High-mass star formation

Henrik Beuther, MPIA

EPOS 2022, April 24-29

High-mass star formation paradigms

High-mass star formation paradigms

Vazquez-Semadeni et al. 2019

Topics

Infall/Inflow on large scales Physical and chemical properties

Disks

Magnetic fields

(Episodic accretion —> Talk by H. Linz)

Hub-filament accretion

Inflow rates ~ 10⁻⁴ - 10⁻³ Msun/yr
 v-gradients increase towards center

Hub-filament accretion

Inflow rates ~ 10⁻⁴ - 10⁻³ Msun/yr
v-gradients increase towards center

Trevino-Morales et al. 2019

Hub-filament accretion

Inflow rates ~ 10⁻⁴ - 10⁻³ Msun/yr
 v-gradients increase towards center

Other examples: Peretto+2014 Hacar+217, Kumar+2022, etc.

Dynamics at the earliest stages I

Dec. (J2000)

Dynamics at the earliest stages II

∆ô ('')

Dynamics at the earliest stages II

Dynamics at the earliest stages II

∆ô ('')

Converging gas flow signatures

Filamentary sub-structures

Li et al. 2020, 2022

Filamentary sub-structures

Li et al. 2020, 2022

Filamentary sub-structures

Li et al. 2020, 2022

Dense cores in 1.3mm continuum

Astronomical Units (AU)

Dense cores in 1.3mm continuum

Beuther et al. 2018

Offset (AU) http://www.mpia.de/core

Physical properties

Gieser et al. 2021

Gieser et al. 2021

Gieser et al. 2021

—> Poster Caroline Gieser

Rotational properties

Ahmadi 2020, in prep.

Rotational properties

Ahmadi 2020, in prep.

Disk fragmentation: NOEMA 850µm

Suri et al. 2021

Disk fragmentation: NOEMA 850µm

position-velocity cut

Suri et al. 2021

color: 1st moment HCN contours: 843µm continuum

Massive disk sub-structures I

Johnston et al. 2020

Massive disk sub-structures I

Johnston et al. 2020

Massive disk sub-structures I

Similar spiral-like features in Sanna et al. 2021

Johnston et al. 2020

Massive disk sub-structures II

G17.64: 20x15mas -> 44x33AU

Maud et al. 2019

Massive disk sub-structures II

G17.64: 20x15mas -> 44x33AU

Maud et al. 2019

The disk in Orion source I

30mas --> 12AU

Ginsburg et al. 2018

The disk in Orion source I

30mas —> 12AU

Ginsburg et al. 2018

No clear disk in W51e

20mas@5.4kpc~100AU resolution

- No disk identified at resolution limit.
- Existence of outflows indicate disks at smaller scales
- Accretion streamer feeding the central region.

Goddi et al. 2020

Stephens et al. 2020

Stephens et al. 2020

See also Pillai et al. 2020

Stephens et al. 2020

Gravity, rotation and magnetic field

Gravity-dominated magnetic field

Sanhueza et al. 2021

Summary

- Dynamics important on all scales.
- Future focus likely:
 - Infall on all scales, connections of scales
 - Fragmentation and the formation of the IMF
 - Disks at highest angular resolution
 - Chemical evolution, also JWST
 - Magnetic fields
 - Episodic accretion