Numerical Solution of Star Formation Equations

Description of protostellar collapse (Conservation equations): Continuity equation, Momentum equation, Poisson equation, Energy equation

What are the problems: Scales, fragmentation, loss of magnetic field

 (1) Density needs to increase from molecular cloud density of 10⁴-10⁵ cm⁻³ to 10²⁴ cm⁻³ as mean solar density: 20 orders of magnitude
 (2) Central temperature needs to increase from 10 K to 10⁷ K in order to start fusion
 (3) Specific angular momentum needs to decrease:

	J/M (in cm ² s ⁻¹)
Molecular clump	10 ²³
Binary (P~10 ⁴ yr)	$4x10^{20}$ - 10^{21}
Binary (P~10 yr)	4×10^{19} - 10^{20}
Binary (P~ 3yr)	4×10^{18} - 10^{19}
T Tauri star	1017
Sun	1015
Jupiter orbit	10 ²⁰

What are the problems: Scales, fragmentation, loss of magnetic field

(4) Most of the stars are binaries or occur in higher-order hierarchical systems: fragmentation is needed

(5) Magnetic flux loss is necessary:

Dense core with $M_c=1M_{sun}$, $R_c=0.07$ pc, $B_c=30 \mu G$

T Tauri star: $R_1 = 5 R_{sun}$

Flux freezing: B $R^2 = const.$

 $B_1 = 2 \times 10^7 G$ - This is much larger than what is observed for T Tauri stars

Next steps:

Formulation of all equations with the necessary material equations and boundary and initial conditions.

A few remarks

Protostellar evolution from an instable cloud core

- a) Dynamical collapse (t $\approx t_{ff}$)
- b) Accretion phase after formation of hydrostatic core (accretion from envelope)

Pre-main sequence evolution: Energy source from quasistatic contraction of the core

Mathematical and physical problem:

- a) Dynamical problem with dynamics on different scales
- b) Complex physics ---> equations are non-linear
- c) Fragmentation must be treated (2D/3D)

(a) CONTINUITY EQUATION (1) $\frac{d\rho}{dt} + \nabla \left(\rho \vec{\mathbf{v}} \right) = 0$ (b) MOMENTUM EQUATIONS (3) $\frac{\partial(\rho \mathbf{v}_{\mathbf{r}})}{\partial t} + \nabla(\rho \mathbf{v}_{\mathbf{r}} \vec{\mathbf{v}}) = -\left(\rho \frac{\partial \Phi}{\partial \mathbf{r}} + \frac{\partial \mathbf{p}}{\partial \mathbf{r}}\right) + \frac{\rho}{\mathbf{r}} (\mathbf{v}_{\Theta}^2 + \mathbf{v}_{\Phi}^2)$ $\frac{\partial(\rho v_{\Theta})}{\partial t} + \nabla(\rho v_{\Theta} \vec{v}) = -\frac{1}{r} \left(\rho \frac{\partial \Phi}{\partial \Theta} + \frac{\partial p}{\partial \Theta} \right) - \frac{\rho}{r} \left(v_r \ v_{\Theta} - v_{\Phi}^2 \cot\Theta \right)$ $\frac{\partial(\rho \mathbf{A})}{\partial \mathbf{t}} + \nabla(\rho \mathbf{A}\vec{\mathbf{v}}) = -\left(\rho \frac{\partial \Phi}{\partial \Phi} + \frac{\partial \mathbf{p}}{\partial \Phi}\right)$ $A = r \sin \Theta v_{\Phi}$ (specific angular momentum) (c) POISSON'S EQUATION (1) $\nabla^2 \Phi = 4 \pi \mathrm{G} \rho$

(e) ENERGY EQUATION (1)

$$\frac{\partial(\rho e)}{\partial t} + \nabla(\rho e \vec{v}) + p \nabla \vec{v} = L$$

$$L = 4 \pi \rho \kappa (J - B) : \text{time rate of change of energy per unit volume due to radiative transfer}$$

(f) RADIATION EQUILIBRIUM (1) $\nabla \vec{H} + \rho \kappa (J - B(T)) = 0$ (g) FLUX (EDDINGTON APPROXIMATION) (3) $\vec{H} = -\frac{1}{3\kappa\rho} \nabla J$ (gray radiative transfer: use of Rosseland mean opacity guarantees that radiative flux is identical to that in frequency dependent case)

