region in-
to the infrared region and lies at a wavelength of l = 885
nanometers. Normally, it is joined towards the shorter wa-
velengths by continuum emission. In the spectrum on
hand, however, the continuum between l = 845 and 871
nm is no longer detectable. It is reduced to at most 0.5 %
of its original value. In the second quasar with z = 5.99 the
flux is only reduced to 7 % and in a third quasar with z =

5.8, also discovered with the SDSS, it is only diminished
to 9 %.

The disappearance of the continuum is caused by ab-
sorption of radiation by the neutral intergalactic gas,
which is located in a redshift range between about z = 6.0
and z = 6.3. Thus, the new observations show that the re-
ionization was not yet completed at the time at which we
see the quasar at z = 6.28. In quasars with smaller reds-
hifts, the continuum emission slowly increases, as the
Universe is gradually re-ionized by stars and quasars.

From the observational data of the most distant quasar
and some other quasars, first cautious conclusions about
the conditions during the re-ionization era can be drawn.
First, the spectrum of SDSS 1030+0524 shows that the
emission towards the “blue” side of the Lyman-aemission
is not completely absorbed. This is caused by the fact that
the quasar is ionizing the surrounding gas to a high degree
and so prevents absorption by neutral gas. This is called
the “proximity effect”. Matter lying immediately in front
of the quasar is less redshifted and therefore absorbs at
shorter wavelengths. From the spectrum, the radius of the
ionized surrounding is estimated to be about 15 million
light years. Assuming that the entire gas had been neutral
before the quasar started to shine, the luminous period of
the quasar is given by the time, in which the light took to
cross this volume of space, namely 15 million years.

From the existing spectroscopic data of the most
distant quasars known up to now, the degree of suppressi-
on of the Lyman continuum can be obtained as a function
of redshift. The result  shown in Fig. II.10 matches quali-
tatively the expected one. Absorption of the Lyman-a
emission of the quasars increases with increasing redshift
(Fig. II.10, above). Above z = 6, the medium gets virtual-
ly opaque, that is, it is neutral. The lower part of Fig. II.10
shows the corresponding optical depth as a function of in-
creasing redshift. 

These new observations demonstrate that very distant
quasars can be used to “probe” the genuine primordial
medium and indicate how soon after the Big Bang the
first quasars formed. The centers of these objects contain
black holes of typically several hundred million solar
masses. How these formed is still largely a mystery.

“Classically”, a black hole forms when a massive star
explodes at the end of its life, blowing off its outer layers
while the central core collapses into a black hole. Such a
stellar black hole, however, only has about ten solar mas-
ses. In order to grow to the size of a quasar core, it has to
accrete a great deal of material from its surroundings.
Therefore it would be very interesting if the evolution of
quasars themselves as a function of redshift could be de-
termined.

Up to now, the analysis is based on data of only a few
quasars. But astronomers estimate they may detect about
20 more quasars of redshifts between z = 6.0 and 6.6 in
the course of SDSS. These new quasars will offer the op-
portunity to study in detail the intergalactic medium du-
ring the recombination phase of the early Universe.
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Fig. II.8: The most distant quasar (arrow) appears as a faint, unu-
sually red object on the discovery image. (SDSS)

Fig. II.9: Spectrum of the new distance record holder SDSS
1030+0524. In the region between l = 845 nm and 871 nm, the
continuum is no longer detectable.



Thereby, temporal evolutions as well as the expected spa-
tial inhomogeneities will be investigated.

With even more distant quasars, however, SDSS rea-
ches its limit. At redshifts beyond z > 6.6, the Lyman-a
emission is shifted into the near infrared, which is outside
the sensitivity range of this survey. In this region, infrared
surveys like the planned PRIME mission could accomplish
the task. MPIA is also participating in the preparation of
this mission (see Chapter III).

The Sloan Digital Sky Survey (SDSS)

The Sloan Digital Sky Survey (SDSS), started in April
2000, is the most extensive digital sky survey so far. For
this purpose, a 2.5 m telescope equipped with a mosaic
CCD camera was built on Apache Point, New Mexico.
The project is conducted by a consortium of US-Ameri-
can, Japanese and German institutes. In Germany, MPIA
and MPI für Astrophysik in Garching are involved. The
survey will image half the Northern sky in numerous co-
lor bands while particularly interesting and peculiar ob-
jects are studied spectroscopically.

The final catalogue of all recorded objects will provi-
de positions and colors of more than one hundred million
celestial bodies. Many unusual objects have already been
identified by their colors. In all, redshifts of about one
million galaxies and 100 000 quasars will be measured.
More than 13 000 quasars have been found already,
among them 26 of the 30 known most distant quasars and
the record holders described above.

SDSS data will allow one to determine the spatial dis-
tribution of galaxies and quasars in a volume one hundred
times as large as before. From that, far-reaching conclu-
sions about the early evolution of galaxies and quasars as
well as about the structure of our Milky Way system will
be drawn.

(Laura Penterecci, Hans-Walter Rix)
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The major fraction of the total matter in the Universe is
invisible. So far, neither the nature nor the spatial distri-
bution of this dark matter is known. Astronomers at
MPIA, in collaboration with colleagues in Great Britain,
have mapped the spatial distribution of dark matter in
galaxy superclusters. This was done using the Wide
Field Imager at the 2.2 m telescope on La Silla which
had been built by astronomers at the Institute and col-
leagues from ESO.

Instruments with high light-gathering power and large
fields of view are of increasing importance for many
astronomical studies. Presently, several sky surveys are
conducted all over the world in order to reveal the evolu-
tion of galaxies across a redshift range as broad as possi-
ble, i.e., to distances as far as possible. Scientists at MPIA
have initiated such a project and conducted it together
with colleagues at the University of Bonn and at the
Institute for Astronomy in Edinburgh. The name of the
survey, COMBO-17 (Classifying Objects by Medium-
Band Observations with 17 Filters) indicates that galaxy
magnitudes are measured in 17 color ranges using images
taken through as many filters.

These observations are not only useful for problems of
galaxy evolution but also for other questions, like the dis-
tribution of dark matter in galaxy clusters.

The Strategy of COMBO-17

The key requirement for the project is the large field of
view of the wide field camera (Wide Field Imager, WFI,
cf. Annual Report 1998, p. 33) at the MPG/ESO 2.2 m te-
lescope on La Silla. It has a field of view of 32 × 32 squa-
re arc minutes - a little more than the size of the full mo-
on. The CCD array consisting of eight individual chips
with 2046 × 4096 pixels each is sensitive over a wide
spectral range, from UV (l = 350 nm) to the near infrared
(l = 950 nm).

In the course of COMBO-17, a total of five widely se-
parated fields on the sky are imaged through 17 filters, in-
cluding five broad-band filters (standard ranges U, B, V,
R, I) and 12 medium-band filters (relative width about
3%). Sophisticated software allows one first to distin-
guish the pointlike stars and quasars from the extended
galaxies in the images. Due to the different colors, the re-
maining objects can be classified very precisely. For stars,
spectral types A to M8 , for galaxies, classes E (elliptical)
to Sc (spiral galaxy with high star formation rate) as well
as star burst galaxies with unusually high star formation
rates can be identified. Moreover, for each galaxy down to
an R-magnitude of 24 mag, a redshift can be determined,

with an uncertainty varying according to magnitude and
type between Dz = 0.005 and Dz = 0.1. Quasars, too, are
identified and their redshifts measured with an accuracy
better than Dz = 0.1.

At the end of the COMBO-17 survey, a field of sky of at
least one square degree will be searched completely for
stars, galaxies and quasars. For comparison: Both
HUBBLE Deep Fields, the deep images in the northern and
southern sky taken by the HUBBLE Space Telescope, co-
ver only one hundredth of the field of view of the WFI.
Thus, COMBO-17 will be able to provide comparatively
secure information on the evolution of galaxies because a
significantly larger and therefore more representative vo-
lume of space is included. COMBO-17 will determine
redshifts and spectral energy distributions of a total of
50 000 galaxies brighter than 24 mag.

Weak Gravitational Lensing due to the Supercluster
Abell 901/902

While the galaxy evolution data analysis is still in pro-
gress, astronomers could already use some images to stu-
dy the field around the supercluster Abell 901/902 (Fig.
II.11). This region was chosen deliberately for COMBO-17
because it contains at least three rich clusters of galaxies
with almost identical redshifts. In this area, astronomers
plan to investigate to what extent the galaxy distribution
in the Universe matches the mass distribution, as it is sus-
pected for some time that the distribution of dark matter
does not correspond exactly to the distribution of visible
matter in the form of stars and galaxies. Early studies, ho-
wever, had yielded only vague and rather contradictory
results.

The supercluster Abell 901/902 is suited excellently
for COMBO-17. With a diameter of about 30 arc minutes,
it fits perfectly into the WFI’s field of view. At a redshift
of z = 0.16, this field corresponds to a diameter of about
17 million light years at the location of the cluster. The
field was exposed for 80 to 300 minutes through the me-
dium-band filters, the total exposures being the sums of
10 to 20 shorter exposures. In addition to the multi-color
images, an extremely deep image in the red spectral ran-
ge was taken of the field when the seeing was better than
0.7 arc seconds with a total exposure time of 6.5 hours.
Thus, a limiting magnitude of 26 mag was reached for
point sources. This image (Fig. II.12b) is perfectly suited
to identify and classify galaxies with redshifts around z =
0.3 as extended objects.

This extremely sharp image is essential for the map-
ping of the dark matter, a method working on the follo-
wing principle. Space is bent by the gravitational field of
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any kind of matter. So if, for instance, light of a distant ga-
laxy is falling through the gravitational field of a cluster
of galaxies, it is bent in a similar way as in an optical lens.
Observed from Earth, this lensing effect has different con-
sequences: The observed position of the galaxy is shifted
against its real position, the galaxy image appears magni-
fied in brightness and its shape is distorted. This latter di-
stortion is used in the so-called weak lensing effect:
Usually, spiral galaxies appear – seen edge-on – as elon-
gated images with random orientation of their axis of
symmetry or – seen from above – as circular disks. But if
a cluster in the foreground acts as a gravitational lens, the
images of the galaxies in the background of the cluster are
slightly stretched tangentially to the gravitational centers.

From an observed non-random orientation of the galaxy
images, the spatial distribution and the amount of matter
within the lensing cluster can be inferred directly using so-
phisticated mathematical procedures (Fig. II.13 and II.14.)
A problem with this method, however, is the extremely
small effect: the average elongation is only a few tenths of
an arc second. These tiny distortions are not detectable in
individual galaxies but only as a general statistical trend.

Two images were sufficient for the simplest studies of
galaxy distortion: the high-resolution red image for ana-
lyzing the distortion of the structure and the blue image to
distinguish galaxy populations lying before or behind the
Abell clusters.

The final purpose of COMBO-17 is not only to apply
this simple method, which has been proofed successfully
on other clusters, but to use in addition the exact know-
ledge of the distances (redshifts) of the background gala-
xies. This way, the mass of the clusters can be determined
directly without additional assumptions.
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Abell 901a

Abell 901b

Abell 902

Fig. II.11: This field (of about the size of the full moon) contains
the galaxy clusters Abell 901 and 902 and has been imaged by
the WFI. It is a composite image, taken through a blue, a visual
and a red filter.
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Fig. II.12: Central region of the galaxy cluster Abell 902; a) detail
from Fig. II.11; b) high-resolution red image of the same field at

a seeing of 0.7 arc seconds.
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Dark Matter within the Abell Clusters

Earlier studies had already shown that the supercluster
Abell 901/902 comprises three sub-clusters, Abell 901a,
901b and 902, which have very different properties. Abell
901a appears to be an undisturbed, relaxed cluster domi-
nated by a central massive elliptical galaxy. Abell 901b al-
so contains an elliptical galaxy at its center, but appears
more irregular in shape. Abell 902 is the most irregular of
the three, although here two elliptical galaxies define the
optical center, too.

A total of about 40 000 galaxy images were used for
the morphological analysis. Assuming simply that all
background galaxies are at a fixed distance of about z = 1

Fig. II.13: Schematic illustration of the weak gravitational len-
sing effect. The computer simulation shows a branching net of
galaxy clusters. Their gravity causes the galaxy images (blue)
to be orientated tangentially to the centers of the clusters.
(MPA)
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Fig. II.14: Reconstruction of the total mass within the observed
field. In addition to the three galaxy clusters, a faint bridge of
matter connecting Abell 901a and 901b is indicated.



and that the  clusters can be described as spherical mass
distributions of constant temperature, the total mass can
be calculated. It turns out to be about 1014 solar masses
for each of the three clusters.

The power of the new method of weak gravitational
lensing is mainly given by the fact that it can be used to
trace the distribution of the dark matter. The map derived
from existing data shows several interesting details in
comparison with the brightness distribution of the gala-
xies (corresponding to the visible matter) (Fig. II.15).

On first sight, the galaxies especially in Abell 901a and
Abell 902 seem to trace relatively well the distribution of
the total matter within the achieved spatial resolution. As
mentioned above, Abell 901a is the most symmetric of the
three clusters of galaxies.

Abell 901b, however, presents a different picture.
Here, the dark matter appears to be dislocated to the west
with respect to the optical center. Moreover, there is evi-
dence of dark matter connecting Abell 901a and its neig-
hboring cluster Abell 901b. In the optical images a faint
bridge of matter is indicated in this location, too.
Furthermore, it appears that the gravitating dark matter in
Abell 901b is distributed more regularly and symmetri-
cally while the galaxies occupy an elongated region.

These results suggest that dark matter is not always ali-
gned with the galaxy distribution – a fact which is also re-
flected in the so-called mass/luminosity ratio. This cos-

mologically very important parameter is defined as follo-
ws: From the apparent magnitude and distance of a given
galaxy, the total luminosity L of its luminous matter (stars
and gas) can be determined, measured in units of solar lu-
minosity. This value can be related to the total mass M
(measured in solar mass units), which makes itself con-
spicuous only by gravitational effects.

A typical value of M/L = 10 is found for elliptical ga-
laxies. The M/L values derived in this study, however,
show a considerable variance between the three clusters
as well as within each cluster, lying in a range from M/L=
100 to M/L = 800 (Fig. II.16). When integrated over the
entire cluster (at a radius of 6 arc minutes), the value con-
verges to M/L= 200. Thus, the cluster contains, on aver-
age, several tens as much dark matter as luminous matter.
The scatter of the measured M/L ratios is another indica-
tion that the dark matter density is not proportional to the
density of the luminous matter. In addition, the constancy
of the values at M/L = 200 at large radii suggests that the
dark matter does not extend significantly beyond the dis-
tribution of the galaxies.
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Fig. II.15: Comparison of the luminosity distribution of the gala-
xies and the dark matter distribution (contour lines). (Gray et
al.)



26 II.3 COMBO-17 Reveals Dark Matter in Galaxy Clusters

The M/L ratio is of great importance for different cos-
mological aspects. For one thing, it is suspected that its
value in galaxy superclusters is representative for the
Universe as a whole, making it possible to determine the
mean matter density of the Universe, a crucial parameter
for the evolution of the Universe.

But M/L is also of special interest for theories of ga-
laxy formation. The currently most favored theory of ga-
laxy formation assumes that hydrogen gas accumulated
mainly near the largest concentrations of dark matter,
greatly enhancing the efficiency of galaxy formation in
these regions. Accordingly, one would expect the M/L ra-
tio to increase in the outer reaches of a great mass con-
centration like Abell 901/902. The observations described
above clearly question this idea.

However, this analysis is based - like its predecessors -
on the greatly simplifying assumption that the gravitatio-
nal lens (the supercluster) can be described as a relatively
thin distribution of matter at z = 0.167, while all backgro-
und galaxies are assumed to be at z = 1, which is certain-
ly unrealistic. Actually, COMBO-17 was able to detect ano-
ther rich galaxy cluster behind Abell 901/902 at z = 0.43.
Moreover, there also seems to be an enhanced galaxy con-
centration at even larger redshifts around z = 1. To be
exact, the gravitational lensing effect therefore has to be
considered as a superposition of at least three lenses lying
one behind the other.

As the multi-color method of COMBO-17 yields relia-
ble redshifts for all galaxies down to R = 24 mag, unima-
gined possibilities open up to take into account the exact
spatial distributions of mass concentrations responsible
for gravitational lensing. The real distance-dependent
mass distribution of Abell 901/902 will only be deciphe-
red by this completely novel analysis. And from this dis-
tribution one can then derive reliable values of the M/L ra-
tio.

At present, COMBO-17 is the globally unique attempt
to perform a three-dimensional gravitational lens analy-
sis. It is expected to provide new insights into the questi-
on of the universal M/L ratio or how mass concentrations
of dark matter have aided galaxy formation.

(Christian Wolf, Klaus Meisenheimer, A. Borch, 
S. Phleps, H.-W. Rix, H.-J. Röser) 
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The performance of a telescope depends critically on
the quality and efficiency of the instruments mounted in
the focal plane. During recent years, a series of scien-
tific instruments has been developed and built at the
MPIA to significantly increase the telescopes’ efficien-
cy and broaden their range of application. Currently,
several instruments are under construction at the
Institute, which will be used at ground-based observa-
tories as well as in space telescopes. These high-tech
devices will contribute significantly to progress in
astronomy.

The instruments are built in the workshops at MPIA,
often in cooperation with small and large companies. The
requirements set by the scientists keep presenting these
firms with new challenges, the know-how gained in this
way strengthening their competitive capacity on the glo-
bal market.

Here is a summary of the MPIA’s recent instruments
and of their actual status in the year under report.

Adaptive Optics

In theory, the angular resolving power of a telescope,
i.e., its capability to produce separate images of two ob-
jects lying close together on the sky, increases with the
diameter of the primary mirror. Practically, however, the
turbulence of the atmosphere blurs longer-exposure ima-
ges to such a degree that the resolution is only one half to
one arc second at its best, independent of the mirror size.

In recent years, astronomers and engineers at the
MPIA, together with colleagues at the MPI für extraterre-
strische Physik (MPE) in Garching, have built an adapti-
ve optics system for the near-infrared wavelength range
for the Calar Alto Observatory. This system, called ALFA,
corrects image fluctuations during the exposure (cf.
Annual Report 2000, p. 31). In this way, the theoretically
possible resolution, that is the diffraction limit, can be
achieved.

