Sternentstehung - Star Formation Winter term 2022/2023 Henrik Beuther, Thomas Henning & Jonathan Henshaw

18.10 Today: Introduction & Overview 25.10 Physical processes I 08.11 Physcial processes II 15.11 Molecular clouds as birth places of stars 22.11 Molecular clouds (cont.), Jeans Analysis 29.11 Collapse models I 06.12 Collapse models II 13.12 Protostellar evolution 20.12 Pre-main sequence evolution & outflows/jets 10.01 Accretion disks I 17.01 Accretion disks II 24.01 High-mass star formation, clusters and the IMF 31.01 Extragalactic star formation 07.02 Planetarium@HdA, outlook, questions 13.02 Examination week, no star formation lecture Book: Stahler & Palla: The Formation of Stars, Wileys More Information and the current lecture files: http://www.mpia.de/homes/beuther/lecture_ws2223.html beuther@mpia.de, henning@mpia.de, henshaw@mpia.de

(Beuther) (Beuther) (Beuther) (Henshaw) (Henshaw) (Beuther) (Henning) (Beuther) (Beuther) (Henning) (Henning) (Henshaw) (Henning) (Beuther)

Last week

- Virial theorem and applications to cloud (in)stability

- Cloud lifetimes

- Jeans analysis and applications to fragmentation

Topics today

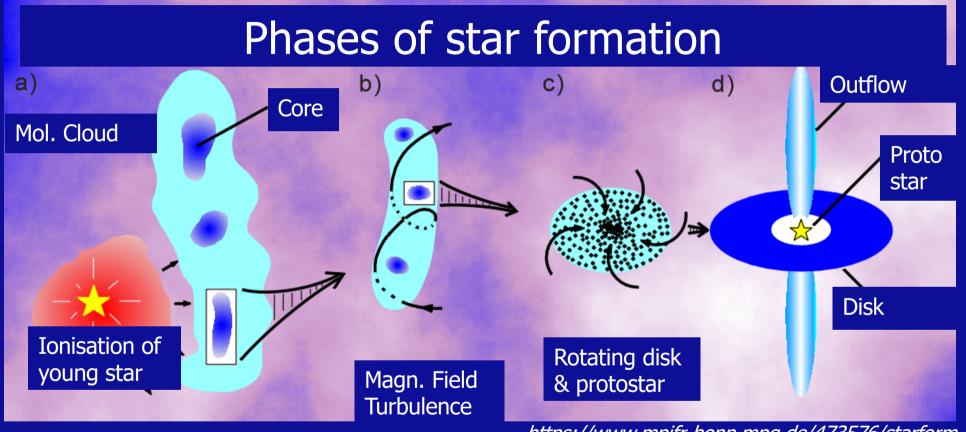
- Isothermal sphere, hydrostatic equilibrium, grav. stability, Bonnor-Ebert spheres

Rotational support

- Magnetic support and ambipolar diffusion

- Infall signatures

Star formation paradigm



https://www.mpifr-bonn.mpg.de/473576/starform

Isothermal Sphere I

(1)

Three equations governing the equilibrium are: Hydrostatic equilibrium

$$-\frac{1}{\rho}\nabla P - \nabla\Phi_g = 0$$

Ideal isothermal gas

$$P = \rho a_t^2 \tag{2}$$

where the Φ_g obeys Poisson equation

$$\nabla^2 \Phi_g = 4\pi G \rho \tag{3}$$

Substituting equation 2 in 1 and after integration

$$ln\rho + \Phi_g/a^2 = const. \tag{4}$$

In the spherical case, this is

$$\rho(r) = \rho_c exp(-\Phi_g/a^2) \tag{5}$$

P: Pressure ρ : density Φ_g : grav. Potential a_t : sound speed

Isothermal Sphere II

With ρ_c the density at the center and $\Phi_g(r=0) = 0$, the Poisson eq. becomes

$$\frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{d\Phi_g}{dr} \right) = 4\pi G\rho \qquad (1)$$
$$= 4\pi G\rho_c exp(-\Phi_g/a^2) \qquad (2)$$

