From their internal structure to their connection with the surrounding cloud

Dense Cores

Mario Tafalla (OAN-IGN, Spain)

Outline:

- Global properties
- Internal properties
- Connection with the large scales

Original identification: opaque regions

- 1980's: "visually opaque regions"
 - Palomar plates
 - few arcmin
- Common in nearby dark clouds (Taurus, Ophiuchus)
- Related to star formation
 - in the vicinity of TT stars
- First catalogs (~100 objects):
 - Myers et al. (1983)

Bok globules

- Bok globules
 - also optically defined
 - isolated
 - great variety of sizes and masses
- Dense compact glubules
 - Similar properties to dense cores
 - form low-mass stars

B68 (Alves et al.)

 Possible origin: dense core exposed by external (ionization, etc.) event (Reipurth 1983)

Globules as exposed cores

Global physical properties

- Cores in Taurus, Auriga, Oph (plus globules) Benson & Myers (1989)
 - diameters ~ 0.1 pc
 - masses ~ several Mo
 - temperatures ~ 10 K
 - mean densities ~ few 10⁴ cm⁻³
- When observed in FIR (IRAS)
 - some have central object (50/50)
- Cores are the simplest star-forming sites
 - individual Sun-like stars (or binaries)
- Starless cores display the initial conditions of star formation

Subsonic internal motions

- Internal kinematics dominated by subsonic motions
 - Myers et al. (1983)
 - cores are "velocity coherent" (Goodman et al. 1998)
- Sample of +150 cores in Perseus (H. Kirk et al. 2007)

Subsonic internal motions

- Sharp transition at core boundary
- 0.5 pc long core or filament?

Prevalence of inward motions

Simple indicator: difference of line peaks thick and thin tracers:

$$\delta V = (V_{\rm thick} - V_{\rm thin})/\Delta V_{\rm thin}$$

67 starless cores

- Inward motions are prevalent in starless cores
 - CS red-shifted self-absorption is more common

Prevalence of inward motions

- Prevalence of blue profiles increases with central column density
- Evolutionary sequence
 - static (3 10⁵ yr)
 - oscillation/expanding (3 10⁵ yr)
 - collapsing (8 10⁵ yr)

Cores and their environment

- Isolated cores
 - Walsh et al. (2004)
 - < 0.1 km/s
- Perseus cloud
 - Kirk et al. (2010)
 - < 1/3 ¹³CO linewidth
- Cores are almost stationary wrt environment

Cores and their environment

5.9

L (arcsec)

Signature of fragmentation

Lifetimes

- Derived from ratio cores with and without YSOs + estimate YSO lifetime
- N_{SL}/N_{emb} ~ 1
 - Pers (Hatchell et al. 2007)
 - Pers, Serp, Oph (Enoch et al. 2008)
- N_{SL}/N_{emb} ~ 3
 - Lee & Myers (1999) lower density
 - Aquila (Könyves et al. 2010, Bontemps et al. 2010)
- T ~ 0.3 1.5 Myr
 - $1 \tau_{\rm ff} < T < 10 \tau_{\rm ff}$

Hatchell et al. (2007)

Jessop & Ward-Thomson (2000) + Andre et al. (2013)

Core mass function and the IMF

- Statistics of starless core masses: CMF
- Comparison with stellar IMF
 - similar high mass slope
 - peak mass displaced ~ x3
- IMF defined at core formation?
 - ~ ~1/3 star-forming efficiency?

Planck-Herschel Survey

- Selection of coldest and most compact Planck sources
 - Cold clump catalog of Planck Objects (C3PO): 10,000
 - dominated by ~1pc clumps, not cores (large beam)
- Talk by Sarolta Zahorecz

Outline:

- Global properties
- Internal properties
- Connection with the large scales

Alves et al. (2001) – Ward-Thomson et al. (1999) – Compiled by Bergin & Tafalla (2007) Bacmann et al. (2000)

Density structure: in dust we trust

a Barnard 68 K band

 $\begin{aligned} A_V &= r_V{}^{H,K} E(H-K) \\ A_V &= f N_H \\ N_H &= (r_V{}^{H,K} f^{-1}) \cdot E(H-K) \end{aligned}$

 $\begin{array}{c} \mathbf{\hat{b}} \\ \mathbf{\hat{b}} \\$

For optically thin emission: $I_{v} = \int \kappa_{v} \rho \ B_{v}(T_{d}) dl$ $I_{v} = m < \kappa_{v} B_{v}(T_{d}) > N_{H}$ $N_{H} = I_{v} [< m \kappa_{v} B_{v}(T_{d}) >]^{-1}$