On Calar Alto, it was shown that ALFA can be operated
using an artificial laser guide star. This is created by a la-
ser beam shot parallel to the telescope’s optical axis to-
ward the sky. At an altitude of about 90 kilometers, the
beam excites atmospheric sodium atoms, which start to
glow. The spot of light created in this way serves as a re-
ference star for the adaptive optics system. The experien-
ces gained with this instrument are very useful in building
similar systems for the ESO Very Large Telescope and the
Large Binocular Telescope.

The VLT 8 m telescope YEPUN will be the first to be
equipped with a laser-guide-star device. Here, a sodium
laser, named PARSEC, will produce a continuous beam
with a power of 10 to 15 watts (Fig. III.1). This instru-
ment is being developed in collaboration with researchers
at MPIA and MPE. The MPIA is contributing a so-called
LIDAR (Light Detecting and Ranging) – a pulsed laser,
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Fig. III.1: The prototype of PARSEC mounted in the MPE labora-
tory: The main laser is to be seen in the rear left, the amplifier in
front. (Picture: MPE)



which can be used to measure the altitude of the atmos-
pheric sodium layer and the concentration of sodium
atoms there.

Experience acquired with ESO has been incorporated
into the development of LIDAR. It turns out that a laser gui-
de star can only be used efficiently if the atmospheric con-
ditions are known in detail. In 2000, experiments with
LIDAR at the 3.5 m telescope on Calar Alto were succes-
sful, so it was decided to build a similar device for PARSEC.

The construction of LIDAR recently started. Accep-
tance by ESO is planned for May 2003, so that in October
of the same year, PARSEC can be put into operation. In the
beginning, PARSEC will be used together with NAOS/CO-
NICA (Chapter II.1). In 2004, SINFONI, the second focal
instrument on YEPUN, will presumably be put into opera-
tion and will also use the laser guide star.

For the LBT, another instrument is being tested cur-
rently – a SCIDAR (Scintillation Detection and Ranging),
which helps optimize the adaptive optics system of the
LBT. Adaptive optics systems on large telescopes can on-
ly partially compensate image distortions due to atmos-

pheric turbulences. This mostly affects objects outside the
central correction axis of the adaptive optics. The strength
of this so-called anisoplanasy effect depends mainly on
the vertical structure of the atmospheric turbulence. If
there are several bright stars in the field of view during an
exposure with adaptive optics, the strength of the effect
can be estimated to yield good photometric and astrome-
tric measurements. Unfortunately, this is not always the
case, and these estimates are highly uncertain. This is
where SCIDAR will be put into action.

SCIDAR observes a binary star, producing a defocused
image of it (actually it is an image in the pupil plane).
Then the vertical structure of the atmospheric turbulence
can be determined up to an altitude of about 20 km by
measuring the intensities of the pupil images of both stars.
While measurements of the phase distortions within the
pupil cannot yield information on the vertical structure of
the turbulence, the strength of the scintillation depends on
the distance between a turbulence layer and the observa-
tional plane. Thus, the brightness distribution within the
pupil contains information on the vertical distribution of
the turbulence (Fig. III.2).

The SCIDAR hardware has been built at Steward
Observatory while MPIA contributed the software for the
data analysis. In the year under report, the instrument has
been tested on the Vatican Advanced Technology
Telescope. Afterwards, it will be operated on the LBT. If
it is working satisfactotily, a similar device could be used
at the VLT as a kind of “extended weather station”.

(S. Hippler, M. Feldt, M. Kasper,
R.-R. Roloff, K. Wagner)

Multiconjugate Adaptive Optics (MCAO)

Adaptive optics systems always need a reference star
of a certain minimum brightness. Furthermore, optimal
correction is only possible within a certain angle around
this star. Beyond this, the image becomes increasingly
blurred. This limitation can be avoided by using so-called
multiconjugate adaptive optics (MCAO).

To make this technique practicable for the first time, a
special team was established at MPIA. On a long-term ba-
sis, a MCAO is to provide the LBT with diffraction-limi-
ted images in the combined focus – not only in the near
infrared but also at wavelengths down to 800 nm. At an
observing wavelength of 1 mm, the diffraction limit of the
LBT is 9 milli-arc seconds. The goal is to get such a dif-
fraction-limited image over the entire field of view, which
has a size of 1 arc minute.

With the classical adaptive optics, only one direction
within the field of view is corrected. With MCAO, this
technique is applied to several directions and reference
stars, assuming the atmosphere to consist of only a few
thin turbulent layers (Fig. III.3).

During the next three years, MCAO will be added to
the LINC/NIRVANA instrument of the LBT (see below).
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Fig. III.2: Characteristic results of SCIDAR measurements obtai-
ned at the Calar Alto Observatory. The values above and below
indicate two important quantities of adaptive optics, the Fried
parameter and the isoplanatic angle. In the middle, the turbulent
structure of the atmosphere can be recognized.



Light coming from one LBT mirror is divided by a beam
splitter. One fraction travels to a wavefront sensor, which
controls the adaptive secondary mirror of one of the
LBT’s primary mirrors. The fraction of the light, which
passes the beam splitter is directed by two flexible mirrors
with 349 actuators each and by several other mirrors to
the focus. The light beam coming from the second LBT
primary mirror is subjected to the same procedure. Wave
trains in phase then interfere in the joint focus.

In this instrument, a total of six wavefront sensors as
well as six adaptive mirrors with a total of 2740 actuators
will be used – a unique concept so far, which will render
the spatial resolution of ground-based telescopes almost
independent of atmospheric influences over a large field
of view. Moreover, the fact that the wavefront sensors ha-
ve fields of view of one to two arc minutes facilitates the
choice of reference stars of sufficient brightness for the
adaptive optics. This is crucial for conducting as many
scientific projects as possible with this instrument.

LUCIFER and LINC – Two Instruments for the LBT

As mentioned in chapter I, MPIA, together with the
MPI für extraterrestrische Physik in Garching, the MPI
für Radioastronomie in Bonn, the Astrophysikalisches
Institut Potsdam, and the Landessternwarte Heidelberg,
will have a 25 % share in costs and use of the Large
Binocular Telescope (LBT), under the auspices of the
“LBT Beteiligungsgesellschaft”. Unlike all previously-
built telescopes, the LBT will be equipped with two light-
gathering mirrors, each having a diameter of 8.4 m.
Commissioning of the telescope with the first mirror will
take place in 2004. After the commissioning of the second
mirror one year later, interferometry will also be possible.

Under the direction of the Landessternwarte Heidel-
berg, the German partners are building a pair of near-in-
frared spectrographs, called LUCIFER, for the LBT,.
MPIA will supply the entire detector package and develop
the overall design of the cooling system. Integration and
tests of the instrument will also be carried out in the labo-
ratories of MPIA. Apart from MPIA and LSW, the MPI
für extraterrestrische Physik, the Universität Bochum and
the Fachhochschule für Technik und Gestaltung in
Mannheim are involved in the LUCIFER project.

In 2004, the first LUCIFER unit will begin operations in
the focal plane of the first mirror. The second instrument
arrives 18 months later at the focus of the second mirror.
With LUCIFER, both direct imaging and long-slit spectros-
copy in the wavelength range between 0.85 and 2.45 mm
wavelength will be possible. In order to reduce thermal
background radiation of the instrument, LUCIFER will be
cooled to 77 K. A total of six observing modes are plan-
ned:
● Seeing-limited direct imaging with a field of view of

4�, 
● Long-slit spectroscopy with a slit length of 4�, 

● Multi-object spectroscopy,
● Diffraction-limited direct imaging with a field of view

of 0.5�, 
● Long-slit spectroscopy, 
● Integral field spectroscopy.

For diffraction-limited imaging, the LBT yields spatial
resolution of 0.�031 at 1.23 mm, 0.�041 at 1.65 mm, and
0.�056 at 2.2 mm. The cameras need to be exchanged in or-
der to obtain the highest image quality for all seeing-limi-
ted imaging modes. Altogether three cameras are planned
with respective resolutions of 0.�015, 0.�12, and 0.�25 per
pixel. The detector will be an infrared array with 2048 ×
2048 pixels.

LUCIFER will be used in the near infrared mainly for
observing faint objects, including, for example, young ga-
laxies at high redshifts. Astronomers also expect major
progress in the spectroscopy of brown dwarfs, that is,
very faint red stars. Dusty disks around young stars and in
the cores of active galaxies are also given high priority.

The beam combiner is being designed and constructed
at the MPIA, whith the collaboration of the Osservatorio
Astrofisico di Arcetri and the Universität Köln. A team at
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Fig. III.3: Disturbance of light rays coming from several direc-
tions in two atmospheric layers. From the measured wave-
fronts, the wavefront in the center, where the astronomical
object is located, can be calculated.



the Institute, together with colleagues from Arcetri, is de-
veloping the adaptive optics system. A first Concept
Design Review took place in November 2001, and the fi-
nal concept should be completed by mid-2002.

One of the most ambitious instruments on the LBT will
be the LINC Fizeau-interferometer, which coherently
combines the light arriving from both primary mirrors
(Fig. III.4), allowing unprecedented spatial resolution.
Together with the enormous light-gathering power of both
mirrors, this will make the LBT the most powerful teles-
cope in the world. An instrument like this has never been
built before and therefore requires an extremely deman-
ding optical design. MPIA, forming a consortium with
colleagues from the Universität Köln and Arcetri in Italy,
is developing the optics of the beam combiner.

With LINC, interferometry at wavelengths between 0.6
mm and 2.4 mm will be possible. This entire range will be
covered by two different detectors. For visible light, a
CCD with pixel sizes of 9 to 12 mm will be used. For the
near infrared between 1 mm and 2.4 mm, an infrared array
with 2048 × 2048 pixels is foreseen.

The interferometer will be operated together with an
adaptive optics system which will correct, depending on
the wavelength, a field of view between 20� (at 2 mm wa-
velength) and 5� (at 0.7 mm). The ultimate resolution of
LINC also depends on wavelength, lying between 0.�02 (at
2 mm) and 0.�006 (at 0.7 mm).

LINC will be developed in two stages. First, interfero-
metry with only one natural guide star; in a second stage
(NIRVANA), multiconjugate adaptive optics.

Astronomical observations will focus on compact ob-
jects, forming a long list ranging from the spatial extensi-
on of supernovae to the structure of protostellar disks to
the search for extrasolar planets.

(Tom Herbst, R. Lenzen, R. Ragazzoni, H.-W. Rix, 
R.-R. Rohloff, D. Andersen, H. Baumeister, 

P. Bizenberger, B. Grimm, W. Laun, Ch. Leinert)
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OMEGA 2000 – a Wide Field Infrared Camera for Calar
Alto

In future, essential science will continue to come from
wide field surveys. This trend is increasingly taken into
account by the Institute. First, a wide field camera for the
2.2 m telescope on La Silla was built in collaboration with
ESO (cf. Annual Report 1998, p.33). In 2000, MPIA deci-
ded to build a new wide field infrared camera, named
OMEGA 2000, for Calar Alto.

The development of new cameras depends critically on
the availability of infrared detectors. Recently, arrays with
2048 × 2048 pixels have become available. These are sen-
sitive up to a wavelength of 2.4 mm, and have a quantum
efficiency of about 60 % between 0.8 and 2.4 mm.

To keep Calar Alto at the forefront of infrared astro-
nomy, MPIA decided to develop and build the new
OMEGA 2000 camera for the near infrared. It will be si-
milar to OMEGA -prime, but its field of view will be five
times larger with a size of 15� × 15�, corresponding to a
quarter of the size of the full moon. The instrument will
be used at the prime focus of the 3.5 m telescope, where
it will have an image scale of 0.�45 per pixel.

In the year under report, all important components we-
re manufactured or delivered. First cooling tests have be-
en passed successfully (Fig. III.5). Commissioning at the
telescope is currently planned for early 2003. At that time,
the new camera will replace the previous workhorse
OMEGA-prime.

(H.-J. Röser, C. Bailer-Jones, M. Alter, H. Baumeister,
A. Böhm, B. Grimm, W. Laun, U. Mall. R.-R. Rohloff,

C. Storz, K. Zimmermann)

LAICA – the Wide Field Camera for Calar Alto

As the third wide field instrument, the Large Area
Imager for Calar Alto, LAICA for short, was built. It will
work at the prime focus of the 3.5 m telescope, yielding
an aberration-free field of 44 arc minutes (corresponding
to 115 mm). In its focal plane, a mosaic of four CCDs is
mounted, each having 4096 × 4096 pixels. The image sca-
le will be 0.�225 per pixel (cf. Annual Report 1999, p. 33).

For production reasons, the CCDs cannot be joined
without gaps. Therefore, a gap of about 50 mm width is
left between them. It is therefore not possible to image a
contiguous area of the sky in one shot. This can be ac-
complished without major effort by taking three more
shots at different positions, thereby filling the gaps. A set
of four images covers a contiguous field of one square de-
gree, corresponding to about five times the area of the full
moon.

In addition, two smaller CCDs are integrated into the
focal plane for guiding purposes. With their help, image
rotations, which may occur in longer exposures, can also
be noted and corrected. In summer 2001, this guiding sy-
stem was successfully tested at the telescope.

For the time being, two filter sets are planned. The fil-
ter mounting resembles the magazine of a slide projector,
and contains 20 filters, which are taken out by a robot arm
and placed in the light path.

Construction of LAICA started in early 1999. On 20
May 2001, it saw first light (Fig. III.6). However, further
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Fig. III.5: OMEGA 2000: a) cooling tests in the laboratory



optimizations were needed to improve the image quality.
In April 2002, Calar Alto was able to offer LAICA to guest
observers on a “shared risk” basis, meaning that the ob-
server has to be prepared for the camera not being availa-
ble at short notice because of urgent tests. The Institute’s
team expects the camera to start regular work at the tele-
scope in 2002.

(J. Fried, H. Baumeister, W. Benesch, F. Briegel, 
U. Graser, B. Grimm, K. Marien, R.-R. Rohloff, 

H. Unser, K. Zimmermann) 

MIDI – an Infrared Interferometer for the VLT

In the near future, the VLT will also operate as an in-
terferometer. For this purpose, the light paths of two or
more telescopes will be combined and coherently super-
imposed in a common image plane. An interferometer of
this kind has the spatial resolution of a telescope with a
mirror as wide as the separation of the interferometrically
coupled telescopes. Two of the VLT telescopes, 130 m
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Fig. III.6: LAICA on the front
ring of the 3.5m telescope on
Calar Alto.

Fig. III.5: OMEGA 2000: b) view
of the interior showing the fil-
ter wheel.



apart, will achieve a resolution of a few thousandths of an
arc second in the near-infrared range.

One of the three VLT interferometric instruments, na-
med MIDI, is being developed and built under the lea-
dership of MPIA. Also involved are colleagues from the
Netherlands and France, as well as from the Kiepenheuer-
Institut in Freiburg and the Thüringer Landessternwarte
Tautenburg. MIDI is intended to allow interferometry with
two telescopes at wavelengths between 8 mm and 13 mm,
signifying a huge step forward in astrophysical research
as far as spatial resolution is concerned. MIDI is expected
to achieve a resolution of about 0.�002 within a field about
2� across. The detector consists of an array with 320 × 240
pixels, each pixel having a size of 50 mm. Observations in
different wavelength ranges are made possible by ten fil-
ters.

Interferometry at these wavelengths puts heavy de-
mands on the technology. Two problems are of central im-
portance: Light waves arriving from both telescopes must
be combined in the instrument with a phase coincidence
as precise as about 1 mm. In order to suppress thermal
background radiation, large parts of the instrument have

to be cooled. The detector will be the coldest part with a
temperature of 4 to 8 K. The cold section of the optics will
be around 40 K, while the outer radiation shielding for the
cooling system will be at 77 K.

The difference in path lengths of the light beams arri-
ving from the two telescopes is mainly geometric, and
will already have been compensated for the most part, be-
fore the beams enter the instrument. In addition, the path
difference changes during the observation due to the rota-
tion of the celestial sphere. This problem is resolved by an
optical system moving on a cart in a tunnel below the te-
lescope (a so-called delay line). The light beams arriving
from the telescopes are reflected by this system and their
different path lengths are compensated by shifting the
cart. Inside MIDI, the residual difference in path lengths is
compensated by means of movable piezo-electrically dri-
ven mirrors. A beam splitter combines the beams to crea-
te the interference image.

In March 2001, the final design review for the optics,
mechanics and electronics was formally declared comple-
te by ESO, and in November, the same took place for the
software. Simultaneously, construction and testing of the
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  7 µm 13 µmFig. III.7: a) View of the interior of MIDI. The inner part of the
optics is cooled by means of a closed cycle cooler (rear left at
the instrument). Of the optical components, the filter wheel
(black) is the most noticeable. b) Result of tests using a labora-
tory light source: interference pattern for wavelengths of 7 mm
(left) to 13 mm (right).



instrument proceeded in the laboratory in Heidelberg
(Fig. III.7a). In May, the partner institute ASTRON in
Dwingeloo delivered the central piece of the device, the
“cooled optics”. This component had to be adjusted opti-
cally and gradually fine-tuned with the mechanics. By the
end of the year, first interferometric measurements could
be made using an artificial star set up in the laboratory
(Fig. III.7b).

MIDI will arrive in Chile in October 2002. First light at
the 8 m telescopes is expected in 2002. Later, experiments
at the 1.8 m auxiliary telescopes will follow. If all pro-
ceeds according to plans, MIDI will be put into regular
operation at the end of 2003.

The team will be granted a total of 30 observing nights
on the VLT, distributed over several years, and about
three times as many nights at the auxiliary telescope.
MIDI will focus on active galactic nuclei (black holes),
young stars, extrasolar planets, circumstellar dust envelo-
pes, protostellar and protoplanetary disks as well as
binary stars.