Often, this equations is used in dimensionless form with the dimensionless potential:

$$\phi = \Phi_g / a^2$$

and the dimensionless length ξ

$$\xi = \sqrt{\frac{4\pi G\rho_c}{a^2}}r$$

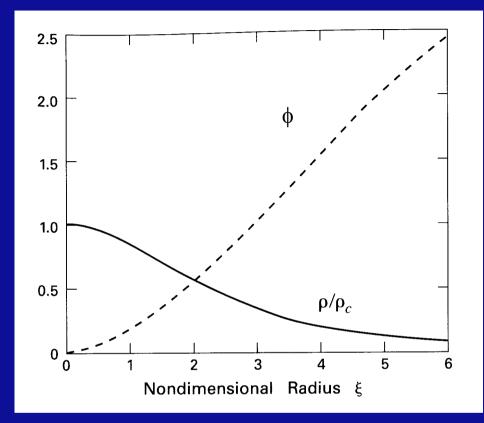
Then the Poisson eq. turns into the Lane-Emden eq.

$$\frac{1}{\xi^2} \frac{1}{d\xi} \left(\xi^2 \frac{d\phi}{d\xi} \right) = exp(-\phi) \tag{3}$$

Boundary conditions: $\phi(0) = 0$ $\phi'(0) = 0$ Gravitational potential and force are 0 at the center.

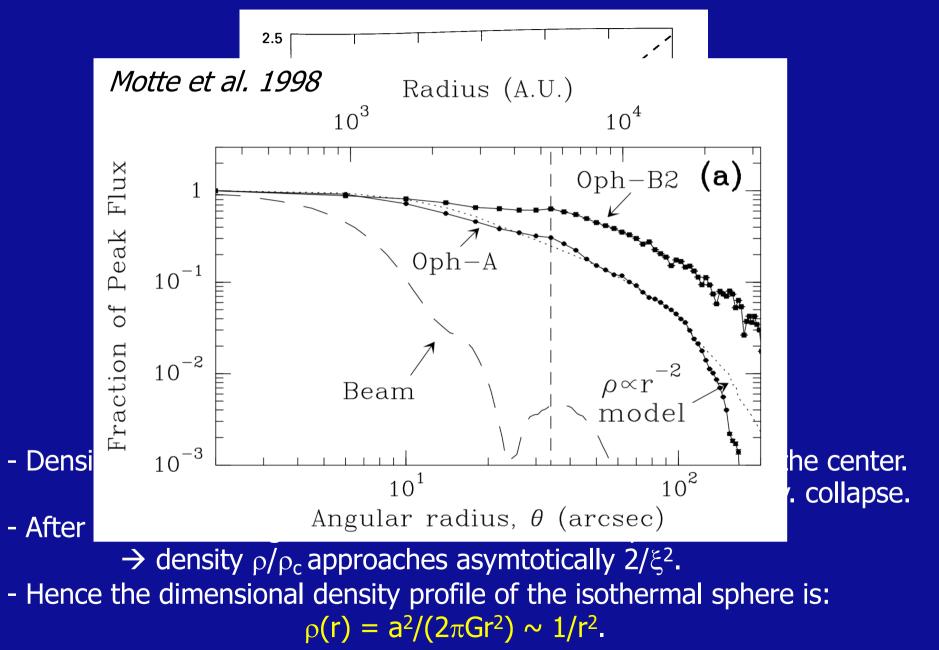
 \rightarrow Numerical integration: gravitational potential versus radius ... then density

Isothermal Sphere III



Density and pressure (P=ρa²) drop monotonically away from the center.
→ important to offset inward pull from gravity for grav. collapse.
After numerical integration of the Lane-Emden equation
→ density ρ/ρ_c approaches asymtotically 2/ξ².
Hence the dimensional density profile of the isothermal sphere is:
ρ(r) = a²/(2πGr²) ~ 1/r².

Isothermal Sphere III



Isothermal Sphere IV

The dimensional mass is

$$M = 4\pi \int_0^{r_0} \rho r^2 dr$$
(1)
= $4\pi \rho_c \left(\frac{a_t^2}{4\pi G \rho_c}\right)^{3/2} \int_0^{\xi_0} e^{-\phi} \xi^2 d\xi$ (2)

Using the Lane-Emden eq. and the boundary condition $\phi'(0) = 0$

$$\rightarrow M = 4\pi\rho_c \left(\frac{a_t^2}{4\pi G\rho_c}\right)^{3/2} \left(\xi^2 \frac{d\phi}{d\xi}\right)_{\xi_0} \tag{3}$$

Defining furthermore a dimensionless mass m

$$m = \frac{P_0^{1/2} G^{3/2} M}{a_t^4}$$
, with $P_0 = \rho_0 a_t^2$ (4)

the dimensionless mass equals

$$m = \left(4\pi \frac{\rho_c}{\rho_0}\right)^{-1/2} \left(\xi^2 \frac{d\phi}{d\xi}\right)_{\xi_0} \tag{5}$$

Since ξ_0 is known for each ρ_c/ρ_0 , and $\left(\xi^2 \frac{d\phi}{d\xi}\right)_{\xi_0}$ can be read from the previous figure, one can evaluate m.

