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Two most common types of receivers in radio astronomy: 

Heterodyne receivers
sensitive to the incoming electric field; frequency of the received signal is converted down to a 
lower frequency by a precise reference signal (mixer) generated locally in the receiver system.
Heterodyne receivers are used at metre, centimetre, millimetre and submillimetre wavelengths.

Example in daily life : Cell phone, WiFi antennas. FM and AM radio
Example in the laboratory : spectrum analyzer 

Bolometric receiver 
sensitive to thermal-electrical effects; incoming photons are directly detected, heat is generated 
and the total power (resistance) changes due to material temperature changes. 
Bolometers only record the intensity of light but over a very broad range of wavelengths (large 
bandwidth) e.g. over an entire atmospheric "window" - 310 GHz to 370 GHz. 

Used exclusively at high (sub-mm) wavelengths to do photometry. Usually cooled to milli- 
Kelvin level to ensure they are limited only by sky background. 
Currently no (or very limited via filters) spectral resolution capability. 
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Good detectors preserve the information contained in the incident e-m disturbance or 
photon stream. Relevant parameters include: 

(i) Quantum efficiency - fraction of photons converted into a signal 

(ii) Noise - the uncertainty in the output signal - hopefully dominated by statistical 
fluctuations that are due to the number of photons producing the signal - and free of 
systematic effects so that longer integrations produce improved noise levels 

(iii) Dynamic range - the maximum variation in the signal over which the detector is 
sensitive and over which no information is lost (e.g. via saturation effects) 

(iv) Number and physical size of the pixels (imaging elements) the detector can use 
simultaneously 

(v) Time response (temporal resolution) of the detector - minimum interval in time 
over which the detector can distinguish changes in the intensity of the incoming 
radiation field 

(vi) Spectral response - frequency range over which the detector is sensitive to 
incoming radiation 

(vii) Spectral resolution - smallest frequency interval over which the detector is 
sensitive to incoming radiation. 

Receiver Systems: general properties



Good detectors preserve the information contained in the incident e-m disturbance or 
photon stream. Relevant parameters include: 

(i) Quantum efficiency - fraction of photons converted into a signal 

(ii) Noise - the uncertainty in the output signal - hopefully dominated by statistical 
fluctuations that are due to the number of photons producing the signal - and free of 
systematic effects so that longer integrations produce improved noise levels 

(iii) Dynamic range - the maximum variation in the signal over which the detector is 
sensitive and over which no information is lost (e.g. via saturation effects) 

(iv) Number and physical size of the pixels (imaging elements) the detector can use 
simultaneously 

(v) Time response (temporal resolution) of the detector - minimum interval in time 
over which the detector can distinguish changes in the intensity of the incoming 
radiation field 

(vi) Spectral response - frequency range over which the detector is sensitive to 
incoming radiation 

(vii) Spectral resolution - smallest frequency interval over which the detector is 
sensitive to incoming radiation. 

Receiver Systems: general properties



Good detectors preserve the information contained in the incident e-m disturbance or 
photon stream. Relevant parameters include: 

(i) Quantum efficiency - fraction of photons converted into a signal 

(ii) Noise - the uncertainty in the output signal - hopefully dominated by statistical 
fluctuations that are due to the number of photons producing the signal - and free of 
systematic effects so that longer integrations produce improved noise levels 

(iii) Dynamic range - the maximum variation in the signal over which the detector is 
sensitive and over which no information is lost (e.g. via saturation effects) 

(iv) Number and physical size of the pixels (imaging elements) the detector can use 
simultaneously 

(v) Time response (temporal resolution) of the detector - minimum interval in time 
over which the detector can distinguish changes in the intensity of the incoming 
radiation field 

(vi) Spectral response - frequency range over which the detector is sensitive to 
incoming radiation 

(vii) Spectral resolution - smallest frequency interval over which the detector is 
sensitive to incoming radiation. 

Receiver Systems: general properties



Good detectors preserve the information contained in the incident e-m disturbance or 
photon stream. Relevant parameters include: 

(i) Quantum efficiency - fraction of photons converted into a signal 

(ii) Noise - the uncertainty in the output signal - hopefully dominated by statistical 
fluctuations that are due to the number of photons producing the signal - and free of 
systematic effects so that longer integrations produce improved noise levels 

(iii) Dynamic range - the maximum variation in the signal over which the detector is 
sensitive and over which no information is lost (e.g. via saturation effects) 

(iv) Number and physical size of the pixels (imaging elements) the detector can use 
simultaneously 

(v) Time response (temporal resolution) of the detector - minimum interval in time 
over which the detector can distinguish changes in the intensity of the incoming 
radiation field 

(vi) Spectral response - frequency range over which the detector is sensitive to 
incoming radiation 

(vii) Spectral resolution - smallest frequency interval over which the detector is 
sensitive to incoming radiation. 