(Ch. Leinert, U. Graser, A. Böhm, O. Chesneau, 
B. Grimm, T. Herbst, W. Laun, R. Lenzen, S. Ligori,
R. Mathar, K. Meisenheimer, U. Neumann, E. Pitz, 
F. Przygodda, R.-R. Rohloff, P. Schuller, C. Storz, 

K. Wagner, W. Morr)

PACS – the Infrared Camera for HERSCHEL (formerly
FIRST)

In 2007, the European Space Agency (ESA) plans to
launch the HERSCHEL far-infrared telescope (formerly
called Far-Infrared and Submillimeter Space Telescope,
FIRST) as its fourth major “cornerstone” mission.
HERSCHEL will be provided with a passively cooled 3.5 m
mirror and three scientific instruments covering the wa-
velength range from 60 mm to 700 mm. These are being
built by international science consortia. One central issue
of the research program will be the observation of proto-
stellar dust clouds and protoplanetary disks. The far-
infrared and submillimeter emission of very distant young
galaxies will also be detectable. MPIA is participating in
the construction of one of the instruments, named PACS

(Photoconductor Array Camera and Spectrometer). The
PACS project is conducted under the leadership of MPE.

PACS is designed for photometric and spectrometric
studies in the wavelength range between 60 mm and 210
mm (Fig. III.8). MPIA will make major contributions to
the development of the cameras and pre-amplifiers, as
well as to the focal plane chopper and the data center.
Based on experience with ISO, the Institute will participa-
te in the detailed planning of the structure of the
HERSCHEL ground segment and in particular of the con-
trol center for PACS. The Institute will also be responsible
for all aspects of the calibration of PACS before and during
the flight.

The Carl Zeiss Company in Oberkochen was selected
to manufacture the flight model of the chopper, based on
the prototype developed at MPIA. A chopper is used for
the following purpose: During satellite-borne infrared ob-
servations, a more or less strong confusing background
signal can occur, caused by thermal emission of the teles-
cope and the sun shield. In order to eliminate this signal,
the object examined and an adjacent “empty” sky section
are measured alternately. The empty section gives the
background, which is subtracted later from the actual ex-
posure. The alternating observation of two sky sections is
achieved by putting a mirror into the light path, which tips
(“chops”) to and fro up to ten times a second, with high
optical and mechanical precision. 

For the chopper, all mechanical components of the li-
fetime model as well as parts for the test sets were manu-
factured at MPIA’s workshops and then delivered to
Zeiss. The flexural pivots of the chopper, which are expo-
sed to great load during the launch of the rocket and the
following three-year operation phase, are qualified for
their application in space by additional durability tests at
the “Fraunhofer-Labor für Betriebsfestigkeit”.

As a major contribution to PACS, the Institute has com-
piled the specifications of the cryo-harness. This includes
the definition of all 1148 cables together with the cold in-
terface connectors and all of the electrical parameters.
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This document is an important basis for the thermal con-
cept of the instrument. 

(D. Lemke, V. Galperine, U. Grözinger, R. Hofferbert,
U. Klaas, R. Vavrek, H. Baumeister, A. Böhm)
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Fig. III.8: One of the detector
arrays for the PACS infrared
camera with 16 × 25 pixels. To
the left, the entrance openings
of the light collecting cavities;
in the middle, the cold readout
electronics, surrounded by the
stress module which exerts
pressure onto the 16 Ge:Ga
detectors. (Image: ANTEC,
Kelkheim).
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Evolutionary Stages of Bok Globules

Due to gravitation, gas and dust have accumulated at
different places in the Milky Way to large, dense clouds,
forming potential star formation regions. The sizes of
these nebulae range from less than a light year to se-
veral hundred light years. The smallest among them are
called Bok globules. Last year, two of these compact
dust clouds have been studied in detail at the Institute.
One of the smallest known globules, Barnard 68, is in a
physically interesting state of equilibrium between gra-
vity and internal gas pressure. The second globule, CB
34, is already more evolved, having reached a stage of
intense star formation.

Bok globules are isolated, dense clouds of dust, sil-
houetted as dark spots against a starry background. As
early as in the 1940s, the Dutch astronomer Bart Bok stu-
died many of these nebulae and produced a first catalo-
gue. Bok’s conjecture at that time that stars may form in
the interior of the globules, were confirmed only recently.
The total number of globules within the Milky Way is
now estimated to be about 100 000, their sizes ranging
between some tenths and a few light years, their masses
between about one and a hundred solar masses.

These compact nebulae could have formed in different
ways: Either, a small condensation of matter forms acci-
dentally and grows by attracting matter from its surroun-
dings, or globules are the remains of a former, much lar-
ger dust cloud which has been dispersed by intense UV-
radiation and particle winds from young stars.

Barnard 68 – a Globule on the Verge of Collapsing?

Barnard 68 (B 68) is one of the nearest and also smal-
lest known globules. In its neighborhood, there are three
more globules and the large Ophiuchus cloud complex. It
is assumed, therefore, that B 68 and the nearby globules
are leftovers of an originally much larger cloud.

The properties of these dense clouds can hardly be stu-
died in visible light because they are opaque in this spec-
tral range. In 2001, ESO astronomers had observed the
cloud in the near infrared, taking advantage of the fact
that electromagnetic radiation of increasing wavelength
can pass through the dust more and more easily. At wave-

lengths up to 2.2 mm, the globule starts to get transparent
and background stars start shining through (Fig. IV.1). In
the near infrared, altogether more than 1000 stars were
identified. They shine through the globule from the back,
thus allowing to measure the attenuation of the light (the
degree of extinction) from which important variables of
state can be derived. As it turned out, the extinction in vi-
sible light amounts to 35 magnitudes at the center of the
cloud, corresponding to an attenuation of light by a factor
of 1014. Moreover, no significant condensations were fo-
und in the interior of the cloud, meaning that nowhere star
formation has set in yet.

For follow-up studies, it was important to know that
the entire cloud is in a state of equilibrium, that is, the in-
ward tug of gravitation is balanced approximately by the
kinetic gas pressure directed outward. Presumably, gravi-
ty will dominate in the near future, causing the cloud to
contract until a star may form in the center. A cloud being
in a state of equilibrium like B 68 is called a Bonnor-Ebert
sphere. Astronomically, this state is of special interest be-
cause it is defined physically in clear and simple terms:
The structure of the cloud is completely determined by
the kinetic temperature and central density of the gas.

Astronomers of the Institute, together with colleagues
of the University of Helsinki and ESO, have observed B
68 at 1.36 mm and 2.7 mm wavelengths, using the
Swedish-ESO Submillimetre Telescope (SEST) on La
Silla, Chile. In this wavelength range, three lines of the
isotopic molecules 13CO and C18O are found from which
the CO abundance can be determined. After molecular
hydrogen, CO is the second most common molecule in
the interiors of dust clouds and therefore particularly well
suited for detailed studies.

Two approaches were chosen by the astronomers to
calculate the density and distribution of the CO gas from
these data: In the first model, a constant excitation tem-
perature for the observed line transitions of the CO mole-
cules was assumed. In the second model, excitation con-
ditions within the globule were simulated, based on a
Bonnor-Ebert sphere in an external radiation field.

Fig. IV.2 shows the column density of C18O. (Column
density is measured over all particles per area unit along
the line of sight). C18O is a rare molecule, whose lines do
not get saturated even at the high density of B 68.
Therefore, the measured C18O line profile of B 68 should
be similar to the extinction profile measured before (with
a constant dust/gas ratio). But that is not the case, as is il-
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Fig. IV.1: The Bok globule B 68,
imaged through several color
filters using the ESO Very
Large Telescope and the ESO

New Technology Telescope.
Left: In visible light and in the
near infrared, the cloud is opa-
que. Right: At 2.2 mm wave-
length (K filter), many back-
ground stars appear. (Image:
ESO)
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lustrated in Figure IV.3. In the central region, the column
density is only higher by a factor of three or four than in
the outer reaches. The infrared observations by the ESO

astronomers, however, had shown a much steeper increa-
se of the extinction from the outer regions to the inner
ones.

This behavior can be explained most easily by the fact
that with increasing density of the dust an increasing frac-
tion of the CO gas is freezing out onto dust grains. (This
process, which is of great importance to the interstellar
medium, has been studied by astronomers of MPIA, using
the ISO Infrared Observatory; see following chapter on
“Interstellar icy dust grains”.) Thereby an increasing frac-
tion disappears from the gas phase and can no longer be
detected. A kind of steady state has been assumed for B

68 – a state of equilibrium between the freezing out of the
CO gas onto solid particles (adsorption) and the re-vapo-
rization (desorption) due to the heating of individual par-
ticles by, e.g., cosmic rays. Adsorption and desorption ra-
tes depend on the size of the dust particles, the gas and
dust temperatures, and the external radiation to which the
dust grains are exposed. From the observational data,
astronomers were able to determine the ratio of adsorpti-
on to desorption rate within certain limits.

The numerical simulations of the second approach,
which does no longer assume constant line excitation,
confirm the results of the first approach, namely that the
freezing out of the CO gas is crucial for the observed
abundance distribution and that the kinetic temperature of
the gas within the cloud is 8 Kelvin. This value yielded a
distance to B 68 of 80 pc (260 light years), which is sig-
nificantly nearer than thought before.

From this new distance, other interesting values for B
68 were derived. The globule is only 0.04 pc (0.13 light
years) in diameter. Transferred to our solar system, B 68
would fill the volume around the Sun approximately to
the inner edge of the Oort cloud. The gas pressure at the
edge of the globule is 1.7 × 10-12 Pa. This value is in good
agreement with the independently determined gas pressu-
re of the surroundings enclosing the globule. The central
density of B 68 is 2.6 × 105 cm-3, while its total mass amo-
unts to only 0.7 solar masses. Thus, B 68 is the lowest
mass and nearest Bok globule known so far.

Detailed analysis of the observational data allowed a
quantitative determination of the adsorption and desorpti-
on of the CO gas. The “depletion factor” could be repre-
sented as a function of the gas particle density and of the
adsorption and desorption coefficients, determining its ra-
dial course within the globule. In the center of the cloud,
only 0.5 to 5 percent of all CO molecules are in the gas
phase. A much larger fraction is frozen out onto dust
grains.

In May 2002, astronomers of the Institute and of the
University of Helsinki will observe the globule using the
100 m radio telescope at Effelsberg. Studies of the spec-
tral lines of the ammonia molecule, which can be found in
the densest parts of interstellar clouds, will provide exact
values for the kinetic temperature and the density (instead
of the column density measured before) of the gas in the
central region of B 68. If the results are found to be in ag-
reement with the predictions based on the CO observati-
ons, this would be not only a remarkable confirmation of
a state of hydrostatic equilibrium, but it would make B 68
the globule with the most exactly known values of densi-
ty, mass, and distance and thus a model object for subse-
quent studies of the initial state of the gas within clouds
before the onset of star formation.
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Active Star Formation within CB 34

In collaboration with colleagues from the Max Planck
Institute for Radio Astronomy in Bonn, from Northern
Ireland and from Hawaii, astronomers of the MPIA stu-
died the Bok globule CB 34, which is roughly 1500 pc
(5000 light years) away. In certain respects, it is the exact
opposite of B 68. With a diameter of about 0.75 pc (2.5
light years), it is 20 times as large and 250 times as mas-
sive as B 68. Above all, numerous new stars are forming
within CB 34, making it an ideal object for studies of a
globule in an advanced evolutionary state.

The astronomers observed CB 34 in the near infrared
using the Calar Alto 3.5 m telescope with the Omega
Prime camera built at the Institute. This way, it was pos-
sible to study excited molecular hydrogen at a wavelength
of 2.12 mm, which is an indicator of energetic, turbulent
processes within the interstellar medium. Moreover, the
globule was observed in the millimeter region using the
IRAM telescope in Spain. In this wavelength range, lines
of CO and HCO+ gas are found which provide informati-
on about the density distribution in the interior of the
cloud.

During earlier studies of CB 34 in different wavelength
regions, excited gas had already been found, e.g. in
Herbig-Haro (HH) objects, which indicated the presence
of intense particle winds from young stars. Now, the new,
very deep near infrared images revealed several H2 regi-

ons (H, N, and Q series, Fig. IV.4), which had been un-
known so far. They mark three narrow gas outflows, so-
called jets, emerging from young stars. Two of these jets
were discovered in the course of this observing project.
Jets from young stars are known since about 20 years.
Astronomers at MPIA were involved in its discovery and
have contributed significantly to its explanation (cf.
Annual Report 1998, p. 54).

The H2 knots of the H, N, and Q series, respectively,
are lying on a line marking the collimated outflows (Fig.
IV.5). The H2 emission is probably produced by shock ex-
citation of the gas within the fast particle stream. Here,
temperatures up to 3000 K are generated, exciting the
molecules to emit at the characteristic wavelength of 2.12
mm. The projected sizes of the jets are 1.6 pc (5.2 light
years) for H1-H6, 1.4 pc (4.6 ly) for N1-N8 and 1.2 pc
(3.9 ly) for Q5-Q4-HH290N1. The fact that the putative
ends of the outflows do not show bow shocks, as they are
typically found in jets, suggests that the outflows are ex-
tending even further into the interstellar medium.

Assuming a typical velocity of 100 km/s for the jets
yields a (dynamical) age of about 13 000 years – a value
also found in other jets and hence typical for this pheno-
menon. The sources of the jets cannot be recognized
clearly. The submillimeter observations, however, show
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some condensations of the HCO+ gas, which are denoted
by SMM in Figures IV.5 and IV.6. SMM1 is 10 arc se-
conds across corresponding to 0.08 pc (0.25 light years)
and has a submillimeter luminosity of 40 solar luminosi-
ties while SMM4 emits 20 solar luminosities. In each of
these condensations probably several protostars are hid-
den. Two of these objects in SMM1 are possibly respon-
sible for the H and Q jets. The SMM4 submillimeter sour-
ce is located roughly in the center of the N jet and may be
the source of this outflow. This assumption is supported
by the presence of the Herbig-Haro object HH291X in the
proximity of SMM4 (Fig. IV.6). As it is generally known,
HH objects are luminous, shock excited gas condensati-
ons within jets.

For a long time, an outflow of CO gas is also known in
CB 34. Using the IRAM telescope, astronomers could stu-
dy the distribution of the CO gas in great detail. A bipolar
structure was found with the source SMM1 apparently sit-
ting in its center.

Infrared observations support the assumption that star
formation in CB 34 has occurred in several phases. More
than 20 protostars reddened by dust have been detected in
the cloud’s central region. The other stars lying further out
appear to be older. This fact is in agreement with the ob-
servations of the H2 and CO gas. The different outflows
emanating from young stars are concentrated in the cen-
tral region of the globule where they cause strong turbu-
lences of the interstellar gas.

A clue to the timescale of star formation history in this
globule is provided by a main sequence star, called
CB34FU, which is about one million years old. Astro
nomers assume two phases of star formation: One million
years ago, the first stars formed in many places within the
cloud. Particle winds and shock waves produced by these
stars then compressed the gas in the central region, initia-
ting a second wave of star formation. And these objects
are now the sources of the jets.

Origin of CB 34

How did the globule form? About 15 arc minutes away,
there is another globule called CB 33. Both clouds are
connected loosely by diffuse matter (Fig. IV.7a). At a
greater distance, a large cloud complex containing young,
hot O and B stars is located near the Gemini association.
There is the possibility that the two small globules ori-
ginally have been part of the large Gemini cloud. But then
the globules had to be at least ten million years old, which
is in contradiction to the latest findings.

Another discovery, however, could explain the origin
of the globules. A deep infrared image benefiting from the
large field of view of the OMEGA-PRIME camera revealed
a diffuse luminous halo around CB 34 (Fig. IV.7b).
Several explanations for this emission are conceivable:
scattered light from the protostars, or fluorescent radiati-
on from molecular hydrogen excited by UV emission of a

nearby hot star. But neither these nor other processes con-
sidered by the astronomers can explain the halo emission
around CB 34 and CB 33.

But there is another fascinating possibility: When two
hydrogen atoms combine on the surface of a dust grain to
form molecular hydrogen, infrared radiation is emitted. If
the atomic hydrogen in the halo around the globules has a
density of 104 cm-3, the estimated formation rate of mole-
cular hydrogen is sufficient to explain the observed inten-
sity of the near-infrared emission in the halo. If this inter-
pretation is correct, it would suggest a model in which the
globules have formed from a cloud of atomic hydrogen by
cooling and collapse. This scenario will be tested by sub-
sequent observations.

(Roland Gredel)
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Fig. IV.7: a) This IRAS image taken at 100 mm wavelength shows
the two globules CB 34 and CB 33 (IPAC/CalTech);
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Interstellar Icy Dust Grains

With a mass fraction of about one percent, interstellar
dust constitutes the smallest portion of the total amount
of interstellar matter. Nevertheless, it is of great impor-
tance to many processes, especially to the formation of
stars and planets. Since a long time astronomers belie-
ve that the majority of solid particles in the interior of
dense dust clouds consists of a silicate core surrounded
by a mantle of frozen molecular gases. While these ga-
ses are essential for the chemical evolution of interstel-
lar clouds, they are extremely difficult to detect.
Together with colleagues from the Universitätsstern-
warte Jena, astronomers of the Institute were able to
identify ammonia, methanol and methane ices using the
European ISO space observatory.

Stars and planets form in dense interstellar clouds of
gas and dust. Especially in the radio and infrared spectral
range, roughly one hundred different species of molecules
were detected in the gas phase. The molecules play an im-
portant role in star formation. For instance, they absorb

very efficiently heat released in the star formation pro-
cess, radiating it back into space in the longer-wavelength
range. This way, they cool down hot regions and allow
matter to contract further and finally form stars and pla-
nets.

Core-mantle Model of Dust Grains

The great variety of molecules, some of which consist
of more than ten atoms, suggests a complicated network
of chemical reactions within the molecular and dust
clouds. Here, the surfaces of tiny dust particles play an
important role serving as catalysts for many chemical re-
actions. The most abundant molecule in the gas phase is
molecular hydrogen (H2). It cannot form, however, by
combining two freely moving hydrogen atoms, for du-
ring its formation process, the molecule has to release
energy, and this is not possible under the extreme condi-
tions (low particle densities and temperatures) prevailing
within molecular clouds. This is where interstellar dust
comes in.