With: $r = \sqrt{(a_t^2/(4\pi G\rho_c))^*\xi}$ $\rho = \rho_c \exp(-\phi)$ Subscript 0 at cloud edge

Isothermal Sphere IV

The dimensional mass is

$$M = 4\pi \int_0^{r_0} \rho r^2 dr$$
(1)
= $4\pi \rho_c \left(\frac{a_t^2}{4\pi G \rho_c}\right)^{3/2} \int_0^{\xi_0} e^{-\phi} \xi^2 d\xi$ (2)

With: $r = \sqrt{(a_t^2/(4\pi G\rho_c))^*\xi}$ $\rho = \rho_c \exp(-\phi)$ Subscript 0 at cloud edge

Using the Lane-Emden eq. and the boundary condition $\phi'(0) = 0$

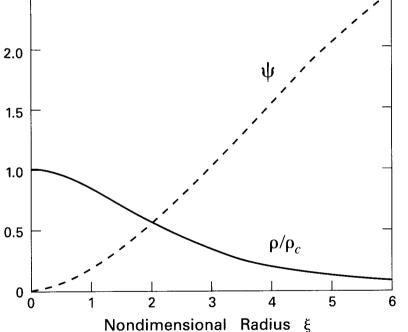
condition
$$\phi'(0) = 0$$
 2.5
 $\rightarrow M = 4\pi\rho_c \left(\frac{a_t^2}{4\pi G\rho_c}\right)^{3/2} \left(\xi^2 \frac{d\phi}{d\xi}\right)_{\xi_0}$ 2.0

Defining furthermore a dimensionless $m\epsilon$

$$m = \frac{P_0^{1/2} G^{3/2} M}{a_t^4}$$
, with $P_0 = \rho_0 a_t^2$

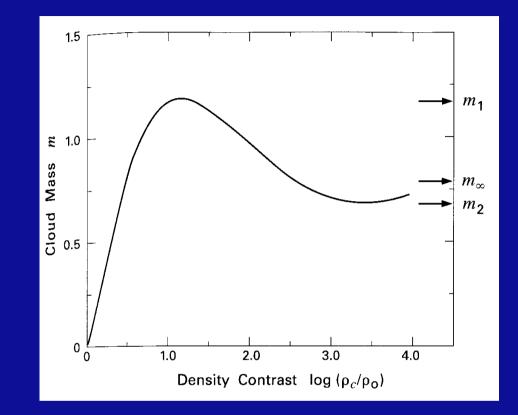
the dimensionless mass equals

$$m = \left(4\pi \frac{\rho_c}{\rho_0}\right)^{-1/2} \left(\xi^2 \frac{d\phi}{d\xi}\right)_{\xi_0}$$



Since ξ_0 is known for each ρ_c/ρ_0 , and $\left(\xi^2 \frac{d\phi}{d\xi}\right)_{\xi_0}$ can be read from the previous figure, one can evaluate m.

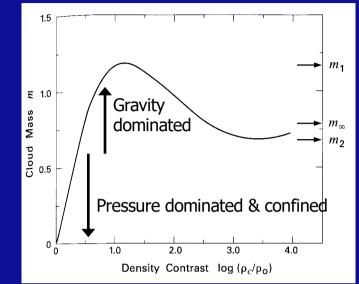
Isothermal Sphere V



The beginning is for a radius $\xi_0=0$, hence $\rho_c/\rho_0=1$ and m=0.

For increasing ρ_c/ρ_0 , m (and Φ) increases until $\rho_c/\rho_0=14.1$, corresponding to the dimensionless radius $\xi_0=6.5$.