Receiver Systems: general properties



Good detectors preserve the information contained in the incident e-m disturbance or 
photon stream. Relevant parameters include: 

(i) Quantum efficiency - fraction of photons converted into a signal 

(ii) Noise - the uncertainty in the output signal - hopefully dominated by statistical 
fluctuations that are due to the number of photons producing the signal - and free of 
systematic effects so that longer integrations produce improved noise levels 

(iii) Dynamic range - the maximum variation in the signal over which the detector is 
sensitive and over which no information is lost (e.g. via saturation effects) 

(iv) Number and physical size of the pixels (imaging elements) the detector can use 
simultaneously 

(v) Time response (temporal resolution) of the detector - minimum interval in time 
over which the detector can distinguish changes in the intensity of the incoming 
radiation field 

(vi) Spectral response - frequency range over which the detector is sensitive to 
incoming radiation 

(vii) Spectral resolution - smallest frequency interval over which the detector is 
sensitive to incoming radiation. 

Receiver Systems: general properties



Good detectors preserve the information contained in the incident e-m disturbance or 
photon stream. Relevant parameters include: 

(i) Quantum efficiency - fraction of photons converted into a signal 

(ii) Noise - the uncertainty in the output signal - hopefully dominated by statistical 
fluctuations that are due to the number of photons producing the signal - and free of 
systematic effects so that longer integrations produce improved noise levels 

(iii) Dynamic range - the maximum variation in the signal over which the detector is 
sensitive and over which no information is lost (e.g. via saturation effects) 

(iv) Number and physical size of the pixels (imaging elements) the detector can use 
simultaneously 

(v) Time response (temporal resolution) of the detector - minimum interval in time 
over which the detector can distinguish changes in the intensity of the incoming 
radiation field 

(vi) Spectral response - frequency range over which the detector is sensitive to 
incoming radiation 

(vii) Spectral resolution - smallest frequency interval over which the detector is 
sensitive to incoming radiation. 

Receiver Systems: general properties



Good detectors preserve the information contained in the incident e-m disturbance or 
photon stream. Relevant parameters include: 

(i) Quantum efficiency - fraction of photons converted into a signal 

(ii) Noise - the uncertainty in the output signal - hopefully dominated by statistical 
fluctuations that are due to the number of photons producing the signal - and free of 
systematic effects so that longer integrations produce improved noise levels 

(iii) Dynamic range - the maximum variation in the signal over which the detector is 
sensitive and over which no information is lost (e.g. via saturation effects) 

(iv) Number and physical size of the pixels (imaging elements) the detector can use 
simultaneously 

(v) Time response (temporal resolution) of the detector - minimum interval in time 
over which the detector can distinguish changes in the intensity of the incoming 
radiation field 

(vi) Spectral response - frequency range over which the detector is sensitive to 
incoming radiation 

(vii) Spectral resolution - smallest frequency interval over which the detector is 
sensitive to incoming radiation. 

Receiver Systems: general properties



Radiometers

A radiometer is a device to measure the noise coming out of a 
radio telescope.

The radiometer equation is among the most often-used tools of 
radio astronomy. For observations with a bandwidth Δν averaged 
over a time t, it predicts the uncertainty in the noise power from a 
telescope to be:

That is: the uncertainty in your measurement of power out from your 
telescope averages as the square root of time and bandwidth 
included in the measurement with the scale set by a system 
temperature that reflects the total noise power incident on the 
telescope.
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for a formal derivation of this result) is only

�T =
21/2Ts

N1/2
. (3.145)

In terms of bandwidth �⌫RF and integration time ⌧ ,

�T ⇡
Tsp

�⌫RF⌧
(3.146)

after smoothing. The central limit theorem of statistics implies that heavily smoothed
(�⌫RF⌧ � 1) output voltages also have a nearly Gaussian amplitude distribution. This
important equation is called the ideal radiometer equation for a total-power receiver. The
weakest detectable signals �T only have to be several (typically five) times the output rms
�T given by the radiometer equation, not several times the total system noise Ts. The
product �⌫RF⌧ may be quite large in practice (108 is not unusual), so signals as faint as
�T ⇠ 5⇥ 10�4Ts would be detectable. The Figures 3.33 and 3.34 illustrate the effects of
smoothing the detector output by taking running means of lengths N = 50 and N = 200
samples.

