Sternentstehung - Star Formation Winter term 2022/2023 Henrik Beuther, Thomas Henning & Jonathan Henshaw

18.10 Today: Introduction & Overview 25.10 Physical processes I 08.11 Physcial processes II 15.11 Molecular clouds as birth places of stars 22.11 Molecular clouds (cont.), Jeans Analysis 29.11 Collapse models I 06.12 Collapse models II 13.12 Protostellar evolution & prep-main sequence 20.12 Outflows/jets 10.01 Accretion disks I 17.01 Accretion disks II 24.01 High-mass star formation, clusters and the IMF 31.01 Extragalactic star formation 07.02 Planetarium@HdA, outlook, questions 13.02 Examination week, no star formation lecture Book: Stahler & Palla: The Formation of Stars, Wileys

More Information and the current lecture files: http://www.mpia.de/homes/beuther/lecture_ws2223.html beuther@mpia.de, henning@mpia.de, henshaw@mpia.de

(Beuther) (Beuther) (Beuther) (Henshaw) (Henshaw) (Beuther) (Henning) (Beuther) (Beuther) (Henning) (Henning) (Henshaw) (Henning) (Beuther)

Summary last week I

- Protostellar evolution, 1st and 2nd core, accretion luminosity, definition of protostar
- Envelope structure
- Convection, entropy profile of protostar
- Structure of protostar
- Definition: protostar vs. pre-main sequence star

Summary last week II

- Pre-main sequence evolution,
 - \rightarrow accretion stops, energy mainly by grav. contraction
- Differences between low- and high-mass protostars
- Concept birthline
- SED observational signatures of the sequence

Pillars of creation

JWST, NIRCam and MIRI composite Between 1.87µm and 15µm Project by Pontoppidan et al.

Topics today

- General outflow properties

- Jet launching

- Outflow driving and entrainment

Star formation paradigm

https://www.mpifr-bonn.mpg.de/473576/starform

Discovery of outflows I

Initially thought to be embedded protostars \rightarrow soon spectra recognized as caused by shock waves \rightarrow jets and outflows indicated

Discovery of outflows II

- Mid to late 70th, first CO non-Gaussian line wing emission detected (Kwan & Scovile 1976).
- Bipolar structures, extremely energetic

HH30, a disk-outflow system

NASA and A. Watson (Instituto de Astronomía, UNAM, Mexico) • STScI-PRC00-32b

The prototypical molecular outflow HH211

HH211, Gueth et al. 1999

3^h43^m56ⁿ

H₂ 2.12 μ m (colors) + CO J=2-1 V<10 km/s (white) + continuum 1.3 mm (red)

JAMES WEBB SPACE TELESCOPE L1527 IRS | IRAS 04368+2557

Jet rotation in DG Tau

\rightarrow Corotation of disk and jet

Bacciotti et al. 2002

Mass vs.velocity, energy vs. velocity

- Mass-velocity relation exhibits broken power-law, steeper further out.
- Energy at high velocities of the same magnitude than at low velocities.

Lebron et al. 2006

General outflow properties

- Jet velocities 100-500 km/s $\langle = = \rangle$ Outflow velocities 10-50 km/s
- Estimated dynamical ages between 10³ and 10⁵ years
- Size between 0.1 and 1 pc
- Force provided by stellar radiation too low (middle panel)
 - \rightarrow non-radiative processes necessary!

Wu et al. 2004, 2005

Specific angular momentum

Impact on surrounding cloud

- Entrain large amounts of cloud mass with high energies.
- Partly responsible to maintain turbulence in cloud.
- Can disrupt the cores to stop any further accretion.
- May trigger collapse in neighboring cores.
- Via shock interactions heat the cloud.
- Alter the chemical properties.

Topics today

- General outflow properties

Jet launching

- Outflow driving and entrainment

Jet launching from accretion disks

"magnetic accretion-ejection structures" (Ferreira et al 1995-1997):

- 1) disk material diffuses across magnetic field lines, 2) is lifted upwards by MHD forces, then
- 3) couples to the field and 4) becomes accelerated magnetocentrifugally and 5) collimated

Magnetic field lines (thick) and streamlines (dashed)

Jet launching

- Consensus: Jets are driven by magnetocentrifugal winds from magnetic field lines anchored in rotating circumstellar disks.