Gravitational stability

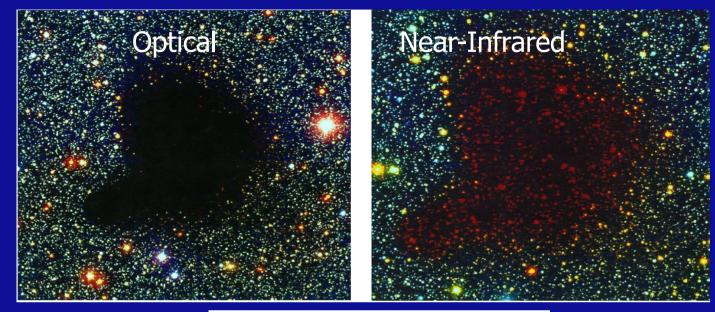


- Low density-contrast cloud: Increasing outer pressure P₀ → rise of m & ρ_c/ρ_0 . - With internal pressure P= ρa_t^2 and $\rho \sim 1/r^2$ decreasing outward → inner P rises more strongly than P₀ → cloud remains stable.

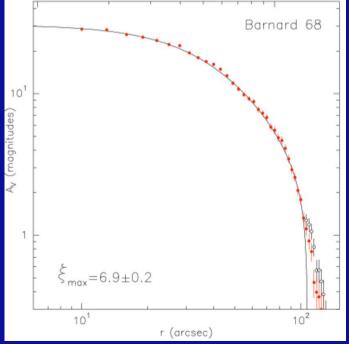
- High-density contrast: following the Boyle-Mariotte law for an ideal gas: $PV = const \rightarrow P^*4/3\pi r^3 = const$ \rightarrow core shrinks with increasing outer pressure P₀.

- All clouds with ρ_c/ρ_0 > 14.1 (ξ_0 =6.5) are gravitationally unstable, the critical mass is the Bonnor-Ebert mass (eq. 4, 2 slides ago, Ebert 1955, Bonnor 1956) $M_{BE} = (m_1 a_t^4)/(P_0^{1/2}G^{3/2})$

Gravitational stability: The case of B68



 ξ_0 =6.9 is only marginally about the critical value 6.5 \rightarrow gravitational stable or at the verge of collapse



Topics today

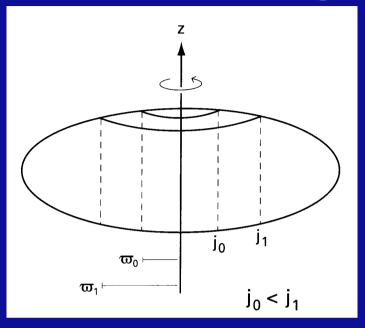
- Isothermal sphere, hydrostatic equilibrium, grav. stability, Bonnor-Ebert spheres

Rotational support

- Magnetic support and ambipolar diffusion

- Infall signatures

Basic rotational configurations I

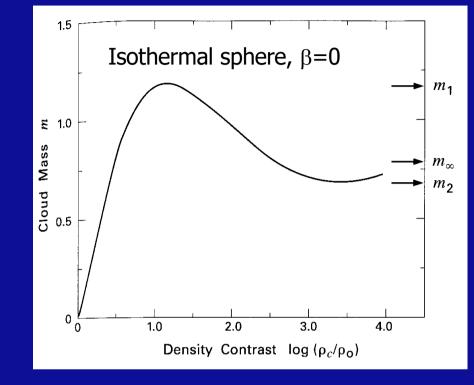


Adding a centrifugal potential Φ_{cen} , the hydrodynamic equation reads -1/ ρ grad(P) - grad(Φ_{g}) - grad(Φ_{cen}) = 0

> With Φ_{cen} defined as $\Phi_{cen} = -\int (j^2/\omega^3) d\omega$ j: specific angular momentum ω : cylindrical radius and j= ω u with u the velocity around the rotation axis

Rotation flattens cores and may be additional support against collapse.

Basic rotational configurations II

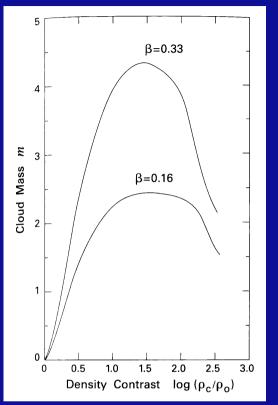


Compared to previous Bonnor-Ebert models, these rotational models have (in addition to the density contrast ρ_c/ρ_0) the parameter β quantifying the degree of rotation. β defined as ratio of rotational to gravitational energy:

$$\beta = T_{rot}/W$$

 β > 1/3 corresponds to breakup speed of the cloud. So 0 < β < 1/3

Basic rotational configurations III



In realistic clouds, for flattening to appear, the rotational energy has to be at least 10% of the gravitational energy. T_{rot}/W equals approximately β .