3.5.3 Some Caveats

The ideal radiometer equation suggests that the sensitivity of a radio observation improves
as ⌧1/2 forever. In practice, systematic errors set a floor to the noise level that can be
reached. Receiver gain changes, erratic fluctuations in atmospheric emission, or “confu-
sion” by the unresolved background of continuum radio sources usually limit the sensitivity
of single-dish continuum observations.

3.5.3.1 Gain instability

Note that the output voltage of a total-power receiver is directly proportional to the overall
gain G of the receiver:

P⌫ = GkTs (3.147)

If G isn’t perfectly constant, the change in output

�P⌫ = �GkTs (3.148)

caused by gain fluctuations �G produces a false signal

�TG = Ts

✓
�G

G

◆
(3.149)

that is indistinguishable from a comparable change �T in the system noise temperature
produced by an astronomical source. Receiver gain fluctuations and noise fluctuations are
independent random processes, so their variances (the variance is the square of the rms)
add, and the total receiver output fluctuation becomes:

�2
total = �2

noise + �2
G (3.150)

�2
total = T 2

s


1

�⌫RF⌧
+

✓
�G

G

◆2�
(3.151)



Simulation of the voltage out of a radio telescope as a function of time:RADIO TELESCOPES AND RADIOMETERS
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Figure 3.28: The output voltage V of a radio telescope varies rapidly on short time scales,
as indicated by the upper plot showing 100 independent samples of band-limited noise
drawn from a Gaussian probability distribution P (V/Vrms) (lower plot) having zero mean
and fixed rms Vrms. See Appendix B.4 for a mathematical description of the Gaussian
distribution.

The simplest radiometer (Fig. 3.29) consists of four stages in series: 1) a low-loss
bandpass filter that passes input noise only in the desired frequency range, 2) a square-
law detector whose output voltage is proportional to the square of its input voltage; that
is, its output voltage is proportional to its input power, 3) a signal averager or integrator
that smoothes the rapidly fluctuating detector output, and 4) a voltmeter or other device to
measure and record the smoothed voltage. After passing through an input filter of width
�⌫RF < ⌫RF the noise voltage is no longer completely random; it looks more like a
sine wave of frequency ⇡ ⌫RF whose amplitude envelope varies randomly on time scales
�t ⇡ (�⌫RF)�1 > ⌫�1

RF (Fig. 3.30). The positive and negative envelopes are similar so
long as �⌫RF ⌧ ⌫RF.

The filtered output is sent to a square-law detector, a device whose output voltage is
proportional to the square of its input voltage, so the detector output voltage is proportional
to its input power. For a narrowband (quasi-sinudoidal) input voltage Vi ⇡ cos(2⇡⌫RFt)
at frequency ⌫RF, the detector output voltage would be Vo / cos2(2⇡⌫RFt). This can be
rewritten as [1+cos(4⇡⌫RFt)]/2, a function whose mean value equals the average power of
the input signal. In addition to the DC (zero-frequency component) there is an oscillating
component at twice ⌫RF. The detector output spectrum for a finite bandwidth �⌫RF and a
typical waveform are shown in Figure 3.31. The oscillations under the envelope approach
zero every �t ⇡ (2⌫RF)�1. Thus the oscillating component of the detector output is

The mean of the voltage is zero and there is a characteristic scale to the 
amplitudes.

Let’s instead plot the distribution of amplitudes used to make this plot.

RADIO TELESCOPES AND RADIOMETERS
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Histogram of voltages. Note that there is a 
characteristic scale along X and there is a 
Gaussian distribution.

This is a reasonable example of what you might be 
getting out of the back of a telescope.

Radiometers: Noise



The most basic radiometer

Say we want to measure the power at νRF with some finite bandwidth ΔνRF – 
the most basic instrument for doing this needs to:

(1) Select only the frequencies that we care about.
(2) Translate voltage into a power that we can measure.
(3) Integrate the stream of time measurements into a single value98

EssentialRadioAstronomy August 14, 2014 7x10

CHAPTER 3

Figure 3.29: The simplest radiometer filters the broadband noise coming from the tele-
scope, multiplies the filtered voltage by itself (square-law detection), smoothes the detected
voltage, and measures the smoothed voltage. The function of the detector is to convert the
noise voltage, which has zero mean, to noise power, which is proportional to the square of
voltage.