Disk winds 🗲 🗲 X-winds

Launching over larger disk area?

← → Launching from a small area close to disk truncation?

Jet-launching: Disk winds I

- Infalling core pinches magnetic field.

- If poloidal magnetic field component B_p has angle larger 30° from vertical \rightarrow centrifugal forces launch matter-loaded wind along field from disk
- Wind transports away from 60 to 100% of disk angular momentum.

Review: Pudritz et al. 2006

- On larger scales, a strong toroidal magnetic field B_b builds up during collapse.

- At large radii (outside Alfven radius r_A , the radius where kin. energy equals magn. energy) B_{ϕ}/B_{p} much larger than 1 \rightarrow collimation via Lorentz-force $F_L \sim j_z B_{\phi}$

Banerjee & Pudritz 2006

X-winds

- The wind is launched magneto-centrifugally from the inner co-rotation radius of the accretion disk (~0.03AU)

Jet-launching points and angular momenta

From toroidal and poloidal velocities
→ footpoints r₀, where gas comes from
→ outer r₀ for the blue and red wing are about 0.4 and 1.6 AU (lower limits)
→ consistent with disk winds
About 2/3 of the disk angular momentum may be carried away by jet.

Topics today

- General outflow properties
- Jet launching
- Outflow driving and entrainment

Outflow driving I

Molecular outflow masses much larger than stellar masses
 → outflow-mass not directly from star-disk but swept-up entrained gas.

 Force in outflow cannot be explained just by force excerted from central object → other outflow driving and entrainment processes required.

Outflow driving II

Momentum-driven vs. energy-driven molecular outflows

Energy-driven: jet-energy conserved in pressurized bubble that gets released adiabatically as the bubble expands.
 → large transverse velocities which are not observed
 → momentum conservation better

- Completely radiative shock \rightarrow only dense plug at front
- Completely adiabatic shock → large bow shocks with mainly transverse motions
- Both wrong \rightarrow intermediate solution with highly dissipative
 - shock required \rightarrow forward motion & bow shock
 - \rightarrow accelerate the ambient gas

Outflow entrainment models I

Basically 4 outflow entrainment models are discussed in the literature:

Turbulent jet entrainment model

- Working surfaces at the jet boundary layer caused by Kelvin-Helmholtz instabilities form viscous mixing layer entraining molecular gas.
 → The mixing layer grows with time and whole outflow gets turbulent.
- Broken power-law of mass-velocity relation is reproduced, but velocity decreases with distance from source \rightarrow opposite to observations

Jet-bow shock model

- Jet impacts on ambient gas → bow shocks are formed at head of jet.
 → High pressure gas is ejected sideways
 - \rightarrow broader bow shock entraining the ambient gas.
 - \rightarrow Episodic ejection produces chains of knots and shocks.

- Numerical modeling reproduces many observables, e.g. Hubble-law (outflow velocity increases with distance).

Outflow entrainment models I

Basically 4 outflow entrainment models are discussed in the literature:

Turbulent jet entrainment model

- Working surfaces at the jet boundary layer caused by Kelvin-Helmholtz instabilities form viscous mixing layer entraining molecular gas.
 → The mixing layer grows with time and whole outflow gets turbulent.
- Broken power-law of mass-velocity relation is reproduced, but velocity decreases with distance from source \rightarrow opposite to observations

Outflow entrainment models I

Basically 4 outflow entrainment models are discussed in the literature:

Turbulent jet entrainment model

- Working surfaces at the jet boundary layer caused by Kelvin-Helmholtz instabilities form viscous mixing layer entraining molecular gas.
 → The mixing layer grows with time and whole outflow gets turbulent.
- Broken power-law of mass-velocity relation is reproduced, but velocity decreases with distance from source \rightarrow opposite to observations

Outflow entrainment models.

Basically 4 outflow entrainment model

Turbulent jet entrainment model

 Working surfaces at the jet bound instabilities form viscous mixing Iangle
 → The mixing layer grows with ti

Broken power-law of mass-velocit, relation to reproduced, but relation, decreases with distance from source → opposite to observations

Jet-bow shock model

- Jet impacts on ambient gas → bow shocks are formed at head of jet.
 → High pressure gas is ejected sideways
 - \rightarrow broader bow shock entraining the ambient gas.
 - \rightarrow Episodic ejection produces chains of knots and shocks.