Examples: $T_{rot} \approx I\Omega^2 = mr^2\Omega^2$ (I: moment of inertia, Ω : rotational velocity) $W \approx Gm^2/r$

 \rightarrow T_{rot}/W $\approx 1 \times 10^{-3} (\Omega/(1 \text{km s}^{-1} \text{pc}^{-1}))^2 (r/(0.1 \text{pc}))^3 (m/(10 \text{M}_{sun}))^{-1}$

GMCs: Velocity gradient of 0.05km/s representing solid body rotation, 200M_{sun} and 2pc size imply also T_{rot}/W ~ 10⁻³ (similar values for dense cores)
 → Cloud elongations do not arise from rotation, and centrifugal force NOT sufficient for cloud stability!

Other stability factors are necessary --> Magnetic fields

Specific angular momentum

Specific angular momentum j=J/M is reduced from molecular cloud to star.

	J/M(cm ² /s)
Molecular clump Binary (P~10 ⁴ yr)	10 ²³ 4x10 ²⁰ -10 ²¹
Binary (P~10yr)	4x10 ¹⁹ -10 ²⁰
Binary (P~3d) T Tauri star	4x10 ¹⁸ -10 ¹⁹ 10 ¹⁷
Sun	10 ¹⁵

→ Specific angular momentum needs to be reduced by 6 orders of magnitude from molecular cloud to T Tauri star scale.

Topics today

- Isothermal sphere, hydrostatic equilibrium, grav. stability, Bonnor-Ebert spheres

Rotational support

- Magnetic support and ambipolar diffusion

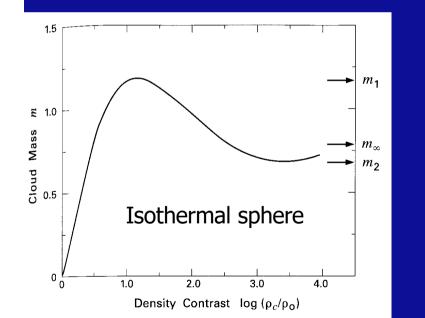
- Infall signatures

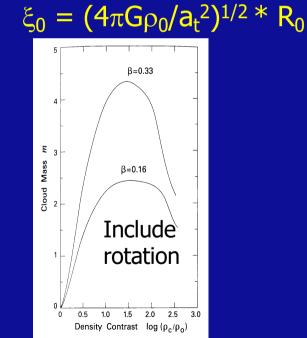
Magnetic fields I

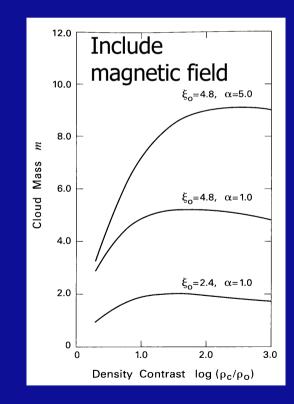
The equation for magneto-hydrodynamic equilibrium now: -1/ ρ grad(P) - grad(Φ_q) -1/(ρc) **j** x **B** = 0

Numerical solving \rightarrow solutions with 3 free parameters: the density contrast ratio ρ_c/ρ_0 , the ratio α between magnetic to thermal pressure $\alpha = B_0^2/(8\pi P_0)$

and the dimensionless radius of the initial sphere







Fit to numerical results: $m_{crit} = 1.2 + 0.15 \alpha^{1/2} \xi_0^2$

Magnetic fields II

Conversion to dimensional form (multiply by $a_t^4/(P_0^{1/2}G^{3/2})$): \rightarrow first term equals the Bonnor-Ebert Mass ($M_{BE} = m_1 a_t^4/(P_0^{1/2}G^{3/2})$)

 $M_{crit} = M_{BE} + M_{magn}$

with $M_{magn} = 0.15 \alpha^{1/2} \xi_0^2 a_t^4 / (P_0^{1/2}G^{3/2})$ = 0.15 2/sqrt(2n) $(B_0 \pi R_0^2 / G^{1/2}) \propto B_0$

--> magnetic mass M_{magn} proportional to the B-field!

