TADPOL
 polarization
 in protostellar cores

Magnetic fields are（sometimes）consistent from core to envelope scales．．．

Sources with LOW polarization fraction（＜3\％）have B－fields that are inconsistent from large to small scales

Above／right：comparison of B －field orientations at large－scales（ $\sim 10,000 \mathrm{AU}$ ，from SCUBA／CSO）and small－scales（ $\sim 1000 \mathrm{AU}$ ，from CARMA）．Center：B－field consistency vs．average dust polarization fraction in the core．Sources with higher polarization fractions have more consistent B－fields from 10，000－1000 AU scales．From Hull et al．2014，ApIS，in press（arXiv： 1310.6653 ）

Chat Hull UC Berkeley chat＠astro．berkeley．edu

Sources with HIGH polarization fraction（ $>3 \%$ ） have consistent large－and small－scale B－fields

Yet

HI－POL sources have outflows and B－fields that are rrandomly alligned

Conclusions

－LO－POL：B－fields may be wrapped up by envelope rotation This could aid in disk formation
－HI－POL：B－fields may be remnants of the＂global field＂drawn in by gravitational collapse
－Outflows are not tightly aligned with the B－fields in the cores out of which they formed（see Hull et al．2013，ApJ，768，159）

TADPOL collaboration－tadpol．astro．illinois．edu

1

Proposal 2013．1．00726．S
PI：Hull，highest priority
$0.3^{\prime \prime}(\sim 150 \mathrm{AU})$ resolution dust polarization（＠Band 7）
50 AU ）resolution dust polarization（＠
Outflows \＆dense tracers（＠Band 6）
Will ALMA see toroidally wrapped B－fields at ~ 100 AU disk scales in both low－and high－polarization sources？

Stay tuned for ALMA Cycle 2 data！

Observations powered by the CARMA 1.3 mm full－Stokes system

CARMA
Combine Array for Research in Millimeter－wave Astronomy

1 mm dual－polarization receiver module