C ρ Oph core D 7 μm image

Density structure of the B68 globule

Density structure of the B68 globule

- EpoS Herschel Program
- Dust temperature gradient
 - 8 K to 16 K
 - externally heated by ISRF
- Flattened density profile
 - Plummer-like profile

But

- Dependent on grain model
 - constant emissivity with depth

See also Launhardt et al.
 (2013), Suutarinen et al. (2013)

Shapes and magnetic fields

- No clear correlation between B and core shape
 - uncertain projection
 - **Β ~ 10-100 μG**
- Unlikely than B controls core shapes
- Cores show significant deviations from spherical symmetry
 - 2:1 axial ratio (Myers 1991)
- Oblate vs prolate
 - Filaments favor prolate shapes

Chemical composition

Systematic abundance pattern

∆ð (arcsec)

- C-bearing species dissapear from core center
- N-bearing species remain at core center

50

Right ascension offset (arcsec)

100

150

-50

0

-100

Bergin et al. (2002)

B68

Molecular freeze-out

- Gas-grain equilibrium (sticking vs evaporation)
 - If T_{grain} > T_{freezeout}, most molecules in gas phase
 - If T_{grain} < T_{freezeout}, most molecules on grains

- Under core conditions (Tgrain < 10 K)
 - molecules stick on grains and do not evaporate
 - freeze out

CO depletion in Herschel era

- Combine density and temperature from Herschel with mmwave observations to model abundance profiles
- Need to multiply density by 2-3 to fit emission
 - do we need a new dust model?

CO freeze-out enhances D-fractionation

- CO depletion has profound consequences in core chemistry

 triggers a number of second-order effects
- Deuterium fractionation of molecules is driven by $H_{2}^{+} + HD \iff H_{2}D^{+} + H_{2} + 230 \text{ K}$
- At low temperature (e.g., 10 K), H₂D⁺ is enhanced
 - Deuterium is passed down to other species such DCO+, DCN
- If no CO depletion
 - H₂D⁺ abundance is limited by CO destruction (+e)
 - D enrichment of order of 1-10 %
- If CO depletion (and low e)
 - $-H_2D^+$ is further enhanced, which further enhances N2D+, NH2D, etc.
 - even D_2H^+ and D_3^+ are produced: multiply deuterated species

CO freeze-out enhances D-fractionation

Comparison with models

Gas-dust thermal coupling

- Dust and gas can have different temperatures
 - temperature set by heating = cooling
 - for densities < 10⁵ cm⁻³, dust and gas are not coupled thermally

Gas temperature. Radial profiles

Outline:

- Global properties
- Internal properties
- Connection with the large scales

Cores are special places

- Not all gas makes transition to core regime
 - about 5-10% in mass
 - core-formation bottleneck may be related to low SFE
 - possible threshold (Johnstone at al. 2004, Enoch et al. 2006)

Cores lie along filaments

- Talk by Frederique Motte
- About 70% of pre-stellar cores in Aquila located in filaments (André et al. 2010)
 - beads in string
 - off-filament cores are less massive (Polychroni et al. 2013)
- Fragmentation interpretation seems unavoidable
- How is the filament to core transition?

Könyves et al. (2010)

The importance of velocity information

Palmeirim et al. (2013)

Hacar, Tafalla et al. (2010)

From filaments to fibers

From filaments to fibers

Moeckel & Burkert (2014)

- Fibers/ribbons appear naturally in turbulence simmulations:
 - Rowan Smith
 - Alexei Kritsuk

From fibers to cores

Gould Belt Project (Pl: P. Andre)

see also Palmeirim+ 2013

Chains of cores

Chains of cores. Fragmentation

- Velocity coherence over > 1pc
 - smooth velocity oscillations
 - subsonic motions (apart from outflow feedback)
- Fibers are not "turbulent"
- Core formation involves minimal velocity change

Evidence for grav. fragmentation

- Radial profiles fitted with isothermal cylinder
 - $n(H_2) \sim 10^5 \text{ cm}^{-3}$
- Distance between peaks consistent with grav. fragmentation
- Caveats: finite length, starstarless mix along chains

"Fray and fragment" scenario

- Large scale flows accumulate cloud gas
- Internal shocks fray gas into fibers
- Fibers fragment gravitationally if they accumulate enough mass

Fray and fragment in Orion?

- Herschel has provided a true flood of dense core data
 - spatial distribution of cores
 - internal properties
- To analyze these data we need
 - realistic models of transfer and chemistry
 - better understanding of dust properties
 - velocity information from lines
- To make sense of the data we need
 - close collaboration observers-theorists
 - also simple models (e.g., "fray & fragment")