Qualitative difference between purely thermal clouds and magnetized clouds. If increase of outer pressure P₀ around core of mass M \rightarrow Bonnor-Ebert mass decreases until M_{BE} < M \rightarrow then cloud collapse

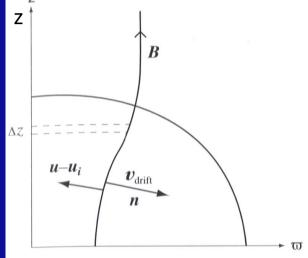
However, in magnetic case: if $M < M_{magn} \rightarrow$ cloud remains stable because M_{magn} is constant as long a flux-freezing applies.

Ambipolar diffusion I

- Lower density GMCs, large ionization degree \rightarrow ions & neutrals strongly
- Dense cores: lower ionization degree \rightarrow neutrals & ions easier decouple.

Neutrals stream through ions accelerated by gravity.

- → drag force between ions & neutrals from collisions.
- Furthermore, Lorentz force acts on ions.



collisionally coupled.

- Drift velocity between ions and neutrals: $v_{drift} = v_i - v_n$ - Drag force between ions and neutrals is: $F_{drag} = n_n < \sigma_{in} v_{drift} > m_n v_{drift}$ (average number of collision per unit time $n_n < \sigma_{in} v_{drift} >$ times the transferred momentum $m_n v_{drift}$) \rightarrow equation of motion with drag & Lorentz force:

 $n_{i}F_{drag} = \mathbf{j} \times \mathbf{B}/c = 1/(4\pi) \text{ (rot } \mathbf{B}) \times \mathbf{B}$ (with Ampere's law: rot $\mathbf{B} = 4\pi/c * \mathbf{j}$) $\rightarrow v_{drift} = (rot \mathbf{B}) \times \mathbf{B} / (4\pi n_{i}n_{n}m_{n} < \sigma_{in}v_{drift} >)$ n_n : neutral density n_i : number of ions σ_{in} : ion-neutral cross section m_n : mass of neutral

Ambipolar diffusion II

Dense core with size L \rightarrow time-scale for ambipolar diffusion:

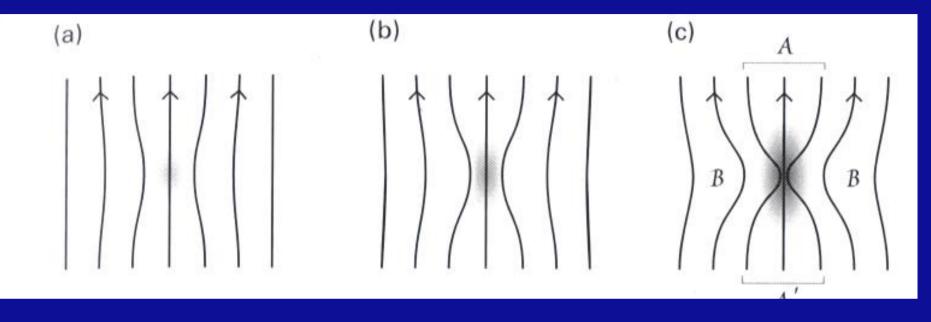
 $t_{ad} = L/|v_{drift}| = (4 \pi n_i n_n m_n < \sigma_{in} v_{drift} >)L / (|(rot \mathbf{B}) \times \mathbf{B}|)$

Approximating (rot $\mathbf{B} = B/L$): $|(rot \mathbf{B}) \times \mathbf{B}| = B^2/L$

- \rightarrow t_{ad} = (4 π n_in_nm_n < σ _{in}v_{drift}>)L² / B²
- → ambipolar diffusion time-scale proportional to: ionization degree, density & size of the cloud; inversely prop. to mag. field
- \rightarrow t_{ad} \approx 3x10⁶yr (n_{H2}/10⁴cm⁻³)^{3/2} (B/30µG)⁻² (L/0.1pc)²

Still under discussion whether this time-scale sets the star formation rate or whether it is too slow and other processes like turbulence are required.