- (h) MATERIAL EQUATIONS
- $e = e (\rho, T)$ $\kappa = \kappa(\rho, T) \qquad see Wuchterl (1990)$ $p = p(\rho, T)$

3D \rightarrow 2D equations: dropping all partial derivates with respects to ϕ

 $2D \rightarrow 1D$ equations: setting terms with v_{θ} or v_{ϕ} equal to zero, neglecting the equations for v_{θ} and $A(v_{\phi})$; dropping terms with partial derivatives with respect to θ

INITIAL CONDITIONS

STANDARD I.C.: Spherical cloud of uniform density and temperature, which initially everywhere at rest

1

STANDARD I.C. + SOLID BODY ROTATION:

- Isothermal rotating clouds: $\alpha_i = E_i^{th} / E_i^{grav}; \beta_i = E_i^{th} / E_i^{grav}$
- Adiabatic rotating clouds: $\gamma (\mathbf{p} \propto \rho^{\gamma}), \alpha_i, \beta_i$

(3D: Form of perturbation has to be added)

 Nonisothermal clouds: $\alpha_i, \beta_i, M_i, T_i$

BOUNDARY CONDITIONS (Φ)

No mass exterior to the protostar

Mathematical formulation (see Boss 1987)

13 physical quantities:

 ρ (density)

 \vec{v} (velocity)

 Φ (gravitational potential)

J (mean intensity)

H (Radiation flux)

p (gas pressure)

e (specific internal energy)

 κ (opacity)

T (temperature)

13 equations:

(10 coupled, nonlinear, partial diff. equations of first and second order with strongly variable coefficients + 3 algebraic material equations)

- Eulerian form (equations are written with respect to a fixed frame of reference)
- Spherical coordinates r, θ, ϕ

Initial and boundary conditions

Standard initial conditions (Larson 1969)

Homogeneous sphere with const. T and density which is at rest at t=0

Standard initial conditions plus rigid rotation ω_i

Isothermal rotating cloud:

$$\alpha_i = E_i^{\text{th}}/E_i^{\text{grav}} = 5/2 R_i R T_i/G M_i \mu$$

 $\beta_i = E_i^{\text{rot}}/E_i^{\text{grav}} = \omega_i^2/4 \pi G \varrho_i$

Adiabatic rotating cloud: $p \sim \varrho^{\gamma}$; α_i and β_i

Non-isothermal clouds: α_i and β_i , M_i , T_i

Initial and boundary conditions

Boundary conditions

Why do we need boundary conditions:

Two equations of second order for Φ and J

- Constant J or J from constant temperature condition
- Φ no mass outside protostar (observations not realistic)

Mathematical Formulation and Solution

Coordinate System: Lagrangian or Eulerian formulation

Eulerian formulation:Numerical diffusion has to be minimizedLagrangian formulation:No numerical diffusion (no nonlinear advection term)

- Very complicated for multi-dimensional hydrodynamical processes
- Rezoning of grids (numerical diffusion re-introduced)

Application of particle methods instead of grid methods:

Fluid divided in cells – "particles" which move under the action of external forces and interact

"Smoothed Particle Hydrodynamics" (SPH) (Lucy 1977; Gingold & Monaghan 1977)

Fluid divided in discrete elements. These "particles" have a spatial distance ("smoothing length") over which their properties are smoothed by a kernel function

 $A(r) = \sum_{i} m_{i} A_{i}/\varrho_{i} W (|r - r_{i}|, h)$ Here W is the kernel function.

Advantages:

- Large density gradients can be treated
- Boundaries can be easily introduced (non-spherical clouds)
- Gravitational interaction can be easily integrated.

Disadvantage:

Limited stability and accuracy in complex flows

Grid-based methods (resolution increase)

a) Adaptive grids

Number of grid points is constant; will be increased where strong gradients occur

b) Nested grids

Individual grid points will be split; number of grid points no longer constant.