Hydrogen atoms can be adsorbed onto the particle sur-
faces and wander about them. If they meet another hy-
drogen atom in doing so, both can combine to form an H2
molecule. Part of the heat, wich is liberated during the re-
action, is absorbed by the grain while another part can be
transformed into kinetic energy enabling the molecule to
leave the grain and move into space, into the gas phase.
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For other elements like carbon, oxygen and nitrogen,
dust is important, too. These elements already form smal-
ler molecules like carbon monoxide (CO) or ammonia
(NH3) in the gas phase. Subsequently, such molecules
can freeze out onto the surfaces of dust grains in reac-
tions deep inside the dust clouds, forming larger molecu-
les, which are highly improbable to form in the gas pha-
se.

Actually, at temperatures around 10 K, all gases should
be frozen out completely onto the grains within some ten
to a hundred thousand years. The fact that they are yet de-
tected in the gas phase, therefore suggests that molecules
are constantly evaporating from the grain surfaces, ener-
gized, e.g., by UV emission of hot, young stars.

Observational results and theoretical considerations in-
dicate a core-mantle model for the structure of the dust
particles. Accordingly, a typical grain comprises a core
made of silicates and carbonaceous materials surrounded
by an icy mantle. The latter results from a balance bet-
ween molecules evaporating and freezing out.

While molecules in the gas phase can be detected rela-
tively easily in the interior of dust clouds, observation of
ices on the grains is still in its infancy. The ices can be
identified by their chemical “finger prints”. If the mole-
cules bound within the ice crystals are exposed to exter-
nal electromagnetic radiation, certain wavelength ranges
are absorbed, their energy causing stretching, deformati-
on and inversion vibrations of the atomic components.
The attenuation of radiation in these wavelength regions
can be observed as typical absorption bands. The external
radiation is produced by young stars, wich are deeply em-
bedded within the dust clouds.

So far, only the most abundant compounds like H2O,
CO and – since the ISO observations – CO2 could be
clearly identified. The main absorption bands of ice mole-
cules are in the infrared region where spectroscopy from
the ground is only possible in limited wavelength regions,
due to absorption of atmospheric water vapor. Molecular
bands of different species can overlap, thus complicating
identification. To assign absorption bands to a specific
molecule, their wavelengths have to be determined by la-
boratory experiments. Such measurements are very diffi-
cult and can be carried out only by a few laboratories, e.g.
that of the University of Leiden.

Detection of Icy Dust Using ISOPHOT

The European ISO Infrared Space Observatory opened
a new era for studies of the chemical composition of dust
particles. It had several spectrometers on board, which
completely covered the wavelength region crucial for stu-
dying these ices and which had sufficient sensitivity. One
of these spectrometers, the spectrometer channel of the
ISOPHOT instrument developed and built under the lea-
dership of the MPIA, was especially designed for studies
of dust. It consisted of two grating spectrometers covering

the wavelength ranges from 2.5 mm to 4.9 mm and from
5.8 mm to 11.6 mm.

Using this instrument, astronomers of the Universitäts-
sternwarte Jena and of the MPIA had been able as early as
1996 to detect CO2 ice for the first time in two molecular
clouds apart from water ice. In addition to the low-reso-
lution spectroscopy with ISOPHOT, the Short Wavelength
Spectrometer (SWS) on ISO for the first time allowed
high-resolution spectroscopy from 2.4 mm to 45 mm wa-
velength. This instrument, however, was not sensitive
enough for faint objects and required significantly longer
exposure times than ISOPHOT. So, in the end, less objects
could be studied using SWS.

Now the astronomers of the Universitätssternwarte
Jena worked together with their colleagues at the MPIA to
detect also solid ammonia (NH3), methane (CH4) and
methanol (CH3OH). Ammonia is of particular importance
within the chemical network because it is a basic building
block for more complex nitrogen compounds. Although it
freezes out at temperatures around 195 K, it has not yet
been clearly detected as an ice. For their recent analysis,
the astronomers used data of the ISOPHOT spectrophoto-
meter as well as of the Short Wavelength Spectrometer to
test the analysis procedure against two data sets obtained
by independently calibrated instruments.

Measurements taken with both instruments were
available for altogether ten dust clouds containing yo-
ung stars. Comparison of both data sets showed a good
agreement for each object. Minor differences could be
attributed to differing sizes of the entrance slits of both
instruments, resulting in slightly different sizes of the
sky fields, which have been spectroscopically obser-
ved.

Solid ammonia (NH3) has three strong molecular
bands in the infrared region: at 2.95 mm, 6.16 mm, and 9.0
mm. Earlier attempts to detect the molecule concentrated
on the shortest wavelength. But this characteristic signa-
ture overlaps with a band of water ice.

The astronomers at MPIA searched their data for the
NH3 absorption at 9.0 mm. Laboratory studies predict an
absorption extending from 8.6 mm to 9.4 mm, with a ma-
ximum at 9.0 mm. To extract this spectral feature, a su-
perimposed absorption of silicate particles had to be sub-
tracted. This absorption band is significantly stronger and
extends over a broader wavelength range from 8.0 mm to
12.0 mm. Since the profile of the silicate band varies with
the local conditions, no standard procedure could be used
for the subtraction. Moreover, there is no way to model
the actual silicate profile by means of laboratory data.
Therefore, the silicate absorption feature in the range of
the NH3 absorption from 8.6 mm to 9.4 mm was approxi-
mated by fitting a polynomial. Its coefficients were deter-
mined by means of the spectral shape in the adjacent wa-
velength ranges (8.2 mm to 8.6 mm and 9.4 mm to 9.8 mm,
respectively), which is only influenced by the silicate pro-
file. The measured spectrum was related to this interpola-
ted silicate profile.
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After this procedure, the ammonia band showed up in
the ISOPHOT data as well as in the SWS data of four ob-
jects. The line occurs most prominently in the dark cloud
W33A (Fig. IV.8), which contains a deeply embedded yo-
ung star. W33A is the 33rd object on a list of 82 bright ra-
dio sources compiled by the Dutch astronomer G.
Westerhout in 1957. “A” designs a substructure found la-
ter with better spatial resolution.

Using the same procedure, the astronomers looked for
the spectral signatures of methane (CH4) and methanol
(CH3OH). A CH4 absorption is expected at 7.7 mm. It was
clearly detected in W33A again (Fig. IV.9) and in NGC
7538 IRS9. Traces of it were found in two other clouds
named AFGL 2591 and Cep A (Fig. IV.10). The signature
of CH3OH at 9.7 mm was also detected in W33A (Fig.
IV.11), in Cep A, and in one other object.

The spectrum of W33A also shows a strong absorption
band of water ice. From the depths of the bands, the rati-
os of the abundances of the ices can be determined. The
analysis shows that there is about 10 % to 20 % NH3 com-
pared to H2O. This result is in agreement with the labora-
tory spectral analysis of icy grains with similar composi-
tion. For W33A, other research teams already had found
the relative abundance of CO2 and CO to H2O to be 10 %,
respectively. Thus, at least for this star forming region rat-
her robust values are available. They are of great impor-
tance for the further understanding of star formation pro-
cesses.

Thus, the team from Jena and MPIA was able to show
the spectral resolution of ISOPHOT to be high enough to
identify the typical molecular bands of interstellar ices.
The astronomers now plan to apply their newly developed
method to other dust clouds whose data are stored within
the ISO archive.

(U. Klaas, D. Lemke)

Formation of Binary Stars: New Answers and New
Questions

Most stars are members of binary or multiple systems.
For G stars, e.g., – which include our Sun – the ratio of
single to double to triple to quadruple stars in the solar
neighborhood is 57 : 38 : 4 : 1, that is, not even 40 % of all
stars are “loners”. Today, everything seems to indicate
that multiple systems already form during the star for-
mation phase. So, obviously physical quantities like the
distribution of the orbital periods or the mass ratios of
the stars must include information about the star forma-
tion process. These quantities have been analyzed at
the Institute in a theoretical and an observational study.

Fig. IV.10: Cep A, one of the molecular clouds studied, imaged
in the near infrared. (2MASS)
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During the past years, formation and evolution of
binary systems as well as their properties have been stu-
died in various ways at the MPIA. These include numeri-
cal simulations (Annual Report 1997, p. 59) as well as
high-resolution observations (Annual Report 1998, p. 47).
The latter led to the surprising finding that the proportion
of multiple systems in the star forming regions in Taurus-
Auriga and Lupus is significantly higher than for main-se-
quence stars. Astronomers at the MPIA were able to show
that in Taurus-Auriga about twice as many young stars are
bound to one or more stellar partners than in the later

main sequence stage. A conceivable explanation could be
that young multiple systems rip off members from one
another gravitationally during close encounters. The pro-
bability for such a process is higher in young stars than in
old ones as in early evolutionary stages they are closer to-
gether in their parent cloud than in later stages. Moreover,
it is assumed that physical conditions during star formati-
on, like the temperature of the surrounding interstellar
cloud, influence the number of multiple systems formed.

In the year under report, astronomers at the MPIA to-
gether with colleagues from the Thüringer Landes-
sternwarte Tautenburg carried out near infrared speckle
observations to obtain the masses and mass ratios for the
components of young binary systems. The goal was a
comparison of the results with numerical model calculati-
ons.

Young stars in the star formation region of Taurus-
Auriga were observed with the 3.5 m telescope on the
Calar Alto using the MAGIC infrared camera built at the
MPIA. In addition, observations of star-forming regions
in the southern sky were made using the ESO New
Technology Telescope on La Silla, Chile. As in most yo-
ung binaries the components are separated by less than
one arc second, high-resolution speckle techniques had to
be used. Here, typically one thousand single images of 0.1
seconds exposure time each were taken and then super-
imposed to make one composite image. Thereby the blur-
ring of the images caused by atmospheric turbulences
(“seeing”) can be overcome. The measurements were ta-
ken at 2.2 mm wavelength where also stars are to be seen
whose visible light is heavily obscured by dust extinction.

The total sample comprises 119 stars, the projected se-
parations of the components of binary systems being at
least 20 AU. The star formation regions are 450 light
years (Taurus-Auriga) to 620 light years (Lupus) away
from Earth. For all objects, spatially resolved photometric
measurements in three near-infrared wavelengths were
obtained.

Before analyzing the data, they had to be “de-redde-
ned”, that is, corrected for the extinction effect of the in-
terstellar dust. Then the data were plotted in a color-ma-
gnitude diagram together with theoretical evolutionary
tracks. Here some of the systems fell out of the theoreti-
cally possible region (Fig. IV.12), presumably because of
the presence of stellar dust disks which are common in
young stars. These disks generate an additional strong ex-
tinction, which could not be corrected for. Therefore, the-
se stars were excluded from further analysis.

For the remaining stars, luminosities and spectral types
were determined. The latter is especially difficult to ob-
tain as only spectra of the combined light of each binary
system are available, but not of each single component.
Therefore, astronomers assumed that the optical primary
component of each system dominates the spectrum. On
this supposition and the very plausible assumption that
both stars in a binary system are coeval, the spectral types
of the companions could also be derived.

Fig. IV.11: Spectra of W33A in the region of the CH3OH absorp-
tion around 9.7 mm, obtained with ISOPHOT (a) and SWS (b).
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Given these data, it was possible to place the stars into
a Hertzsprung-Russell diagram containing theoretical
evolutionary tracks and to determine the masses of the
components. Unfortunately, the results depend strongly
on the assumed evolutionary model for pre-main sequen-
ce stars. Furthermore, the sample is incomplete below ab-
out 0.5 solar masses. For these reasons, it was not possi-
ble to show if and where the mass function of the compo-
nents has a maximum and how it continues towards sub-
stellar objects.

The mass ratio of both components, however, is of
great importance for the intended comparison with pre-
dictions of numerical models for the formation of binary
systems. A few years ago, such models had shown that
during their formation both components of a young binary
system continue to accrete matter from their surroun-
dings. Consequently, the mass ratio of both components
should approach unity. But as is shown in Fig. IV.13, the-
re seems to be no preference of binaries having compo-
nents of equal masses. Further observations are needed to
explain this disagreement. Progress will depend signifi-
cantly on the development of more reliable evolutionary
models for pre-main-sequence stars and binary systems.

Evolution of Orbital Periods

Apart from the mass ratio, the orbital period is one of
the characteristic quantities of binary systems. For main-
sequence binaries, periods are ranging from about one
day to one thousand years. This broad distribution is asto-
nishing because binary stars form from gas clouds of very
similar radii and masses. Therefore, the characteristic pro-
perties of binaries should also exhibit only a small scatter.

Theoreticians at the Institute posed the question if this
very broad distribution already arises during the formati-
on phase of binaries or if it was created by later influen-
ces. Maybe gravitational interactions during close en-
counters of proto-binary systems within the dust cloud
widen the initial narrow period distribution. This possibi-
lity was considered because numerical simulations of the
formation of binary systems do not produce the wide ran-
ge of periods. In particular, these calculations do not lead
to systems with periods shorter than about one thousand
days. This was the motivation for simulating the gravita-
tional influence on orbital periods within a star cluster
using N-body calculations.

In four different models one hundred respectively one
thousand binary systems were treated. In particular, the
models differed in the values of the initial densities ran-
ging from one to nine stars per cubic parsec. The compo-
nents of the systems were chosen randomly from the stel-
lar mass function. In three of the models the stellar mas-
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ses varied between 0.1 and 50 solar masses while the
fourth one only contained low-mass stars of 0.08 to 1.1
solar masses. The initial periods were distributed uni-
formly between 90 and 900 years. All systems had orbits
with an eccentricity of 0.75; but as it turned out later, this
value did not have much influence on the results.

Then the models were left to the effects of gravitation,
their evolution being followed. In the course of time, so-
me of the binary systems, preferably the wide ones, were
disrupted. In some cases, even companions were exchan-

ged. On the whole, the distribution of orbital periods wi-
dened due to the gravitational interactions. But none of
the models even nearly reached such a broad distribution
as observed in nature (Fig. IV.14). The same is true for the
eccentricities.

So these simulations demonstrate that the broad distri-
bution of orbital periods already arises during the forma-
tion process of binary systems. Now it is the task of the
theoreticians to find the cause of this phenomenon. 

(Ch. Leinert, T. Herbst, A. Burkert)
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histograms are based on three different stellar evolutionary
models used to derive the masses.



Early Chemical Evolution of the Milky Way System

The oldest stars in the halo of the Milky Way System
contain a significantly lower fraction of heavy elements
than our Sun. This reflects the chemical evolution of our
Galaxy whose interstellar medium has been enriched
with heavy elements over the past billions of years.
Surprisingly, however, the abundance of different ele-
ments varies considerably within the population of old

stars. The theory group at the MPIA has calculated a
model to simulate the inhomogeneous chemical enrich-
ment of the interstellar medium and compared the re-
sults with observational data. Interesting predictions
were made that can be tested by further observations.

The simplest models of the formation and evolution
of our Galaxy predict a trend in the abundances of hea-
vy elements (generally called “metals” by astronomers).
Accordingly, the Galaxy formed from matter consisting
almost solely of hydrogen and helium. This cloud slow-
ly contracted, forming the first stars. Massive stars pro-
duced the first heavy elements in their interiors and di-
spersed them into the interstellar medium by stellar
winds or supernova explosions. Meanwhile, the cloud
continued to collapse, thereby forming the Galactic disk.
The interstellar matter in the disk, out of which the new
stellar generation was created, was already enriched
with heavy elements then. Consequently, a star’s metal-
licity is a measure of the age and evolutionary stage of
the Galaxy.

If that simple scenario were true a gradient should
exist, the percentage of heavy elements in stars within the
Milky Way System increasing from outside to inside, i.e.,
from the halo to the center.

A lot of observational results, however, now show that
the evolution of the Galaxy could not have been that
straightforward. Therefore, astronomers now generally
believe that big disk galaxies have been formed in a hier-
archical process. In this picture, the Galaxy did not form
out of a single big cloud but grew bigger over billions of
years by the merger of several smaller protogalaxies.

Generally, inhomogeneities in the interstellar medium
must have been of great importance. This is proved by
spectroscopic observations of old stars in the Galactic ha-
lo using the abundance of iron in the stellar atmospheres
as a measure of the stars’ age. As it turned out, very old
stars with about the same very low abundance of iron ex-
hibit strongly varying fractions of other heavy elements
like europium, barium and strontium. An extreme exam-
ple is a star called CS 22892-052. While its abundance of
iron is only about one thousandth of the solar value, the
proportions of some other heavy elements are 40 times
higher than in the Sun. These findings can only be explai-
ned if the interstellar gas of the early Galaxy had been en-
riched inhomogeneously with metals.
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A Model of the Chemical and Dynamical Evolution
of the Halo

There have been numerous attempts to simulate an in-
homogeneous chemical evolution of the Galaxy assu-
ming that stars enriched their surroundings locally with
heavy elements and that these small regions mixed only
slowly. This mixing process is difficult to simulate, as
various other dynamical processes have to be taken into
account simultaneously. Theoreticians at the Institute to-
gether with colleagues from the Arcetri Observatory,
Florence, have computed a chemo-dynamical model of
the early Galaxy considering a number of essential pro-
cesses.

The model starts from individual gas clouds of diffe-
rent sizes. Each cloud is assumed initially to be spherical
and chemically homogeneous and to host independent
episodes of star formation. As these newly formed stars
later release heavy elements into their surroundings, the
chemical composition of the cloud gas changes over time.
At the same time, these clouds are moving under the in-
fluence of gravitation and some of them sink down into
the Galactic disk. Furthermore, they can coalesce with
each other as well as fragment into smaller units, thus mo-
difying the initial distributions of size and mass. The fre-
quency ratio between fragmenting and coalescing clouds
with star formation does not follow from the model itself
but is a free parameter. Different cases were simulated
and the number of G stars forming this way was compa-
red with the observed population in the halo. The best ag-
reement was obtained by assuming the coalescence rate
being on average twice as high as the fragmentation rate.
This value was later taken as standard.