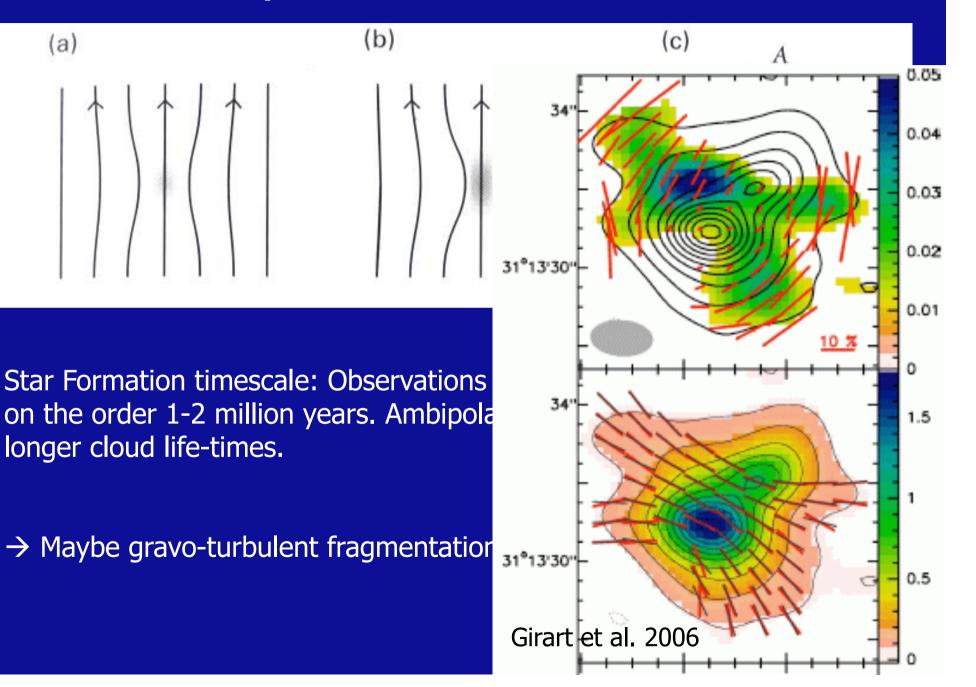
Ambipolar diffusion caveat



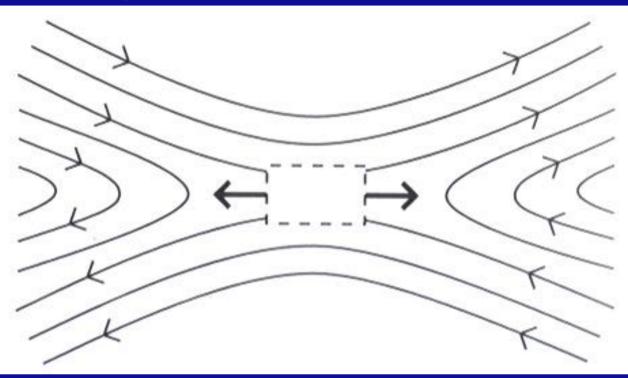
Star Formation timescale: Observations indicate rapid star formation on the order 1-2 million years. Ambipolar diffusion usually requires longer cloud life-times.

 \rightarrow Maybe gravo-turbulent fragmentation necessary ...

Ambipolar diffusion caveat



Magnetic reconnection



- Field lines of opposite direction are dragged together.
 - \rightarrow antiparallel B field lines annihilate and
 - \rightarrow magnetic energy dissipates as heat.
- This process was first invoked to explain large luminosities observed in solar flares.

Topics today

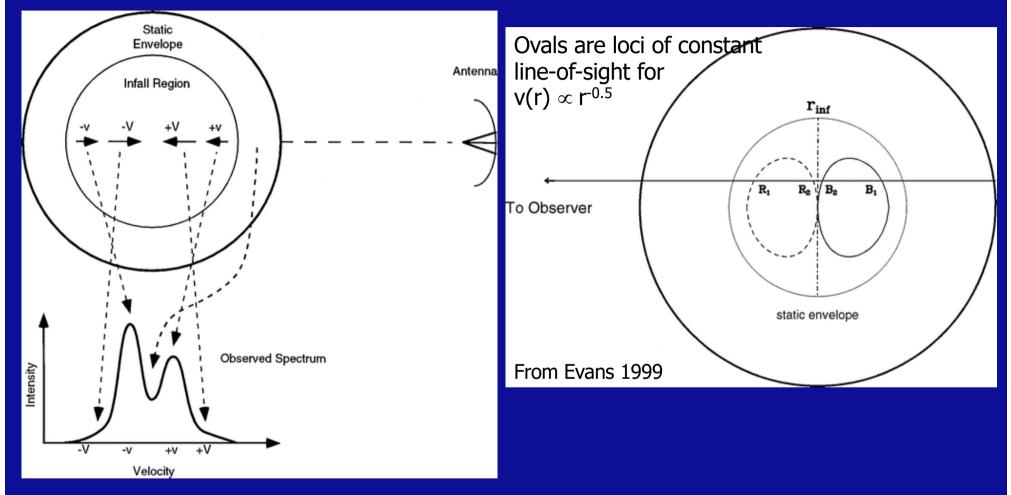
- Isothermal sphere, hydrostatic equilibrium, grav. stability, Bonnor-Ebert spheres