Numerical modeling reproduces many observables,
 e.g. Hubble-law (outflow velocity increases with distance).

The case of the HH34 bow shock

In the jet-frame, after subtracting the velocity of the mean axial flow, the knots are following the sides of the bow shock.

Reipurth et al. 2002

Jet simulations I

 $H_2 1 \to 0 S(1) t = 0 yr$

3-dimensional hydrodynamic simulations, including H, C and O chemistry and cooling of the gas, this is a pulsed jet.

 $CO O \rightarrow O R(1) t = O yr$

Rosen & Smith 2004

Jet simulations II: small precession

P5 H₂ 1→0 S(1) t = 0 yr

P5 CO 0→0 R(1) t = 0 yr

Rosen & Smith 2004

Jet simulations III, large precession

P20 $H_2 \to 0$ S(1) t = 0 yr

P20 C0 0+0 R(1) t = 0 yr

Rosen & Smith 2004

Outflow entrainment models II

Wide-angle wind model

- Wide-angle wind blows into ambient gas forming a thin swept-up shell.
- Different degrees of collimation can be explained by different density structures of the ambient gas.
- Attractive models for older and low collimated outflows.

Circulation model

- Molecular gas not entrained is deflected from the central
- Proposed to explain massive difficult to entrain large amore

Outflow entrainment models II

Wide-angle wind model

- Wide-angle wind blows into ambient gas formi
- Different degrees of collimation can be explain structures of the ambient gas.
- Attractive models for older and low collimated

Circulation model

- Molecular gas not entrained by underlying jet/wind, but infalling gas is deflected from the central protostar by high MHD pressure.
- Proposed to explain massive outflows because originally considered difficult to entrain large amounts of gas. ... not necessary anymore ...

Outflow entrainment models III

Model	Wind	Predicted pro	operty of mol Velocity	ecular outflow a Temperature	long axis
Model	Wind	Morphology	Velocity	Temperature	
	ato			Tomporataro	Momentum ^a
Turbulent Jet	0000000		$\bigvee \longrightarrow \\ \swarrow$	$ \begin{bmatrix} T \\ I \\ I$	
Jet Bow Shock	$\overset{\ddagger}{\mathbb{V}}$	\bigcirc	\sum	\sum	5
Wide-angle Wind		\bigcirc	\bigcirc		\square
Circulation			$\left \right\rangle$		$\left[\right]$
^{a} Assuming an underlying density distribution of r ⁻¹ to r ⁻² .					

Arce et al. 2007

Collimation and pv-structure

- pv-structure of jet- and wind-driven models very different
- Often Hubble-law observed → increasing velocity with increasing distance from the protostar

Lee et al. 2001

Summary

- Outflows and jets are ubiquitous and necessary phenomena in star formation.
- Transport angular momentum away from protostar.
- They are formed by magneto-centrifugal disk-winds.
- Collimation is caused by Lorentz forces.
- Gas entrainment can be due to various processes: turbulent entrainment, bow-shocks, wide-angle winds, circulation ...
- They inject significant amounts of energy in the ISM, may be important to maintain turbulence and disrupt their maternal clouds.

Sternentstehung - Star Formation Winter term 2022/2023 Henrik Beuther, Thomas Henning & Jonathan Henshaw

18.10 Today: Introduction & Overview
25.10 Physical processes I
08.11 Physcial processes II
15.11 Molecular clouds as birth places of stars
22.11 Molecular clouds (cont.), Jeans Analysis
29.11 Collapse models I
06.12 Collapse models II
13.12 Protostellar evolution & prep-main sequence
20.12 Outflows/jets
10.01 Accretion disks I

17.01 Accretion disks II (Henning)
 24.01 High-mass star formation, clusters and the IMF (Henshaw)
 31.01 Extragalactic star formation (Henning)
 07.02 Planetarium@HdA, outlook, questions (Beuther)
 13.02 Examination week, no star formation lecture
 Book: Stahler & Palla: The Formation of Stars, Wileys
 More Information and the current lecture files: http://www.mpia.de/homes/beuther/lecture_ws2223.html

(Beuther) (Beuther) (Beuther) (Henshaw) (Henshaw) (Beuther) (Henning) (Beuther) (Beuther) (Henning) (Henning) (Henshaw) (Henning) (Beuther)