The simulations included 10 000 clouds with a total of
50 billion solar masses. Individual cloud masses initially
covered a range from 1000 to ten million solar masses.
Star formation only set in if a cloud exceeded a critical
value of 10 000 solar masses. During each star formation
episode three percent of the gas was converted into stars.
At the same time, the intervals between successive star
formation episodes were determined to be 20 million
years. This way, a star formation rate of 1.5 solar masses
per years was obtained. At the end of the simulation span-
ning one billion years stars with a total mass of some bil-
lion solar masses had formed from the gas in the halo.

The mass spectrum of the newly formed stars essenti-
ally determines how much heavy elements are created and
ejected into the interstellar medium. The astronomers
chosed the standard Salpeter mass function with a maxi-
mum stellar mass of 120 solar masses.

The main goal of the simulation was to follow the evo-
lution of europium and barium in relation to iron because
good observational data are available for these elements.
These metals are ejected into the interstellar medium by
supernova explosions of type II within one billion years.
For barium, winds from lower-mass stars in their later gi-

ant stage have to be considered, too. Production rates of
elements in a supernova explosion are not known exactly
but lie between several 10-7 solar masses for europium
and several 10-6 solar masses for barium.

Evolution of Metal Abundances

These parameters given, the model followed the evo-
lution of the abundances of iron, europium, and barium
within each cloud over time. Doing this, the effect of mer-
gers between clouds with different star formation episo-
des became evident. Figure IV.15 shows the abundance of
iron during one billion years. For comparison, a theoreti-
cal relation between age and abundance was also plotted
which, however, does not take into account the mergers of
clouds of different chemical composition described abo-
ve.

Figure IV.15 clearly shows that the well-defined rela-
tion between age and element abundance has to be repla-
ced by a statistical analysis of the observed data. One can
notice, e.g., that after some ten million years the spread
in the iron abundance (in terms of the ratio of iron to hy-
drogen: Fe/H) ranges between 10-6 and 10-2. It takes ab-
out one hundred million years for the clouds to mix up
and thereby homogenize the chemical composition of the
gas, the value for the iron abundance converging to about
10-2. Nevertheless, it is still possible for a star of
Population II to have higher iron abundance than one of
Population I.

Furthermore, the enrichment of the halo gas with euro-
pium was modeled. Figure IV.16 shows the europium
abundance as a function of the corresponding Fe/H ratio
instead of time. Here, too, one can recognize a wide scat-
ter of the values compared to the simple model. The first
small Eu concentrations occur after the first supernova
explosions of stars of eight to ten solar masses and corre-
spond to values of Fe/H = 10-5. The model even produces
clouds, which are enriched in europium having a ratio
Fe/H = 10-5 but have formed later than clouds with a hig-
her Fe/H ratio.

These results demonstrate that the determination of
stellar ages based on element abundances is possible only
with great uncertainties or on a statistical basis. More-
over, the results explain the broad variation of observed
element abundances. To compare these observational da-
ta with the model predictions, the abundance ratios Eu/Fe
and Ba/Fe were plotted as a function of Fe/H (Fig.
IV.17a). Clearly, the wide spread is reproduced. Only for
high values of the iron abundance (Fe/H = 0.1) the model
does not provide any values. This result can be modified
by assuming higher star formation efficiency within the
clouds, converting 30 % of the gas into stars (Fig.
IV.17b). This model has the advantage of showing the ef-
fects of different parameters like star formation rate or
production rate of the elements in supernovae on the en-
richment history of the halo.
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Fig. IV.16: Enrichment of europium as a function of the abundan-
ce of iron.
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The model makes two more interesting predictions.
For one thing, there should be a large number of stars with
smaller Eu/Fe and Ba/Fe ratios than have been observed
until now, lying beneath the dashed line. For another
thing, the model predicts the existence of stars with Fe/H
< 10-4 for the halo. They, too, have not been found yet.

Maybe these predictions of the model can be tested soon
using instruments with a higher sensitivity than available
today. In the future, this model will allow to compute al-
so the evolution of further elements, which are forming in
other stars, like red giants, for instance.

(C. Travaglio, A. Burkert)



The Deepest Infrared Image – an Inventory of Stellar
Masses in High Redshift Galaxies

One of the most urgent tasks of astrophysics is to un-
derstand the formation and evolution of galaxies.
Modern observational techniques have made it possible
only recently to study a large number of galaxies out to
large distances. Astronomers of the Institute together
with colleagues from the Netherlands have started a ga-
laxy survey in the southern sky. In the course of this
Faint Infrared Extragalactic Survey (FIRES), images of the
HUBBLE Space Telescope in visible light are combined
with new near-infrared images obtained with the Very
Large Telescope (VLT) of the European Southern
Observatory (ESO). Up to now, these are the deepest and
best images in this wavelength region. The goal is,
among other things, to determine the magnitude distri-
bution, sizes and shapes of galaxies over a wide reds-
hift range and the evolution of their stellar masses. First
results confirm the strategy of the method and have al-
ready revealed a number of interesting facts.

Modern theories of the formation and evolution of ga-
laxies start from a so-called hierarchical scenario. At first,
galactic “building blocks” of dark matter, gas and stars
were forming, growing only by dynamical merger proces-
ses into the present-day large galaxies. But it is still un-
known at which epochs, respectively redshifts, these mer-
gers between protogalactic fragments reached a maxi-
mum. And it is also unclear yet which effects these pro-
cesses, accelerated by dark matter, had on star formation.
It appears that cosmic star formation is declining today.
But it is unclear at which epoch it had set in - maybe at a
redshift around z = 6 or earlier. One of the research goals
is to find out at which time the rate of cosmic star forma-
tion was at its peak: When did the majority of present-day
stars form?

Previous galaxy surveys did confirm the hierarchical
scenario qualitatively but nevertheless this field of rese-
arch is still at its beginning. In the future, galaxy surveys
will provide significant new insights.

The Faint Infrared Extragalactic Survey (FIRES)

Those surveys can be conducted in various ways, the
kind of astronomical findings depending essentially on
the wavelength region in which the survey is carried out.
Structure, morphology and luminosity of (proto)galaxies
depend on the observed wavelength since characteristic
emission features of a galaxy are shifted towards longer

wavelengths with increasing distance because of the ex-
pansion of the Universe: The light which astronomers are
receiving now from a galaxy lying at z = 1.5 had been
emitted when the Universe was about one quarter of its
present age. The intense UV radiation of young hot stars
in such a distant galaxy has been shifted from the original
UV wavelength of about 200 nm to 500 nm which is in
the visible spectral range. Thus, a sky survey conducted in
visible light will be sensitive mainly for UV emission,
which can originate only from galaxies with high star for-
mation rates. But these galaxies in particular are fre-
quently affected by strong dust extinction making them
appear much fainter than they really are.

An infrared galaxy survey, in contrast, promises sever-
al major improvements. Most of the total mass of every
stellar population is contained in stars whose emission
maximum lies in the range of visible light, which is then
redshifted into the infrared. So one has to observe this wa-
velength region in order to determine the evolution of
stellar masses within galaxies. The goal of FIRES is to ob-
serve as many galaxies as possible over a wide redshift
range at identical rest-frame wavelengths. The rest-frame
wavelength is the unshifted wavelength of the radiation
emitted at the locations of the respective galaxies.
Moreover, galaxies with high star formation rates can be
detected in the infrared region by their UV emission out
to a redshift of z = 10.

FIRES is an observing project conducted by astrono-
mers from Heidelberg, Leiden (Netherlands) and
Garching at the ESO Very Large Telescope in Chile.
Several fields in the southern sky for which very deep op-
tical images of the HUBBLE Space Telescope are available
were observed in the near infrared. In particular, the
HUBBLE Deep Field South (HDF-S) was imaged during
two observing runs in 1999 and 2000 in three filter bands
with 100 hours exposure time. These images were taken
with the ISAAC instrument at the VLT. In combination
with the HUBBLE image of the HDF-S obtained in four fil-
ter bands these data represent the worldwide deepest ima-
ge of a sky field in seven filter bands covering a wave-
length range from 0.3 mm to 2.2 mm (Fig. IV.18). The K-
band image (2.2 mm) is the deepest ever taken at this wa-
velength. Furthermore, three excellent images of the ga-
laxy cluster MS 1054-03 were obtained in the course of
FIRES at 1.25 mm, 1.65 mm, and 2.2 mm wavelength.

From these data the redshifts of the galaxies were esti-
mated using a photometric technique. In this method, the
fluxes in the measured filter bands are compared with mo-
del templates of different galaxy types including several
elliptical, spiral and irregular galaxies with extremely
high star formation rates (starburst galaxies). Figure IV.19
exemplifies this technique.
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In order to test the accuracy of this technique some ga-
laxies in the field were studied spectroscopically using
FORS 1 at the VLT. The result was very encouraging: the
photometrically obtained redshifts z of the galaxies with
magnitudes down to 23.5 mag at 2.2 mm wavelength sho-
wed an error of ∆z/(1+z) = ± 0.07. The entire galaxy ca-
talogue in the HDF-S comprises 136 objects, which were
selected for the first time on the basis of their near-infra-
red magnitude.

Bright and Massive Galaxies in the Early Universe

The distribution of the redshift values is obtained im-
mediately from the data (Fig. IV.20). It shows a prominent
peak at z = 0.5 and a broad enhancement up to z = 1.4. (At
a redshift of z = 0.5 the respective galaxy is seen in a sta-
te when the Universe was about half its present age.)
Further analysis shows that this redshift interval mostly
contains bright galaxies.

The evolution of the luminosity as a function of reds-
hift can also be determined from the data. Figure IV.21
shows the result for luminosities in the blue spectral ran-
ge. A remarkably large number of galaxies with luminosi-
ties higher than 5 × 1010 solar luminosities are found
beyond z = 2. This number is very large compared to the
results of galaxy surveys of the nearby Universe. It could
be explained if the galaxies in the early Universe were ab-
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ges at 1.25, 1.65, and 2.2 mm.



out three times as luminous as today because of their high
star formation rates. Detailed studies of these bright gala-
xies will provide information about processes, which took
place when the Universe was only 15 to 20 % of its pre-
sent age.

An Extraordinary Large Disk Galaxy at z = 3

Hierarchical models of galaxy formation predict all ga-
laxies in the early Universe being small and compact.
Large galactic disks should form only comparatively late
at redshifts smaller than z = 1 by the infall of matter.
Surprisingly, the astronomers discovered an unusually
large galaxy with a size of about 1.7 arc seconds at a high
redshift of z = 2.793 (Fig. IV.22). Depending on the ad-
opted cosmological model, this value corresponds to a re-
al diameter between 20 000 and 30 000 light years. At the-
se high redshifts, optical images are dominated by the
emission of hot, young stars. In the visible range, a ring-
like structure is seen in this galaxy, quite similar to the lar-
ge star formation regions in local galaxies like M 31 or M
81. At increasing wavelengths, this ring gradually vanis-
hes giving way to a rather uniform, more compact bright-
ness distribution. In the near infrared, the galaxy looks
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symmetrical with a central brightening resembling the ga-
lactic bulge of present-day spiral galaxies.

The central condensation seen in the near infrared and
the ring-like structure argue against the picture of two
merging galaxies suggested by the hierarchical scenario.
In principle, vast dust clouds could explain the wave-
length-dependent morphology since optical radiation is
obscured more heavily than infrared emission. But there
is another attractive explanation. The central condensati-
on in the infrared could originate from an old stellar po-
pulation while the more ring-like emission in the optical

comes from young stars. So, do we see here a large spiral
galaxy in the early Universe with an old core and a young
disk population?

This scenario and the unusual size of the disk are in di-
sagreement with most of the theoretical models of hierar-
chical galaxy evolution. According to them, the size of the
predecessors of the present-day galaxies should be smal-
ler than the disk observed here by a factor of ten. Future
studies will have to search for other large disks in the ear-
ly Universe because a single case can be easily explained
by unusual circumstances.

Old Galaxies at z = 2?

After classifying the galaxies their colors in the res-
pective rest frames could be obtained from the data at
hand. It was noted that a great number of red systems with
high luminosities existed at all distance ranges. Although
their fraction is somewhat smaller than that of blue bright
galaxies, they are thought to have much higher mass-to-
light ratios (M/L). Therefore, they should contribute con-
siderably to the total stellar mass encountered within a gi-
ven redshift interval.

Using theoretical models, it was attempted to construct
a time-dependent M/L ratio and to determine from it the
stellar masses contained in galaxies. In the present-day
Universe, one finds M/L ≈ 2 for spiral and M/L ≈ 5 for el-
liptical galaxies. It is demonstrated in Figure IV.23, that at
all redshifts red galaxies are the most massive ones. Such
a result can only be obtained with infrared data.
Nevertheless, dust and other effects will still have to be
considered here, too. The present result is to be under-
stood as a first approach to this problem.
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Limits and Future Tasks

In the future, more galaxy surveys of this kind will be
conducted. Telescopes with high light-gathering power
and sensitive cameras with large fields of view are avai-
lable since recently. Future surveys should tackle mainly
two questions: How do large-scale structures in the ga-
laxy distribution (galaxy superclusters) and strong dust
extinction within the galaxies affect the results?

Concerning the first question, one has to realize that up
to a redshift of z = 1 FIRES covers a volume corresponding
to only two thirds of a typical galaxy supercluster.
Between z = 2 and z = 3.5 it corresponds to about four ti-
mes the volume. In the near range up to z = 1, random ga-
laxy clustering or voids can therefore falsify the statistical
result.

This shortcoming is being eliminated in a first ap-
proach by observing the region of the galaxy cluster MS
1054-03 covering about four times the area of the HDF-S.
Moreover, the new Advanced Camera for Surveys aboard
the HUBBLE Space Telescope is suited for surveys of this
kind. The wide field camera OMEGA 2000 which is cur-
rently being built at MPIA and which will be installed at
the Calar Alto 3.5 m telescope is also perfectly suited for
near infrared surveys (cf. Chapter II).

(Gregory Rudnick, Hans-Walter Rix)

Dust in Galaxy Clusters

In 1997, astronomers at the Institute caused a stir anno-
uncing the discovery of dust in the Coma cluster of ga-
laxies (cf. Annual Report 1997, p. 26). Actually, it had be-
en the first direct detection of intergalactic dust and
was accomplished by analyzing the far-infrared data of
the ISO space telescope. Last year, the same team ins-
pected the data of five other galaxy clusters. But this ti-
me they did not discover any dust. Obviously, the Coma
cluster is an exceptional case. This new result is in di-
sagreement with a twenty years old controversial theo-
ry stating that hot gas in galaxy clusters cools down in
so-called cooling flows and condenses into dust. But it
confirms latest observations with the European XMM-
NEWTON X-ray telescope, which also seem to disprove
the theory of cooling flows.

The space between galaxies in clusters is not comple-
tely empty as images taken in visible light might suggest.
Rather, there exists a very finely distributed hot gas at
temperatures of several million kelvins. Because of its
high temperature it emits only in the X-ray region. This
intergalactic gas has an average density of about a thou-
sand atoms per cubic meter - roughly a thousand times lo-
wer than the density of the diffuse interstellar gas in the
Milky Way Galaxy.

In the 1980s, the discovery of intergalactic gas led to a
theory which is controversial up to now: At that time, so-
me astrophysicists concluded from the X-ray emission
which is concentrated strongly towards the center of the
cluster that the gas there should be very dense and cooler
than in the outer regions. The cooling should increase in
a process reinforcing itself and the gas should finally con-
dense into a still unknown form – into stars, for instance,
or into cold dense clouds containing dust. The condensa-
tion reduces the pressure at the center causing gas lying
further out to flow inwards, cool down and condense, too.
According to the inferred inward flow of gas the pheno-
menon was named “cooling flow”.

From the data available at that time, astronomers esti-
mated that in extreme cases more than one thousand new
stars could form in the cooling flows this way each year
- an incredibly high rate compared to an average spiral
galaxy like the Milky Way where roughly one new star
appears per year. Thus, this prognosticated process
should profoundly affect the evolution of galaxy clu-
sters.

This sensational theory, however, could never be con-
firmed beyond doubt. Only some vague evidence of dust
was found, e.g., in studies of galaxies and quasars lying
behind galaxy clusters. These studies indicated that the
surface density of observable background galaxies
decreases towards the center of a cluster lying in front of
them. This could be explained by a homogeneous distri-
bution of dust in the cluster, which would absorb the light
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passing through the central region more strongly than that
in the outer regions.

However, all studies of this kind were not convincing.
The visual extinction at the central region of the Coma
cluster was estimated to be less than 0.3 magnitudes. An
investigation of more than 60 clusters in the infrared ran-
ge using the IRAS satellite telescope and in the sub-milli-
meter range could not provide any evidence for the exi-
stence of diffuse intergalactic dust.

The ISOPHOT instrument built under the leadership of
the MPIA offered an additional possibility to tackle the
problem by observing galaxy clusters in the hitherto in-

accessible spectral range beyond 100 mm where very
cold dust becomes apparent. In addition to the Coma clu-
ster, the astronomers studied five other clusters selected
according to special aspects. The Coma cluster is known
to undergo merging with other smaller galaxy groups. It
was suggested therefore that the dust has been swept
from the intruding galaxies rather than having condensed
from the intergalactic gas as claimed by the cooling-flow
model. The other five clusters were selected under the as-
pect of a morphological variety as large as possible. They
covered a redshift range between z = 0.023 and 0.076,
corresponding to distances of about 650 to 2100 billion
light years.

In 1997/1998, the five galaxy clusters were observed
using ISOPHOT, the exposure times being between 50 and
100 minutes. Each cluster was scanned along two perpen-
dicular axes measuring the intensities at 120 mm and 185
mm (Fig. IV.24).

In the analysis, the IR fluxes of the four detector pixels
were first determined separately for each image and sub-
sequently averaged. The study of the Coma cluster (Abell
1656) already had shown that dust only became apparent
when intensity ratios at 120 mm and 185 mm were taken.

Only then an almost symmetric intensity increase around
the central region was noticed. This behavior is due to the
radiation properties of the intergalactic dust in the Coma
cluster, which differ from those of the Galactic cirrus in
our own Milky Way System.