Figure 3.30: The voltage output of the filter with center frequency ⌫RF and bandwidth
�⌫RF < ⌫RF is a sinusoid with frequency ⌫RF whose envelope (dashed curves) fluctuates
on time scales (�⌫RF)�1 > (⌫RF)�1.

centered near the frequency 2⌫RF. The detector output also has frequency components
near zero (DC) since the mean output voltage is greater than zero.

Both the rapidly varying component at frequencies near 2⌫RF and its envelope vary
on time scales that are normally much shorter than the time scales on which the average
signal power �T varies. The unwanted rapid variations can be suppressed by taking the
arithmetic mean of the detected envelope over some time scale ⌧ � (�⌫RF)�1 by inte-
grating or averaging the detector output. This integration might be done electronically by
smoothing with an RC (resistance plus capacitance) filter or numerically by sampling and
digitizing the detector output voltage and then computing its running mean.

Integration greatly reduces the receiver output fluctuations. In the time interval ⌧ there
are N = 2�⌫RF⌧ independent samples of the total noise power Ts, each of which has an
rms error �T ⇡ 21/2Ts. The rms error in the average of N � 1 independent samples is
reduced by the factor

p
N , so the rms receiver output fluctuation �T (see Appendix B.5

Your dish A filter to 
keep only the 
frequencies 

that you want

A “square 
law” 

detector to 
convert 

voltage to 
power.

A device to 
integrate 
the signal 
over time

Something 
to write 

down what 
you see.



The first step in this chain is usually a bandpass filter that allows only a range of 
frequencies that is typically pretty narrow compared to the central frequency to pass 
through:

The idea is to measure the power only over this finite part of the band. The effect of such 
a filter is also to imprint some overall structure on the time series of the voltage. Which 
now looks like the pattern below:

We want to 
get just this:

Passing random 
signals through a 

filter like this 
produces this: 

a main frequency 
behavior at the 

central frequency 
and an envelope set 
by the filter width.

bandpass filter
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Figure 3.27: The 30 m IRAM telescope on Pico Veleta in Spain. Image credit:
http://iram.fr/IRAMES/

radiometer noise temperature Tr.

Ts = Tcmb + �Tsource + ⌧ATAtm + Tspillover + Tr + . . . (3.143)

The antenna-temperature contributions listed explicitly in Equation 3.143 are Tcmb ⇡ 2.73
K from the cosmic microwave background, �Tsource from the astronomical source being
observed, ⌧ATAtm from atmospheric emission in the telescope beam (Section 2.2.3), and
Tspillover to account for radiation that the feed picks up in directions beyond the edge of
the reflector. Tr represents the noise power generated by the radiometer itself, referenced
to the radiometer input. All radiometers generate noise, and any radiometer can be rep-
resented by an equivalent circuit consisting of an noiseless radiometer whose input is a
resistor of temperature Tr. Radiometer noise is usually minimized by cooling the receiver
to cryogenic temperatures.

The astronomical signal �Tsource was written with a � to emphasize that it is usually
much smaller than the total system noise: �Tsource ⌧ Ts. For example, in the ⌫RF ⇡ 4.85
GHz sky survey made with the 300-foot telescope, the system noise was Ts ⇡ 60 K, but
the faintest sources detected contributed only �Tsource ⇡ 0.01 K.

3.5.2 Radiometers

The purpose of the simplest total-power radiometer is to measure the timed-averaged
power of the input noise in some well-defined radio frequency (RF) range

⌫RF �
�⌫RF

2
to ⌫RF +

�⌫RF

2
, (3.144)

where �⌫RF is the receiver bandwidth. For example, the receivers used on the 300-foot
telescope to make the � ⇡ 6 cm continuum survey of the northern sky had a center radio
frequency ⌫RF ⇡ 4.85⇥ 109 Hz and a bandwidth �⌫RF ⇡ 6⇥ 108 Hz.



Measuring the raw voltage from the telescope would give you a rapidly wiggling voltage 
about a mean of zero. To get the average power we need to build a detector, something 
that lets us get at the amplitude distribution of input voltage. The simplest such device 
just squares the input voltage. Square of the voltage gives us power and this makes the 
output positive, averageable, with a mean reflective of the average amplitude (which is 
our goal).