Adaptive mesh refining (AMR):

Dynamical gridding during simulation; starts with coarsely resolved Cartesian grid. Then individual cells are tagged for refinement (e.g. condition – mass per cell should remain constant

GMC simulations have reached 10⁻⁷ effective resolution per initial radius

Solutions: Explicit and implicit methods $\delta \mathbf{u}/\delta t = L \mathbf{u}; \mathbf{u} = \mathbf{u} (\mathbf{r}, t)$ (L – non-linear operator)

 $\mathbf{u^{n+1}} = \mathbf{u^n} + L \mathbf{u} (1 - \varepsilon) \Delta t + L \mathbf{u^{n+1}} \varepsilon \Delta t; \varepsilon$ – interpolation parameter $\varepsilon = 0$ explicit solution (time step limitation); ε different from 0: Implicit solution (system of nonlinear algebraic equations)

Planet-Disk Interaction

Numerical multi-grid simulations (D'Angelo, Kley, Henning 2003)

Type I (lower mass planets) Spiral density waves

Type II (higher mass planets) Creation of a gap

First numerical solution – 1 D (Larson 1969) 1 M_{sun} , $\rho(t=0) = 10^{-19}$ g cm⁻³, T = 10 K

Result: Non-homologous evolution (density in outer regions ~ r^2)

After free-fall time: Formation of hydrostatic core and free-falling envelope (density ~ $r^{-3/2}$) At a density of 10¹² to 10¹³ cm⁻³ T_c = 100 K

Contraction of the core until 2000 K is reached and density in center 10¹⁷ cm⁻³

Dissociation of molecular hydrogen (endothermic reaction; central region starts to collapse again)

Formation of a second hydrostatic core at central density: 10^{23} cm⁻³ and T_c = $10^4 - 10^5$ K (core still accretes matter which goes through shock front)

At the end: $R = 2.1 R_{sun}$, $L = 1.5 L_{sun}$ (Confirmed by Winkler & Newman: $2 R_{sun}$, $1.0 L_{sun}$)

FIG. 1. The variation with time of the density distribution in the collapsing cloud (CGS units). The curves are labelled with the times in units of 10^{13} s since the beginning of the collapse. Note that the density distribution closely approaches the form $\rho \propto r^{-2}$.

After Larson (1969)

Thermal Evolution of Cloud (1D)

- Cloud collapses under own gravity (otically thin, isothermal)
- Then cloud becomes optically thick /heats up

Bhandare et al. 2018

Thermal Evolution in 1D

Cloud becomes optically thick at about 10^{-10} g/cm³; this takes about 10^4 yrs $R_c = 3$ au, $M_c = 3x10^{-2} M_{sun}$

Can we make a temperature estimate? Remember: W = -2 U (time average)

 $-GM^{2}/R = -3 M R_{G} T/\mu$

This means: $T = \mu/3 R_G (GM/R) = 850 K (M/5x10^{-2} M_{sun}) (R/5 au)^{-1}$

Once T = 2000 K the H₂ molecule begins to dissociate (γ_{eff} = 1.1 smaller than 4/3 which is the value for stability)

Note: Thermal energy per H₂ molecule is small compared to dissociation energy $(U = 3/2 R_G T/\mu M; Energy/molecule = 0.74 eV; Dissociation energy; 4.48 eV)$

Compression energy goes into dissociation! No longer increase of T.

After all H₂ is dissociated: Second hydrostatic core (R=1.8x10⁻² au; M=4.6x10⁻³ M_{sun}

Accretion of gas onto protostar

Gas reaches star with free-fall speed which causes an accretion shock front $(T > 10^6 \text{ K}; \text{UV} \text{ and X-rays to be expected})$

 $L_{acc} = G M_*/R_* (dM/dt)$

= 61 L_{sun} (dM/dt/ 10⁻⁵ M_{sun}/yr) (M_{*}/1 M_{sun}) (R_{*}/5 R_{sun})⁻¹

Additional energy from contraction and early nuclear fusion are negligible compared to L_{acc} for low- to intermediate-mass stars

Definition: Low-mass protostar

Mass gaining star with L from accretion shock surrounded by an envelope

- Opacity gap (no dust)
- Inner dust sublimation radius (at about 1 au)
- Effective warm radiating surface observable at mid-IR wavelengths (,,dust photosphere") (few au)
- Outer optically thin envelope

Observing the Collapse of a Cloud

Fragmentation of a Cloud (SPH Simulation)

Klessen et al. (1998)

- 222 Jeans masses •
- Spectrum of Gaussian fluctuations ٠