Furthermore, the analysis has to take into account the
zodiacal light. Because of its rather high temperature, this
diffuse dust in our solar system emits only very little in
the far-infrared region beyond 100 mm. But if a localized
patch of Galactic foreground cirrus happens to lie along
the line of sight to a galaxy cluster, even the small contri-
bution from the zodiacal light will cause the same charac-

teristic modification of the 120 mm/185 mm intensity ratio
as the intergalactic dust in the galaxy cluster itself. From
the differences between the 120 mm/185 mm ratios with
and without the contribution of zodiacal light the causer
of a change in the 120 mm/185 mm ratio can be identified.
But if the properties of the intergalactic dust closely re-
semble that of the Galactic cirrus, there is no possibility
to separate the two components even by subtraction of the
zodiacal light.

All galaxy clusters were analyzed using this method.
The Coma cluster again showed an almost symmetric run
of intensity (Fig. IV.25). But such a run was not found for
the other clusters as is illustrated by the cluster Abell 262.
Here, the intensity ratios at 120 mm and 185 mm (Fig.
IV.26 a) show a minimum around the central region. After
subtraction of the zodiacal light component (Fig. 26 b),
however, only a monotone incline is left which can be at-
tributed to the Galactic cirrus.

Fig. IV.24: Galaxy clusters Abell 1656 (Coma) and Abell 262,
imaged with the IRAS infrared satellite at 100 mm wavelength.
The crossed ISOPHOT scans are marked.

Abell 1615 Abell 1262
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The dust within the Coma cluster must differ in pro-
perties such as temperature, particle size and composition
from the Galactic cirrus because otherwise both compo-
nents could not be separated. These properties, however,
are difficult to determine. From the data a minimum tem-
perature of 30 K is derived. The interior of the cluster pro-
bably contains hardly more than 107 solar masses of cold
dust. From this follows also a very low extinction of less
than 0.1 magnitudes.

If any, only very small amounts of dust can be present
in the other galaxy clusters. This confirms the assumption
that intergalactic dust is of no relevance in most of the ga-
laxy clusters. As mentioned before, there probably are
special conditions prevailing in the Coma cluster.
Currently, two scenarios for the origin of dust are discus-
sed: Either dust is blown constantly from the galaxies in-
to intergalactic space by stellar winds or it was swept
from the galaxies during the merger of two galaxy clu-
sters. The second scenario in particular could apply to the
Coma cluster as various observations indicate that this

cluster has a rather low dynamical age and consists of two
interpenetrating or merging clusters whose central gala-
xies once were NGC 4889 and NGC 4874, respectively.

This result is of cosmological significance, too, as it
shows that intergalactic dust hardly affects the view of di-
stant regions of the Universe. This is very important, e.g.,
for various methods of measuring cosmological distances.

In particular, the results can be taken as a strong argu-
ment against the cooling-flow hypothesis. Recent X-ray
observations with the European XMM-NEWTON space te-
lescope seem to disagree with this theory, too, as they fai-
led to detect cooling gas. This suggests the intergalactic
gas to be continually heated. The heating could be achie-
ved by energetic particle beams, or jets, which are spur-
ting from the centers of active galaxies. This phenomenon
is also investigated by astronomers at the MPIA (cf. the
following section).

(Manfred Stickel, U. Klaas, D. Lemke)
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The Jet of the Quasar 3C 273

Numerous radio galaxies and quasars show an inte-
resting phenomenon: one or two plasma beams, so-cal-
led jets, emanate from their central regions, sometimes
stretching over several million light years into space
and ending in extended radio lobes. Up to now, several
hundred jets are known in the radio range. About fifteen
jets are also observable in visible light, but only three of
them are extended and bright enough to be studied spa-
tially resolved, among them the jet of the quasar 3C 273.
Astronomers at the MPIA have investigated this jet with
high resolution using the HUBBLE Space Telescope for
the optical and the Very Large Array for the radio range.
The new data suggest that two particle populations
with different energy distributions exist in the jet. These
results raise new questions about the acceleration pro-
cess of the jet particles.

The jet of 3C 273 can be optically detected over a di-
stance from 11 to about 20 arc seconds from the quasar,
corresponding to a projected length from the core of
123000 light years (adopting a Hubble constant of 65
km/(s Mpc)). On long exposures the jet appears as a se-
ries of bright knots with a diffuse medium in between
(Fig. IV.27).

Particle Acceleration and Synchrotron Emission

The jet originates at the center of the quasar where ac-
cording to current theory a black hole resides. It is surro-
unded by a gaseous disk from which matter spirals into
the black hole. In a hitherto unknown process, part of the
gas is accelerated perpendicular to the disk probably by
magnetic fields and confined into jets, which propagate
into the intergalactic medium.

The observed jet emission is synchrotron radiation pro-
duced by charged particles moving with relativistic speeds
in strong magnetic fields. The streaming particles in the
jets probably are mostly electrons and maybe also their an-
tiparticles, positrons. But in principle, a plasma consisting
of electrons and protons cannot be excluded. As syn-
chrotron emission produces a purely continuous spectrum
without any absorption or emission lines the streaming ve-
locity of the gas cannot be measured directly. Based on nu-
merous findings, however, the jet gas is thought today to
move outwards at almost the speed of light.

But it is still a puzzle how the particles within these
jets are accelerated permanently to highly relativistic en-
ergies. Synchrotron radiation of a given frequency is
emitted only by electrons with a given energy. A particle
having a higher energy is radiating at a higher frequency.
By emitting radiation, though, it looses energy and over
the course of time it can be observed only at increasingly
lower frequencies. After a few thousand years, an electron
originally emitting optical or infrared synchrotron radiati-
on has lost so much energy that it emits only in the radio
range. So electrons radiating in the infrared or optical ran-
ge certainly cannot travel the entire length of the jet of 3C
273 but have to be continuously re-accelerated at the lo-
cation of their emission.
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Since the 1980s, astronomers at the Institute are study-
ing intensively extragalactic jets and have contributed sig-
nificantly to the clarification of this phenomenon. So they
were able in 1997 to obtain the first deep near-infrared
image of the 3C 273 jet using the 3.5 m telescope on Calar
Alto. Closing the gap between the optical and the radio
range, the IR data were of great importance to the deter-
mination of the intensity run of the synchrotron emission
(cf. Annual Report 1997, p. 64). From the data the astro-
nomers had concluded that the particles are accelerated
not only within the knots, as had been assumed for a long
time, but also in the regions in between.

Observations with the HUBBLE Space Telescope
(HST) and the Very Large Array (VLA)

Together with colleagues from the USA and Great
Britain, astronomers at MPIA observed the jet of 3C 273
using the Wide Field and Planetary Camera 2 onboard the
HST. Exposure times were a little less than ten hours in
the UV (301 nm wavelength) and almost three hours in
the red (620 nm). During another ten hours observing ti-
me images at 1.6 mm were obtained using the NICMOS in-
frared camera onboard the HST. New observations with
the VLA at Socorro, New Mexico, constitute the second
part of the data set. From the radio data images at 1.3 cm,
2 cm and 3.6 cm wavelengths were selected and subse-
quently superimposed with the HST data using a common

resolution of 0.3 arc seconds corresponding to 1800 light
years at the location of the jet. This way, a homogeneous
data set was obtained.

These new observations, being the most detailed and
deepest images of this jet so far, reveal some interesting
new details. In the optical images, e.g., criss-cross pat-
terns in the knots can be discerned, particularly in the
knots C1 and C2 (Fig. IV.28). These pattern could be an
indication for a helical structure of the jet similar to the
double helix of the DNA molecule. But it is also concei-
vable that the criss-cross structure is produced by the su-
perposition of two shock waves within the flowing plas-
ma.

From the combined VLA and HST data the spectral
distribution of the synchrotron emission, that is, the in-
tensity of the radiation as a function of frequency could be
obtained over a very broad spectral range. The emitted
spectrum first runs continuously and then drops steeply
beyond a certain frequency. This means that there are
hardly any electrons emitting synchrotron radiation above
this cut-off frequency. Because of the relation between
frequency and particle energy the maximum energy of the
electrons can thus be determined.

Fig. IV.28: Computer simulation of a black hole surrounded by a
disk with a jet emanating from its center.



Based on the new data the research team could deter-
mine the maximum particle energy spatially resolved and
measure variations along the jet as well as across it (Fig.
IV.29). Along the jet, the maximum particle energy is fo-
und to decrease generally with increasing distance to the
quasar. The crucial fact is that the maximum energy is
decreasing very slowly and almost continuously and that
the variations of the maximum energy are less prominent
than the brightness variations (with the exception of knots
A-B, see Fig. IV.27).

This confirms the assumption that the electrons are re-
accelerated within the entire jet rather than in the knots
only. Further confirmation comes from estimates of the li-
fetime of the relativistic electrons. As mentioned above,
these electrons loose so much energy by emitting syn-
chrotron radiation that without continuous energy supply
they would not be able to travel the distance of about
6500 light years between two knots and remain visible for
the HST.

Two Populations of Electrons 

Recent observations with the CHANDRA X-ray space
observatory show that more jets than thought up to now
are emitting X-rays. For 3C 273, X-ray emission of the jet
had already been detected with the ROSAT satellite and
was now confirmed by CHANDRA (Fig. IV.30). How are
the X-rays generated?

The optical and radio emission is established to be syn-
chrotron radiation emitted by the same electron populati-
on. This has been proven by observations already publis-
hed in 1991 by astronomers at the Institute. The X-rays,
however, seem to be of different origin. Astronomers at
MPIA suppose a second particle population to emit this
highly energetic radiation, plus an additional significant
fraction of the UV emission.

This assumption is made because the analysis showed
the intensity of the jet emission in the high-frequency op-
tical and in the UV range to exceed the theoretical values
extrapolated from the low-frequency radio and infrared
range. This is the first time that such a behavior is found
in an extragalactic jet. It suggests that, in those two spec-
tral ranges, the emission is not generated by the same el-
ectrons.

In a simple model, the astronomers were able to de-
scribe the “excess” of UV emission very well by extrapo-
lating the X-ray data, at least for the three brightest knots
of the jet. This suggests a common origin of both of the-
se contributions. Thus the new data indicate a second el-
ectron population emitting synchrotron radiation in the
UV and X-ray range.

However, there is another possible emission mecha-
nism for the UV and X-ray radiation: the so-called Self-
Compton-effect. In this process, the relativistic electrons
collide with the photons of the synchrotron emission pro-
viding them with an additional energy and thus shifting

them into the UV and X-ray range. For this model to be in
agreement with the observations, the entire jet would ha-
ve to be highly relativistic and move almost along our li-
ne of sight.

Based on the available observational data, this issue
cannot be settled yet. Further measurements in the optical,
UV and X-ray region are needed to determine the run of
the spectral index in greater detail. The best method
would be to measure the polarization of the X-ray emissi-
on. Observations of this kind, however, will be possible
only with future space observatories.

(S. Jester, H.-J. Röser, K. Meisenheimer)
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Fig. IV.29: a) Map of the maximum energy of the electrons in the
jet. The maximum energy is decreasing from purple to red to
green to blue; b) the image of the jet at 620 nm smoothed to 0.3
arc seconds is shown for comparison.

Fig. IV.30: X-ray image of the 3C 273 jet with the CHANDRA X-
ray telescope. (NASA)



Spiral Systems in Elliptical Galaxies

About 80 years ago, Edwin Hubble developed a classifi-
cation scheme for galaxies, which basically is still in
use today (Fig. IV.31). Accordingly, galaxies are broadly
divided into three major types: elliptical, spiral and irre-
gular. Hubble suspected at that time that his scheme
might represent an evolutionary sequence running from
the ellipticals to the spirals. This idea has been dismis-
sed today. Instead, theoretical arguments as well as ob-
servational data increasingly suggest that elliptical ga-
laxies form from mergers of spirals. Two years ago, the
theory group at the Institute had already been able to
confirm this hypothesis by numerical simulations (cf.
Annual Report 1999, p. 67). In recent simulations, how-
ever, the theoreticians discovered an interesting pheno-
menon: In order to explain the observed stellar motions
in elliptical galaxies, one has to assume a stellar popu-
lation being arranged in a disk around the central regi-
on.

Elliptical and spiral galaxies clearly show different
morphologies. In spirals, the stars are arranged in a disk
with a more or less prominent spheroidal accumulation of
stars at their centers, the so-called bulge. The spiral arms
are varying in their distinctness. Elliptical galaxies are
characterized by a tri-axial shape similar to a rugby-ball.
The degree of oblateness depends on the viewing angle
under which the system is seen. If one looks in the direc-
tion of the major axis the galaxy appears circular; at right
angles to this direction, it is seen as highly elliptical.

Both galaxy types also differ significantly in their ki-
nematics. The disks of spiral galaxies are dominated by
the orbital motion of the stars around the center. Random
stellar motion, the so-called velocity dispersion, is low,
only about 10 % of the rotational velocity. For elliptical
galaxies, in contrast, the situation is exactly inverted.
Here, the stars move on irregular unorganized orbits and

the velocity dispersion often exceeds the rotational velo-
city.

Moreover, marked differences occur within the group
of ellipticals. On one hand, there are systems which are
rotating rather fast and whose isophotes (lines of equal
brightness) deviate from the perfect elliptical shape, being
more elongated (disky) and rather similar to the isophotes
of disks. On the other hand, there are systems, which are
rotating more slowly, showing angular (boxy) isophotes.

Astronomers at the Institute were able to explain this
difference with the help of numerical simulations.
According to them, elliptical galaxies with boxy isopho-
tes form by mergers of two spiral galaxies of the same si-
ze while low-luminosity ellipticals with disky isophotes
originate from mergers of a massive and a low-mass spi-
ral galaxy.

While the photometric properties of elliptical galaxies
could be explained very well within the merger scenario,
questions concerning kinematic characteristics remained
unsettled. Now, the theoreticians wanted to explain the
observed velocity dispersions, too, by computing new si-
mulations.

64 IV.2 Extragalactic Astronomy

Irregula
Galaxies

Barred Spirals

Sa Sb Sc

SBa SBb SBc

Normal Spirals

Elliptical Galaxies

Boxy
Ellipticals

Ellipticals
with weak Disks

S0

SB0

Fig. IV.31: Classification scheme for galaxies developed by
Hubble.



Simulations of the Kinematics

These computations, like the previous ones, distinguis-
hed two cases: the merger of two spiral galaxies of the sa-
me size and that of two spirals with a mass ratio of 3:1.
The massive galaxies were represented by 200 000 test
particles each, forming the central bulge (20 000 par-
ticles), a disk with exponentially decreasing density pro-
file (60 000 particles) and a spherical halo of dark matter
(120 000 particles) (Fig. IV.32). In the case of the 3:1 mo-
del the smaller galaxy was represented by one third of the
particles.

The simulation only studied the dynamical behavior of
the particles, that is, their gravitational interactions. More
complex processes within a gaseous component (such as
compression, heating, star formation etc.) were ignored.
Moreover, the astronomers chose two different geome-
tries for the motion of the merging galaxies in which two
co- or counter-rotating disks approach one another on pa-
rabolic trajectories. Both disks are inclined by 30 and –30
degrees respectively, to the orbital plane. As the team was
able to show in a separate study, both geometries yield ge-
nerally representative results. After the merger the simu-
lation was carried on long enough for the newly formed
system to reach a state of equilibrium (Fig. IV.33).
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Fig. IV.32: Distribution of the
test particles of a spiral galaxy
at the beginning of a simulati-
on.

Fig. IV.33: Four stages of the
merger of two spiral galaxies of
the same size forming an ellip-
tical galaxy. The dashed lines
represent the trajectories of the
galaxies.



Afterwards, the projected velocity dispersions were in-
ferred from the model, as they would be measured with
the telescope. Thus a comparison between the results of
the model and actually measured data became possible.
Finally, the particle velocities obtained for each measu-
ring interval were fitted with a Gaussian function. This
way, it was possible to compare quantitatively the results
of the simulation with the observed data.

Fig. IV.34 shows the velocity normalized to the veloci-
ty dispersion (n/s) as a function of a quantity called H3. A
large (positive or negative) value of n/s means a rapidly
rotating (retrogradely or progradely) galaxy. H3 is a mea-
sure of the asymmetry of the Gaussian function. As can be
noted clearly, the simulated values (dots) do not agree
with values typical for elliptical galaxies (straight lines).
This means that in a real elliptical galaxy there are more
stars moving at high orbital velocities around the center
than calculated in the model. Only model B, representing
two counterrotating merging galaxies of the same size, is
roughly in agreement with the observations. This case
yields highly anisotropic elliptical galaxies without signi-
ficant rotation.

Interestingly, the model values are in much better ag-
reement with the observational values if a disk is assumed
to exist in the central region of the elliptical galaxy. In fur-
ther simulations taking into account such a disk, its mass
and size were left as free parameters. Fig. IV.35 shows the
effect of such a disk on the kinematics. Here, a thin cen-
tral disk with 15 % of the galaxy’s mass and a radius cor-
responding to 1.25 times the half-light radius of the ellip-
tical galaxy was added to the 3:1 model. If a more massi-
ve disk is chosen the theoretical values are in discrepancy
with the observations.

Therefore the astronomers assume a disk-like compo-
nent with a mass fraction of 10 to 20 % to exist at the cen-
ters of almost all elliptical galaxies. Actually, several of
such cases have been observed in the 1990s, particularly
in rapidly rotating galaxies with disky isophotes. It is still
unclear yet how such disks can form. Maybe they are a re-
sult of the merger. The theoreticians at the Institute have
tested this idea, too, by numerical simulations.

Up to then, they had not taken into account the com-
plex interactions of the interstellar gas. In their new si-
mulations the model was extended to include this compo-
nent. It turned out now that during the merger large amo-
unts of gas are expelled from the galaxy in form of long
“tidal arms” as it is also seen, e.g., in the famous case of
the Antennae (Fig. IV.36). After the merging process wit-
hin the central regions, part of this gas falls back into the
newly formed galaxy accumulating there in a disk (Fig.
IV.37). It seems altogether plausible that in the course of
time new stars are forming in this interstellar medium
creating a disk population as it is required by the simula-
tions and already has been observed in some cases.

