Class 0 protostar observation

non-ideal MHD Models

Conclusion 00000000000000000

Magnetic field and gas, a sticky couple: observations and models to quantify magnetic braking

N. Añez-López EPoS April 29, 2022

Collaborators:

U. Lebreuilly , A. Maury , P. Hennebelle, V. Cabedo, J.M.Girart

Introductio	n
000	

non-ideal MHD Models

Conclusion 000000000000000000

Index

2 Class 0 protostar observation

Class 0 protostar observation 000

non-ideal MHD Models

Conclusion

Table of Contents

2 Class 0 protostar observation

3 non-ideal MHD Models

Introduction
000

non-ideal MHD Models

Conclusion

Low-mass SF

Theoretical problem(s):

\circ \sim 5 orders of magnitude

Class 0 protostar observation 000

non-ideal MHD Models

Low-mass SF

Theoretical problem(s):

• angular momentum must be dissipated

Solutions?

• magnetic braking

non-ideal MHD Models

Low-mass SF

Theoretical problem(s):

- angular momentum must be dissipated
- magnetic braking "catastrophe"

Solutions?

- magnetic braking
- on-ideal MHD

non-ideal MHD Models

Low-mass SF

Actual observation:

 disc smaller than 60 au in Class O (Maury+2019,Sheehan+2022)

Introduction	
000	

non-ideal MHD Models

Motivation

- Test efficiency of the magnetic braking.
- Observe B-field morphology.
- Constrain B-field gas coupling.
 - constrain ionization.
- Observe features due to magnetic braking.
 - Gas kinematics.

Class 0 protostar observation $\bullet \circ \circ$

non-ideal MHD Models

Conclusion

Table of Contents

2 Class 0 protostar observation

③ non-ideal MHD Models

Introd	uction
000	

Class 0 protostar observation $0 \bullet 0$

non-ideal MHD Models

Conclusion 00000000000000000

B335

ALMA molecular lines observations (Cabedo+2022;arXiv:2204.10043)

- to measure ionization of the gas (χ_e)
- to measure Cosmic Rays (CRs) ionization rate (ξ)

B335; ideal laboratory

- d \sim 165 pc (Watson 2020).
- isolated Class O protostar (Keene et al. 1983).
- no disk kinematic signature (Kurono et al. 2013).
- "hourglass" B-field morphology (Maury et al. 2018).

(日) (周) (日) (日) (日)

Introd	uction
000	

Class 0 protostar observation $0 \bullet 0$

non-ideal MHD Models

Conclusion 00000000000000000

B335

ALMA molecular lines observations (Cabedo+2022;arXiv:2204.10043)

- to measure ionization of the gas (χ_e)
- to measure Cosmic Rays (CRs) ionization rate (ξ)

B335; ideal laboratory

- d \sim 165 pc (Watson 2020).
- isolated Class O protostar (Keene et al. 1983).
- no disk kinematic signature (Kurono et al. 2013).
- "hourglass" B-field morphology (Maury et al. 2018).

イロン 不同 とくほう 不良 とう

Class 0 protostar observation

non-ideal MHD Models

B335; CR ionization rate

- high gas ionization at <500 au due to locally produce CRs.
- organized B-field due to strong coupling with infalling material.
- Strong coupling reinforces the magnetically regulated scenario (Maury+2018).

non-ideal MHD Models •000000000

Table of Contents

3 non-ideal MHD Models

<ロ> <同> <同> < 同> < 同> < 同> < 三> 三 三 9/34

Class 0 protostar observation 000

non-ideal MHD Models

Models

- Hennebelle et al. 2020
- RAMSES non-ideal MHD low-mass collapsing cores
- $\bullet~1~M_{\odot}$
- edge-on orientation
- 8000 au scales
- similar physical characteristic except for the magnetic field.

10**	10 ²³ cm ⁻¹	1024	1045		1070		
ID	μ	β_{rot}	θ	\mathcal{M}	time	mass _{sink}	r _{disc}
					(Kyr)	(M _☉)	(au)
R2-10	3.33	0.04	30°	0	62.08	0.06	21.97
R2-30	3.33	0.04	30°	0	67.80	0.18	21.59
R2-70	3.33	0.04	30°	0	80.40	0.30	21.40
R3-10) 10.00	0.04	30°	0	53.52	0.07	148.04
R3-840) 10.00	0.04	30°	0	63.83	0.18	68.85
R3-238	0 10.00	0.04	30°	0	81.43	0.30	48.68

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> の

Introduction	
000	

non-ideal MHD Models

Conclusion

Magnetic field morphology

- Polarised dust thermal emission
- 860µm (360 GHz)

Class 0 protostar observation 000

non-ideal MHD Models

Specific Angular Momentum (SAM)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

non-ideal MHD Models 0000000000

Synthetic observation

First moment map / Intensity weighted velocity

- POLARIS
- C¹⁸O (2-1)
- d 250 pc ۰
- spec.res. 0.12 $\rm km~s^{-1}$
- ranged \pm 6 $\rm km~s^{-1}$

Class 0 protostar observation 000

non-ideal MHD Models

SAM & ASAM profiles (MODEL)

• SAM computed from rotational vel. comp. True angular momentum

- ASAM computed from radial vel. comp.
- ASAM computed from total vel.

<ロト < 回 ト < 直 ト < 直 ト ミ シ へ () 14/34

Class 0 protostar observation 000

non-ideal MHD Models

Conclusion 00000000000000000

Infall & rotation (MODEL)

No major differences in ASAM profiles

Class 0 protostar observation 000

non-ideal MHD Models

Conclusion 00000000000000000

SAM (SYNTHETIC OBSERVATION)

• in both cases the profiles are separated according to their mass-to-flux ratio rather than to evolutionary stage.

Class 0 protostar observation 000

non-ideal MHD Models

Model VS synthetic observation

Introd	uction
000	

non-ideal MHD Models

$C^{18}O \ / \ C^{17}O$

 Slightly higher SAM of the optically thin molecule emission seen in the peak velocity.

Class 0 protostar observation 000

non-ideal MHD Models

Table of Contents

2 Class 0 protostar observation

3 non-ideal MHD Models

Introduction	
000	

non-ideal MHD Models

Conclusion

Conclusion

- B335 show high CRs ionization rate, increasing at small envelope radii, suggesting local acceleration of CRs.
- Large ionization fraction suggest an efficient coupling between B-field and the gas in the inner envelope of B335.

Introduction	
000	

Conclusion

- More magnetized model show larger dissipation of SAM as we approach the protostar, showing a dominance of the radial component of velocity at smaller radii.
- C¹⁸O (2-1) velocity field shows clear different depending on the level of magnetization, reproducing the behavior of the true angular momentum.
- Specific angular momentum computed with maximum velocity (PV-diagram method), appear to plot not only rotational velocity but also radial components, especially in the innermost radii.
- Intensity weighted velocity (first moment method) best approximates the rotational velocity component, especially in a strongly magnetised environment.

Class 0 protostar observation

non-ideal MHD Models

Conclusion

Magnetic field and gas, a sticky couple: observations and models to quantify magnetic braking

N. Añez-López EPoS April 29, 2022

Collaborators:

U. Lebreuilly , A. Maury , P. Hennebelle, V. Cabedo, J.M.Girart