Rotational support

- Magnetic support and ambipolar diffusion

- Infall signatures

Infall signatures I



- 1. Rising T_{ex} along line of sight
- 2. Velocity gradient
- 3. Line optically thick
- 4. An additional optically thin line peaks at center

Infall signatures II

Spectra and fits

(Myers et al. 1996)

Models

T, = 10 K L1544 H₂CO L1527 H₂CO L1251B V_{in} CS 2-1 $\sigma_{_{\rm NT}} = 0.2$ km/s (a) (b)(c) 4.0 2, - 1, 3.0 -2, - 1, (km/s)3.0 0.12^{-1} (X)⁸ 2.0 0.2 مT_B (K) 0.08 -T_{BD} 0.04 $\times 0.5$ 1.0 T_{RT} 1.0 0.1 0.00.0 $\tau_0 = 6$ $V_{in} = 0.04$ km/s Vred. 'blue 2.0 $\times 2$ NH N_,H⁺ $N_{a}H^{\dagger}$ 101 - 112 101 - 112 101 - 112 1.0 -2.02.0-1.00.01.02.0-1.0 0.02.0 v (km/s)0.0 ունունուլիուլիությունունուն ւնունունունու -2.0-1.0 0.0 1.0 -4.0 -2.0 0.0 2.0 -4.0 -2.0 0.0 2.0 4.0 $v - v_{0} (km s^{-1})$

Model with two uniform regions along the line of sight with velocity dispersion σ and peak optical depth $\tau_0 \rightarrow$ infall velocity v_{in} :

 $v_{in} \approx \sigma^2 / (v_{red} - v_{blue}) * \ln((1 + \exp(T_{BD}/T_D)) / (1 + \exp(T_{RD}/T_D)))$

In low-mass regions v_{in} is usually of the order 0.1 km/s. In high-mass regions V_{in} can exceed 1km/s and hence be supersonic.

Summary

Hydrostatic equilibrium between thermal pressure and gravitational force.
 → Bonner Ebert mass for gravitationally stable cores.

- Can rotation support cloud stability?

- Magnetic cloud support and ambipolar diffusion

- Observational signatures of infall motions

Sternentstehung - Star Formation Winter term 2022/2023 Henrik Beuther, Thomas Henning & Jonathan Henshaw

18.10 Today: Introduction & Overview
25.10 Physical processes I
08.11 Physcial processes II
15.11 Molecular clouds as birth places of stars
22.11 Molecular clouds (cont.), Jeans Analysis
29.11 Collapse models I
06.12 Collapse models II
13.12 Protostellar evolution
20.12 Pre-main sequence evolution & outflows/jets

10.01 Accretion disks I

17.01 Accretion disks II

24.01 High-mass star formation, clusters and the IMF

31.01 Extragalactic star formation

07.02 Planetarium@HdA, outlook, questions

13.02 Examination week, no star formation lecture

Book: Stahler & Palla: The Formation of Stars, Wileys

More Information and the current lecture files: http://www.mpia.de/homes/beuther/lecture_ws2223.html beuther@mpia.de, henning@mpia.de , henshaw@mpia.de

(Beuther) (Beuther) (Beuther) (Henshaw) (Henshaw) (Beuther) (Henning) (Beuther) (Beuther) (Henning) (Henning) (Henshaw) (Henning) (Beuther)

Heidelberg Joint Astronomical Colloquium Winter Semester 2022 — Tuesday November 29th, 16:00 Main Lecture Theatre, Philosophenweg 12 Dylan Nelson (Institut für Theoretische Astrophysik) The connection(s) between galaxies and their gaseous halos

Caption: Gas motion on Mpc scales around a halo

Those unable to attend the colloquium in person are invited to participate online through Zoom. More information is given on HePhySTO: <u>https://www.physik.uni-heidelberg.de/hephysto/</u>