So the outlines of the formation of elliptical galaxies
get clearer and clearer. Nevertheless, there are still sever-
al aspects, which have to be followed up. So at least some
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Fig. IV.36: Chronological steps of the merger of two spiral gala-
xies: A, B, C, D with mass ratios 1:1 and a, b, c, d with mass
ratio 1 : 3. The figure illustrates the behavior of the gas par-
ticles.
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elliptical galaxies contain black holes at their centers,
which are surrounded by accretion disks. Here, e.g., giant
plasma beams are generated – jets extending up to sever-
al hundred million light years into the intergalactic medi-

um (cf. previous chapter on 3C 273). It would be inte-
resting to know how these black holes form and how they
affect the formation and evolution of elliptical galaxies.

(Thorsten Naab, Andreas Burkert)
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Dark Matter and Galaxy Formation

Since decades, dark matter is part of the cosmological
standard model. According to our current knowledge, it
alone contributes about one third of the total mass of the
Universe. Although the nature of dark matter is still un-
known theoreticians include it in their calculations,
making assumptions about its interaction with “normal”
matter. This concerns in particular galaxy formation in
the early Universe. Theoreticians at the Institute to-
gether with colleagues from the MPI für Astrophysik in
Garching and the Carnegie Institution in Washington,
USA, found out that the present angular momentum of
dwarf spiral galaxies cannot be explained by current
theories of galaxy formation. This work illustrates again
fundamental deficits in the understanding of dark matter
and its role in the evolution of the Universe.

Evidence of the existence of dark matter is found in va-
rious fields of astronomy: spiral galaxies are rotating so
rapidly that they have to be surrounded by a halo of invi-
sible matter holding together these stellar systems by gra-
vitation. Galaxies in clusters are moving so fast that they
have to be bound gravitationally by dark matter. And last
not least, the formation of galaxies and clusters of gala-
xies from the very homogeneous primordial gas cannot be
explained without the additional gravitational effect of
dark matter.

Part of the dark matter probably consists of dark bo-
dies, such as brown dwarfs, black holes and extremely
faint stars which cannot be detected by present-day teles-
copes. The major part, however, has to be made up by
hitherto unknown elementary particles. They must have
the property to emit or absorb only very little electroma-
gnetic radiation, if any, and to interact only gravitational-
ly with ordinary baryonic matter.

The Angular Momentum Content of the Halos and
Disks

In simulations of galaxy formation under the influence
of (non-baryonic) dark matter, the latter is therefore trea-
ted as a gas with only gravitational interactions. Such
computations have led to the following picture: In an ori-
ginally almost homogeneous mixture of dark and baryo-
nic matter, the dark matter at first forms dense clumps, so-
called dark halos with highly concentrated cores.
Baryonic matter then accumulates in these “gravitational
traps”, condensing in the central regions into galaxies.
The so-formed galaxies are then still surrounded by a dark
matter halo.

During this early stage, dark halos interact and merge
with one another rather frequently. Moreover, on larger
scales dense filaments form, intersecting in knots where
mergers of dark halos occur particularly often. During

mergers and by tidal interactions angular momentum is
transferred to the halos. Numerical computations show
the intrinsic angular momentum distribution of dark ha-
los to be universal. The assumption is made that in this
stage dark matter and baryonic matter are still strongly
coupled. If this were true, the baryonic gas and eventual-
ly the newly formed spiral galaxies, too, should have the
same angular momentum distribution as the dark matter
halos.

Although this scenario explains many observable cha-
racteristics of spiral galaxies, there are problems, too.
First of all, simulations with (cold) dark matter yield disk
galaxies that are at least an order of magnitude too small.
This is a consequence of visible matter loosing angular
momentum to the dark matter when it is falling into the
dark halos. But obviously it is in disagreement with the
observations. The second problem concerns the actual
density distribution of spiral galaxies. If angular momen-
tum conservation is assumed to explain the observed size
of the disks, according to the numerical computations, the
actual density distribution of the disks should reflect the
original angular momentum distribution of the protoga-
laxy.

Theoreticians at the Institute and their colleagues have
tested this fundamental prediction of the theory. First,
they calculated the specific angular momentum distributi-
on of 14 dwarf spiral galaxies from their observed densi-
ty distributions and rotation curves. Then these results
were compared with the predictions of the cosmological
simulations, assuming the infalling gas not to loose angu-
lar momentum. As it is shown in Figure IV.38, the theore-
tical distribution (solid curve) is in rather good agreement
with the observed data if a mass-to-light ratio of unity to
two is assumed for the galaxies (middle and right dia-
gram). (The dimensionless parameter l is calculated from
the total angular momentum and the mass and energy of
the halo.)

Surprisingly, a very strong correlation of the angular
momentum parameter l and the fraction of baryonic mat-
ter in the disk was found (Fig. IV.39), implying that the
angular momentum distribution depends on the baryonic
mass of the galaxies. Such a behavior, however, cannot be
explained by the cosmological theory.

A striking disagreement with the theory was found
mainly by analyzing the angular momentum distribution
within the disk (Fig. IV.40). The hatched area marks the
range of the angular momentum distribution within the re-
spective disk while the solid line represents the angular
momentum distribution in the halo. For one thing, it is no-
ted that the hatched regions are always smaller than the
total areas below the curves. This means the fraction of
baryonic matter in the disks being smaller than the mean
value in Universe. For another thing, the angular momen-
tum distribution reaches higher values in the halo than in
the disks, meaning that at the formation of the galaxies
matter with the highest angular momentum is not incor-
porated in the disk.
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The problem is, in a few words, that the average angu-
lar momentum over the entire disk is in rather good agre-
ement with the predictions (Fig. IV.38), while the angular
momentum distribution in the disk differs significantly
from theory (Fig. IV.40).

This discrepancy between observation and theory
could in principle result from a faulty analysis of the
observational data. It is conceivable, e.g., that part of
the matter is in the form of undetectable brown dwarfs
and very faint stars. This assumption, however, could
be precluded by repeating the calculations of the an-
gular momentum of galaxies using considerably hig-
her mass-to-light ratios. These attempts led to no sig-
nificant improvement. Another possibility would be
that the outer regions of the galaxies were not detecta-
ble and thus an important fraction of the angular mo-
mentum was overlooked. But this option, too, was
excluded by the theoreticians: gas beyond the obser-
ved maximum radius can contribute to the total angu-
lar momentum no more than half a percent. But how
can the new results be interpreted in the framework of
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an otherwise very successful cosmological standard
scenario?

There are different ideas for a possible solution of the
puzzle. First of all, dark matter could have different pro-
perties than assumed. The computations only consider
cold dark matter, its particles having small kinetic energy.
For several years, however, the possible existence of
warm dark matter with higher kinetic energy is discussed,
too. Future simulations will have to show whether this op-
tion can solve the angular momentum problem.

Still another possibility would be, that baryonic and
dark matter have de-coupled in a very early stage of ga-
laxy formation and that the angular momenta of the halo
and the disk took a different evolution. However, the rea-
son for such a behavior is not known. Obviously, the ex-
planation of the angular momentum problem is an essen-
tial prerequisite for a complete understanding of galaxy
formation.

(Andreas Burkert)

The Far-Infrared Sky Background

The importance of astronomical infrared observations
will increase further in the future. The European space
telescope HERSCHEL, which is currently being built (the
MPIA is participating in its instrumental development)
is just one example for this trend. Studies of faint objec-
ts in this spectral region, however, are confused by a
widespread background radiation originating from
sources within our planetary system and the Milky Way,
but also from distant galaxies. Astronomers at the
Institute together with colleagues from the University of
Helsinki and the Konkoly Observatory in Hungary stu-
died the infrared background using the ISOPHOT instru-
ment aboard the ISO Infrared Observatory. They identi-
fied properties of this diffuse background radiation,
which will be important for future infrared telescopes.
Furthermore, they identified the faint signal of the extra-
galactic background radiation, which probably origina-
tes mainly from newly formed galaxies in the early
Universe.

ISO has peered through several luminous “curtains” ly-
ing at quite different distances to Earth (Fig. IV.41).
Firstly, there is interplanetary dust within the solar sy-
stem. At a temperature of 270 K it is relatively warm, so
its thermal radiation in the mid-infrared is the strongest
confusion noise in front of the faint background radiation.
At much larger distances of hundreds or thousands of
light-years, cool interstellar dust is spread out. Because of
its wispy diffuse appearance it is also called cirrus.
Intergalactic dust can be detected only in galaxy clusters
and even there only very small concentrations have been
found as studies at MPIA have shown (cf. the Chapter
“Dust in galaxy clusters”)

The extragalactic infrared background was detected
about ten years ago by the US-American COBE satellite.
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The DIRBE instrument onboard COBE, however, had a re-
solution of only 42 arc seconds and was incapable of de-
tecting individual sources. Using ISOPHOT, astronomers at
the Institute were also able to identify this weak radiation
coming from young galaxies several billion light years
away.

There is only one source lying at an even larger di-
stance – that of the cosmic microwave background. It has
its maximum in the millimeter range, though, and origi-
nates from a very early phase, only some hundred thou-
sand years after the Big Bang. This emission has been
mapped by COBE in great detail over the entire sky.

Confusion noise – a fundamental problem in infrared
astronomy

The different components of the infrared background
are a fundamental problem for infrared astronomy as they
are superimposed onto all observations and set an accu-
racy limit to intensity measurements of the radiation of
cosmic objects. This infrared “confusion noise” can be
determined as follows: During the observation of an ob-
ject, images are taken in turn of the sky region containing
the object (on target) and away from it (off target). The
off-target image is used as a reference to determine the in-
tensity of the sky background, which is mostly caused by
the emission of galactic dust (cirrus). Subsequently, this
background is subtracted from the on-target image (Fig.
IV.42).

First studies of confusion noise have been conducted in
the early 1990s on the basis of images taken by the IRAS

infrared satellite. The spatial distribution of the backgro-
und radiation had been found then to show something li-
ke a fractal pattern: Structures are similar on different sca-
les. Based on IRAS data at 100 mm wavelength and with
additional theoretical assumptions, an analytic relation
between confusion noise and telescope aperture (angular
resolution), wavelength and the absolute background in-
tensity was derived. It is quite plausible, for instance, that
with increasing angular resolution of the telescope the dif-
fraction-limited fields of view (airy disks) are getting
smaller so that on-target and off-target fields can lie clo-
ser together. Thus, in this case the background can be de-

termined with higher accuracy than at larger separations
of on- and off-target fields. And it seems plausible, too,
that a bright background, caused by a denser interstellar
cloud, has more structure than a faint one and therefore
increases the confusion noise.

With ISO, this partly theoretically deduced relation was
to be tested for the first time on the basis of observational
data and extended to longer wavelengths. For this purpo-
se, astronomers at the Institute selected 175 maps with
strongly varying background brightness from the ISO ca-
talogue, which did not contain any obvious sources, such
as stars, galaxies or nebulae. Firstly, the zodiacal light was
subtracted from the data. Then the instrumental noise was
analyzed in great detail and subtracted, too. The remai-
ning signal was subject to a fourier analysis providing the
number of background structures as a function of their si-
ze. This size N is indeed increasing, as theoretically pre-
dicted, with increasing background intensity (according
to a power law with an exponent of 1.5) (Fig. IV.43). That
is true for wavelengths around 100 mm (upper figure), as
well as around 200 mm (lower figure).

A direct comparison with the theoretical prediction is
very informative. As Fig. IV.44 shows, the theoretical va-
lues are in very good agreement with the ISO data, at least
in the region above about 10 mJy (the dashed line marks
the run of identical values): Moreover, the analysis clear-
ly showed that even in sky regions with very faint back-
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Fig. IV.42: Infrared images are taken in turn “on target” (middle)
and “off target” as reference. The size of the measuring apertu-
re D and the angle a between the fields imaged are of great
importance for the background noise.
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ground radiation the instrument noise is below the confu-
sion noise by a factor of two to three. Even at the maxi-
mum wavelength of 200 mm the detector sensitivity was
limited by fluctuations of the background rather than by
instrumental effects. This is another proof of the quality
of the ISO detectors, which had been developed by the
Institute together with German and European companies.

So the studies of the background noise have confirmed
to a large extent theoretical predictions which can now be
used for future space telescopes of similar size, such as
SIRTF (planned to be launched in 2003) and Astro-F
(2005). This is crucial for the determination of the mea-
suring accuracy of these telescopes. However, the relati-
on between confusion noise and increasing angular reso-
lution, that is increasing primary mirror, is still unknown
as ISO and IRAS both had mirrors of the same size (60 cm).
Predictions made for the HERSCHEL 3.5 m telescope the-
refore are still based on additional theoretical assumpti-
ons.

Extragalactic Background Radiation

In Fig. IV.44, a discrepancy between the measured da-
ta and the predictions is obvious for very low intensities
below about 10 mJy. In this region of faintest brightness
the run of the measured noise is almost constant. Here, the
fluctuations are no longer caused by the cirrus but by di-
stant galaxies. Astronomers interpret this signal as extra-
galactic background radiation, which is – in contrast to
the cirrus – distributed isotropically on the sky. 

A detailed analysis of this emission provided relative
fluctuation amplitudes of 7 mJy and 15 mJy at 90 and 170
mm, respectively, with an accuracy of 30 %. Using a cos-

mological model of galaxy clustering, the astronomers
were able to convert these values into absolute intensities.
The obtained values of 14 nW m-2 sr-1 for 90 mm and an
upper limit of 37 nW m-2 sr-1 at 170 mm are in agreement
with the data measured by COBE. Two years ago, a lower
limit to the background radiation was already obtained
from galaxy counts with ISOPHOT. It is a factor of seven
below the present upper limits.

This observation is notable in several respects. It re-
presents an independent determination of the extragalac-
tic background. But the goal is still to determine the ab-
solute intensity without using a cosmological model. This
can only be achieved if all foreground signals are sub-
tracted correctly. The absolute intensity value is crucial
for studies of the evolution of galaxies in the early
Universe – a task that will be tackled by the team in the
near future.

(C. Kiss, P. Ábrahám, U. Klaas, D. Lemke)
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ISO Observes Dust and Ice in Comet Hale-Bopp

In 1995, amateur astronomers Hale and Bopp discover-
ed a new comet. In spring 1997, it reached a maximum
brightness of -0.5 mag, remaining brighter than 0 mag
for more than seven weeks. Thus, comet C/1995 O1
(Hale-Bopp) was among the 20th century’s brightest
comets. Luckily, the European ISO Infrared Space
Observatory was in operation when the comet appea-
red. So an international team of astronomers used the
opportunity to observe the comet with ISO. Hale-Bopp
was found to have unusual high dust production rates
even at large distances to the Sun. In addition, infor-

mation on the properties and size distribution of the
dust particles was gathered.

IV.3 The Solar System

Fig. IV. 45: Comet Hale-Bopp in spring 1997.
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At the time of its discovery in July 1995, Hale-Bopp
still was at a very large distance of 7.15 AU from the Sun.
On 1 April 1997, it passed perihelion and then moved
back into the outer reaches of the solar system (Fig.
IV.45). Hale-Bopp displayed a variety of spectacular phe-
nomena such as jets and striae, the latter being very rare
bright stripes in the tail which were observed on Calar
Alto using the Schmidt telescope (cf. Annual Report
1997, p. 75). With a diameter of 40 to 70 km, the comet’s
nucleus was remarkably large.

Dust and Ice in the Coma of Hale-Bopp

Soon after its discovery, it became clear that this comet
would get exceptionally bright. Thus, it was ideally suited
to study its evolution also in the far infrared over a longer
period of time. In this spectral range, emission of dust and
ice is observable which provides information on various
activity phases of comets and on the particles in the coma.
Such observations also provide information on the struc-
ture of the nucleus.

It is known that, at large distances from the Sun, at first
the volatile CO gas sublimates from the nucleus, dragging
dust along with it. This way the coma forms. When ap-
proaching the Sun the comet gets warmer and warmer
causing also water to sublimate from the nucleus with in-
creasing rates until finally water dominates the gas pro-
duction of the comet.

These phases of Hale-Bopp were observable from ISO

in three observing “windows”: March to May 1996 (4.9 to
4.6 AU heliocentric distance), September/October 1996
(2.9 to 2.8 AU) and December 1997/January 1998 (3.9
AU, after perihelion passage). During these periods, ob-
servations over the entire wavelength region from 3.6 mm
to 170 mm were possible using the ISOPHOT instrument
developed at the MPIA. This data set was completed by
measurements of other instruments onboard ISO as well as
by ground-based optical observations at 0.7 mm. The mul-
ti-instrumental project was accomplished by a correspon-
dingly large team of astronomers. In addition to resear-
chers from three Max-Planck-Institutes (for Nuclear
Physics and for Astronomy, both in Heidelberg, and for
Aeronomy in Katlenburg-Lindau) astronomers from ESO,
the USA, France, Great Britain and the Czech Republic
were involved.
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The project focused on the following questions:
● How does the thermal emission change as a function of

the distance to the Sun?
● At which distance is it the water, and no longer CO,

that dominates the coma?
● How do the dust properties change as a function of the

distance to the Sun?
In a first step, the spectral energy distribution of the co-

ma was determined as a function of heliocentric distance
from carefully calibrated data. Fig. IV.46 shows three ex-
amples of these distributions for distances of 2.93 AU,
4.58 AU and 4.92 AU. In a first approximation, these da-
ta can be fitted with Planck curves of a blackbody to yield
color temperatures. These temperatures, however, are not

identical with the physical temperature of the dust par-
ticles since the thermal emission of individual particles
depends on their temperatures as well as on their emissi-
vity. This in turn is a function of material and particle si-
ze. The dust coma contains grains of vastly different size,
composition and temperature. The measured energy dis-
tribution in the infrared is the integral thermal emission of
all these different particles: So the spectral energy distri-
bution can be used to limit the properties of the particles.

The color temperatures obtained this way were compa-
red to the temperature of a hypothetical rotating blackbo-
dy in equilibrium with the infalling solar radiation.
Interestingly, the measured color temperature is about
50 % higher than the blackbody temperature for all di-
stances. This is the highest value ever measured, sug-
gesting that the coma must contain particularly large
numbers of small grains. At longer wavelengths of about
a hundred times the particles’ diameter, these grains are
no longer able to emit their thermal energy efficiently and
thus heat up more strongly than a blackbody.

The notably elevated color temperature even at the lar-
ge distance of 4.9 AU was a great surprise. The astrono-
mers had expected the dust grains to be bound in larger
icy particles, which are dragged along with the sublima-
ting CO gas into the coma. However, the data show that
large amounts of free, fine dust must exist. At the same ti-
me, the shape of the Planck curve at large wavelengths in-
dicates the presence of larger particles, too. So a dust po-
pulation with a wide distribution of sizes seems to have
existed in the coma. The presence of large amounts of
dust is suggested by another observational fact: The spec-
tral energy distributions are clearly elevated around 10
and 25 mm. These features are attributed to silicates. It is
the first time that these minerals have been detected in a
comet’s coma at such large heliocentric distances.

Comparison of the data showed the color temperature
varying with the heliocentric distance (r) as r–0.5 while the
total emitted energy varies as r–3. According to theory, the
energy varies as r–4 if the dust production rate increases
proportionally with the intensity of the infalling solar ra-
diation. This behavior had been observed in many earlier
comets, like comet Halley, for instance. Thus, the increa-
se of the dust production rate in Hale-Bopp during its ap-
proach to the Sun was lower than in other comets, at least
in the distance range between 4.6 and 2.8 AU. This is a
consequence of the exceptionally high dust activity star-
ting already at very large distances.

In order to investigate the properties of the coma par-
ticles, the spectral energy distribution was calculated for
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Fig. IV.47: Comparison of the dust model and the ISOPHOT data.
At a heliocentric distance of 2.8 AU (a), both models with a
somewhat different distribution of particle sizes are in good
agreement with the data. At 4.6 AU (b), only a reduced silicate
abundance (solid line) matches the data.



models of different dust compositions in order to find the
best fit to the observed spectral shape. After some experi-
mentation, a mixture of 75 % glassy pyroxene, 10 % glas-
sy olivine and 15 % crystalline olivine (forsterite) was fo-
und to fit best. The size distribution of the grains is defi-
ned by three quantities whose values were determined by
the fit to the measured data. These quantities are: a mini-
mum radius of 0.1 mm, a most common radius of 0.42 mm,
and an exponent N = 3.7 which determines the shape of
the distribution curve. A value of N < 4 means that large
particles contribute the major portion to the total dust
mass.

Figure IV.47 shows this model to be in very good ag-
reement with the data of 7 October 1996 (left) when Hale-
Bopp was 2.8 AU away from the Sun. The values of 27
April (right), however, when Hale-Bopp still was at a di-
stance of 4.6 AU, are discrepant from the model (dashed)
which predicts a much too high silicate emission. While
maintaining the size distribution, the discrepancy can be
eliminated only by reducing the relative fraction of the si-
licate component by a factor of three.

Using the model, the dust production rate could be de-
termined from the observed infrared fluxes. Unknown pa-
rameters in this calculation are the average density of the
grains and their maximum size. Assuming values of 1
g/cm3 for the density and 1 cm for the size, dust produc-
tion rates of 1.5 × 105 kg/s (at 2.8 AU) to 5 ×104 kg/s (at
3.9 AU) to 3 × 104 kg/s (at 4.6 AU) were obtained, yiel-
ding a dust-to-gas mass ratio of about six. These values
are matching older sub-millimeter observations which
had yielded a rate of 2 × 106 kg/s at 1 AU. In particular,
the exceptionally high rate at large distance was a surpri-
se, as mentioned above. Thus, it will be interesting to di-
scover other bright comets at large heliocentric distances
and study them in detail.

Another interesting subject in comets are water ice par-
ticles. Previously, optical and UV observations had alrea-
dy yielded a water production rate for Hale-Bopp of ab-
out 2 × 1028 mol per second. The ISOPHOT data suggest
the presence of water ice grains, which make themselves
conspicuous by an increased emission at 44 mm and 65
mm wavelength. From the water production rate and the
observed thermal emission the total mass of water ice can
be estimated, the unknown characteristic grain size limit-
ing the quality of the estimate. For a typical radius of 15
mm, 2 × 1010 kg are obtained, for 100 mm radius, the amo-
unt is 2 × 1011 kg. The data also showed the ice grains to
be a few degrees warmer than their corresponding black-
body temperature. This could be explained by small amo-
unts of dust contaminating the ice particles which there-
fore heat up more efficiently than pure ice.

This extensive analysis has demonstrated impressively
the potential of far-infrared observations of comets. Since
comets as bright as Hale-Bopp are rare, it is yet uncertain
whether future space missions, such as HERSCHEL (to be
launched in 2007), will be equally successful. In any ca-
se, these telescopes will be much more sensitive because

of their larger mirrors compared to ISO (HERSCHEL: 3.5
m, ISO: 0.6 m). So, those observations, which have turned
out to be especially interesting could be carried out at
even larger distances to the Sun.

(Dietrich Lemke, Christoph Leinert, Manfred Stickel)
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Dust in Clusters of Galaxies
Manfred Stickel, U. Klaas, D. Lemke in collaboration with:
Helsinki University, Finland. 

The Jet of 3C 273
Sebastian Jester, H.J. Röser, K. Meisenheimer in collabora-
tion with: NRAO, New Mexico, USA, Jodrell Bank Obser-
vatory, Cheshire, UK. 

Spiral Systems within Elliptical Galaxies
Thorsten Naab, A. Burkert. 

The Sky Background in the Far Infrared
C. Kiss, P. Abraham, U. Klaas, D. Lemke in collaboration
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Discs Around Pulsars
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Schuricht, Fellbach-Schmiden
Schweizer Elektroisolierungsstoffe,

Mannheim
SCT Servo Control Technology,

Taunusstein
SE Spezial-Electronic, Bückeburg
Seifert mtm Systems, Ennepetal
Siemens IC-Center, Mannheim
Spaeter, Viernheim
Spindler & Hoyer, Göttingen
Spoerle Electronic, Dreieich
Stäubli, Bayreuth
SUCO-Scheuffele, Bietigheim-Bissingen
Synatron, Hallbergmoos
Tandler, Brauen
Thorlabs, Gruenberg
TMS Test- und Meßsysteme,

Herxheim/Hayna
Tower Electronic Components,

Schriesheim
TreNew Electronic, Pforzheim
TS-Optoelectronic, München
TWK-Elektronik, Karlsruhe
Vacuumschmelze, Hanau
VBE Baustoff+Eisen, Heidelberg
Vero Electronics, Bremen
W. & W. Schenk, Maulbronn
Wikotec, Bramsche
Wilhelm Gassert, Schriesheim
WS CAD Electronik, Berk Kirchen
Witter GmbH, Heidelberg
WIKA, Klingenberg
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Summer Term 2001

J. W. Fried, B. Fuchs: Galaxies (Lecture) 

K. Meisenheimer: Radio Galaxies (Lecture)

H.-J. Röser: Cosmological Test Observations (Lecture)

U. Klaas: Ultra- und hyperluminous Infrared Galaxies
(Lecture)

M. Stickel: Astrophysical Data Analysis (Lecture)

Ch. Leinert, D. Lemke, R. Mundt, H.-M. Schmid, W.M.
Tscharnuter, P. Ulmschneider: Introduction to
Astronomy and Astrophysics III (Seminar)

Ch. Leinert, E. Gehlken, J. Krautter, H. Görgemanns, P.
Ulmschneider: History of Astronomy (Seminar)

A. Burkert, B. Fuchs, A. Just, H.-W. Rix, R. Spurzem, R.
Wielen: Stellar Dynamics (Seminar)

The Astronomy Lecturers: Astronomical Colloquium

Winter Term 2001/2002

W. Dehnen: Gravitational Lenses: Concepts and
Applications in Astronomy (Lecture)

W.J. Duschl, D. Lemke, R. Mundt, H.J. Röser,
W.M.Tscharnuter: Introduction to Astronomy and
Astrophysics III (Seminar)

A. Burkert, B. Fuchs, A. Just, H.-W. Rix, R. Spurzem, R.
Wielen: Structure, Kinematics and Dynamics of Stellar
Systemes (Seminar) 

J. Kirk, K. Meisenheimer: Particle Acceleration and
Radiation Processes in Radio Galaxien (Seminar) 

The Astronomy Lecturers: Astronomical Colloquium
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Teaching Activities

Workshop on “Dwarf Galaxies and Their Environment”,
Bad Honnef, Januay: E.K. Grebel (invited talk)

Seminar, University of Hertfordshire, England, January:
L. Pentericci (invited talk)

The Origin of the World, Fachhochschule Regensburg,
January: H-W. Rix (talk)

ISO Calibration Legacy Conference, Vilspa, Spanien,
February: P. Ábraham, P. (talk)

ISO Calibration Legacy Conference, Vilspa, Spanien,
February: C. del Burgo (talk, 2 posters)

Universidad Complutense de Madrid, Madrid, Spanien,
February: C. del Burgo (invited talks)

American Association for the Advancement of Science,
San Francisco, USA, February: E. K. Grebel (invited
review)

ISO Calibration Legacy Conference, Vilspa, Spanien,
February: P. Héraudeau (talk, poster), U. Klaas (invited
talk), D. Lemke (invited talk)

Massive Black Holes from z = 0.001 to z = 4.5, University
of Cambridge, February: H.-W. Rix (invited talk)

Massive Black Holes from z = 0.001 to z = 4.5�,
University of Oxford, February: H.-W. Rix (invited
talk)

ISO Calibration Legacy Conference, Vilspa, Spanien,
February: K. Wilke (talk)

The atmospheres of ultracool dwarfs, Carnegie Mellon
University, Pittsburgh, PA, USA, March: C.A.T.
Bailer-Jones

Variability and rotation in ultracool dwarfs, Zentrum für
Astronomie und Astrophysik, Technische Universität,
Berlin, March: C.A.T. Bailer-Jones
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The Dark Universe, Baltimore, MA, USA, March: A.
Burkert (invited talk)

IAU Symposium 207 über “Extragalactic Star Clusters”,
Pucón, Chile, March: E. K. Grebel (invited review)

SDSS Collaboration Meeting, Chicago, USA, March:
E. K. Grebel (invited talk)

Astronomisches Kolloquium, Universität Bonn und
MPIfR, March: S. Jester (invited talk)

Astronomische Großgeräte, Potsdam, March: D. Lemke

SDSS General Collaboration Meeting, Chicago, USA,
March/April: L. Pentericci

IAU Symposium 207, Extragalactic Star Clusters, Pucon,
Chile, March: A. Stolte (poster) 

INAOE, Mexico, April: C. del Burgo (invited talk)

Kolloquium, University of Wisconsin, Madison, USA,
April: E.K. Grebel

Planetarium Stuttgart, April: E.K. Grebel (public talk)

OPTICON Board Meeting, Catania, Italien, April: R.
Gredel

Mirror Maintenance Conference, Mt. Palomar Obser-
vatory, April: R. Gredel

Infrarot-Kolloquium, Freiburg, April: R. Hofferbert (invi-
ted talk)

First DIVA Thinkshop, MPIA, Heidelberg, April: K.-H.
Marien

ESO Workshop on “The Origin of Stars and Planets,
Garching, April: A. Stolte (Poster)

EBL Workshop, Helsinki, Finland, April: D. Lemke

Black Holes at the Centers of Galaxies from z > 4, AIP,
Potsdam, April: H-W. Rix (invited talk)

Spectral classification in large, deep surveys using neural
networks, Astronomisches Institut der Universität
Basel, May: C.A.T. Bailer-Jones (invited talk)

Modelling data: Analogies in neural networks, simulated
annealing and genetic algorithms, Konferenz “Model-
based reasoning”, Pavia, Italy, May: C.A.T. Bailer-
Jones

OMEGA 2000: a new wide field near infrared camera for
Calar Alto und “Time-resolved photometric monito-
ring of brown dwarfs”, Calar Alto Kolloquium,
Heidelberg: May: C.A.T. Bailer-Jones

Calar Alto Colloquium, Heidelberg, May: E.K. Grebel
(talk)

GAIA Conference The termination of stellar parameters
with GAIA, ESTEC/ESA, Netherlands: June: C.A.T.
Bailer-Jones (invited talk)

Dark Matter, Annual Meeting of the Max Planck Society,
Berlin, June: A. Burkert (invited talk)

XVIIth IAP Colloquium on “Gaseous Matter in Galaxies

and Intergalactic Space”, Paris, Frankreich, June:
E. K. Grebel (invited review)

IAU Colloquium “184 AGN Surveys”, Armenien, June:
M. Haas (invited talk)

“Where’s The Matter? Tracing Dark and Bright Matter
With The New Generation of Large-Scale Surveys,
June: S. Khochfar

Particle Astrophysics Workshop, Potsdam, June: D.
Lemke (invited talk)

Infrared and Submillimeter Space Astronomy Collo-
quium, Fance, June: M. Stickel (invited talk)

“Determination of stellar parameters with GAIA” at the
Conferenz “Census of the Galaxy: Challenges for pho-
tometry and spectrometry with GAIA”, Wilna, Littauen,
July: C.A.T. Bailer-Jones

Workshop on “The Lowest-Mass Galaxies and
Constraints on Dark Matter”, Schloss Ringberg, July
/August: E. K. Grebel (talks)

Conference “Tracing Cosmic Evolution with Galaxy
Clusters”, Sesto, Alto Adige, Italy, July: L. Pentericci

“Galaxy Structure Research at the MPIA, talk,
Heidelberg, July: H.-W.Rix

“Galactic Nuclei: Is smaller more interesting?”,
Symposium “The Lowest Mass Galaxies”, Schloss
Ringerb, July: H.-W. Rix

“Tracing Cosmic Evolution with Galaxy Clusters”,
Sesto, Alto Adige, Italy: July: H.-J. Röser

“Cosmological Galaxy Formation and Dark Matter
Halos, Workshop, Santa Cruz, CA, USA, August: A.
Burkert (invited talk)

MPA/ESO/MPE/USM Joint Astronomy Conference:
“Lighthouses of the Universe”, Garching, August: S.
Jester (talk)

Conference “Lighthouses of the Universe: The Most
Luminous Celestial Objects and their use for
Cosmology”, Garching, August: L. Pentericci

German School and Rotary Club, Marbella, Spain,
September: K. Birkle (public talk)

“First UKAFF Conference”, Leicester, UK, September:
A. Burkert (invited talk)

Kolloquium, Observatoire de Strasbourg, Strasburg,
Frankreich, September: E.K. Grebel

OPTICON Medium-sized Telescopes, Toulouse,
Frankreich, September: R. Gredel

OPTICON Board Meeting, München, September: R.
Gredel

9th ESMATS, Belgium, September: R. Hofferbert (invi-
ted talk)

Workshop on Relativistic Jets, Schloss Ringberg,
September: S. Jester
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Colloquium, Astronomy & Astrophysics Department,
University of Chicago, September: S. Jester

Astronomical Colloquium, University of Minnesota,
September: S. Jester (invited talk)

Science Lunch talk, MIT Center for Space Research,
Cambridge, USA, September: S. Jester

9th ESMATS; Belgien, September: O. Krause

JENAM, Munich, September: C. Maier (Poster)

Workshop “Elliptical Galaxies”, Schloss Ringberg, No-
vember: A. Burkert (invited talk)

Physics Colloquium and Seminar talk, Bochum Uni-
versity, November: E. K. Grebel

Workshop “Formation & Evolution of Giant Elliptical
Galaxies”, Ringberg, November: U. Klaas (invited
talk)

“Disks of Galaxies: Kinematics, Dynamics and Pertur-
bations”, Puebla, Mexico, November: T. Kranz (talk)

Hochschultag, TFH Berlin, November: D. Lemke (speech
of the day)

XIII Canary Islands Winter School of Astrophysics:
“Cosmochemistry”, Puerto de la Cruz, Teneriffa,
November: C. Maier (poster)

DFG-Workshop zur Sternentstehung, Bad Honnef, No-
vember: R. Mundt

International Conference “Disks of Galaxies: Kinematics,
Dynamics and Perturbations”, Puebla, Mexiko, No-
vember: H-W Rix (talk)

“Gas vs. Stars, Jeans vs. Schwarzschild: The Pain and
Gain of Detailed Dynamical Modeling”, Workshop,
Schloss Ringberg. November: H-W Rix (talk)

Colloquium, Steward Observatory, University of Arizona,
Tucson, December: E.K. Grebel

ESO, Garching, December: U. Klaas (invited talk)
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Service in Committees

C.A.T. Bailer-Jones: member of the GAIA Science Team
of ESA; Chairman of the GAIA “Classification” wor-
king groop; member of DIVA working groop for
Photometry and Spectroskopy; member of the
Scientific Organizing Committee for the conference
“Census of the Galaxy: Challenges for photometry and
spectrometry with GAIA.

E. K. Grebel: member of the Canadian Program
Committee for the Gemini Telescopes, member of the
student selection committee at the MPIA, member of
the PhD Advisory Coucil (PAC) at the MPIA, speaker
of the MPIA in the Collaboration Coucil of the Sloan
Digital Sky Survey, Women Speaker, member of the
Board of the Scientific Ernst Patzer Foundation.

R. Gredel: member of the Calar Alto Program Committee
and of the OPTICON working groop “Future of medi-
um-sized telescopes”

U. Klaas: member of the ISO Post Operations Coordi-
nation Committee, Co-Investigator in the HERSCHEL-
PACS Consortium

K.-H. Marien: member of the DIVA Co-Investigator Team 

R. Mundt: member of the Calar Alto Program Committee

D. Lemke: member of the ISO Science Team of ESA; Co-
Investigator in the HERSCHEL-PACS consortium; Co-
Investigator for NGST-MIRI; member of the Experts
Board for Astronomical Research, coordinator for
MPIA in the POE-Netzwerk

R.-R. Rohloff, member of the Sloan Digital Sky Survey
(SDSS) Review Committee

H.-J. Röser, secretary of the Calar Alto Program
Committee
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