Imagine we have an input voltage where we have filtered to get about νRF:

Then the square law detector outputs this as:

This has two important properties:

(1) The noise is increased by multiplying the signal by itself. For a square-law detector 
the noise increases by a factor of sqrt(2). This comes from:

Compared to an expectation value over only V2 for the RMS of the input voltage. The 
ERA appendix does the calculation.

RADIO TELESCOPES AND RADIOMETERS
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Figure 3.28: The output voltage V of a radio telescope varies rapidly on short time scales,
as indicated by the upper plot showing 100 independent samples of band-limited noise
drawn from a Gaussian probability distribution P (V/Vrms) (lower plot) having zero mean
and fixed rms Vrms. See Appendix B.4 for a mathematical description of the Gaussian
distribution.

The simplest radiometer (Fig. 3.29) consists of four stages in series: 1) a low-loss
bandpass filter that passes input noise only in the desired frequency range, 2) a square-
law detector whose output voltage is proportional to the square of its input voltage; that
is, its output voltage is proportional to its input power, 3) a signal averager or integrator
that smoothes the rapidly fluctuating detector output, and 4) a voltmeter or other device to
measure and record the smoothed voltage. After passing through an input filter of width
�⌫RF < ⌫RF the noise voltage is no longer completely random; it looks more like a
sine wave of frequency ⇡ ⌫RF whose amplitude envelope varies randomly on time scales
�t ⇡ (�⌫RF)�1 > ⌫�1

RF (Fig. 3.30). The positive and negative envelopes are similar so
long as �⌫RF ⌧ ⌫RF.

The filtered output is sent to a square-law detector, a device whose output voltage is
proportional to the square of its input voltage, so the detector output voltage is proportional
to its input power. For a narrowband (quasi-sinudoidal) input voltage Vi ⇡ cos(2⇡⌫RFt)
at frequency ⌫RF, the detector output voltage would be Vo / cos2(2⇡⌫RFt). This can be
rewritten as [1+cos(4⇡⌫RFt)]/2, a function whose mean value equals the average power of
the input signal. In addition to the DC (zero-frequency component) there is an oscillating
component at twice ⌫RF. The detector output spectrum for a finite bandwidth �⌫RF and a
typical waveform are shown in Figure 3.31. The oscillations under the envelope approach
zero every �t ⇡ (2⌫RF)�1. Thus the oscillating component of the detector output is
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The filtered output is sent to a square-law detector, a device whose output voltage is
proportional to the square of its input voltage, so the detector output voltage is proportional
to its input power. For a narrowband (quasi-sinudoidal) input voltage Vi ⇡ cos(2⇡⌫RFt)
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radiometers: square law detector



Measuring the raw voltage from the telescope would give you a rapidly wiggling voltage 
about a mean of zero. To get the average power we need to build a detector, something 
that lets us get at the amplitude distribution of input voltage. The simplest such device 
just squares the input voltage. Square of the voltage gives us power and this makes the 
output positive, averageable, with a mean reflective of the average amplitude (which is 
our goal).

Imagine we have an input voltage where we have filtered to get about νRF:

Then the square law detector outputs this as:
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(1) The noise is increased by multiplying the signal by itself. For a square-law detector 
the noise increases by a factor of sqrt(2). This comes from:

Compared to an expectation value over only V2 for the RMS of the input voltage. The 
ERA appendix does the calculation.
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law detector whose output voltage is proportional to the square of its input voltage; that
is, its output voltage is proportional to its input power, 3) a signal averager or integrator
that smoothes the rapidly fluctuating detector output, and 4) a voltmeter or other device to
measure and record the smoothed voltage. After passing through an input filter of width
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So after passing through the square law detector we get only 
positive values

Voltage vs. 
time coming 

out of a 
square law 
detector.

Probability 
distribution (i.e., 
histogram) of the 
voltages coming 

out of the square 
law detector. 

They are positive 
and link back to 

the mean average 
amplitude.

radiometers: square law detector



How often must we sample the signal ? Consider the 
following sine wave: 

Nyquist’s sampling theorem states that for a limited bandwidth signal with 
maximum frequency fmax, the equally spaced sampling frequency fs must be 
greater than twice the maximum frequency fmax, i.e. fs > 2·fmax in order for the 
signal to be uniquely reconstructed without aliasing. 
The frequency 2fmax is called the Nyquist sampling rate. 

Sampling



Note that strictly speaking, the sampling frequency (rate) must be strictly greater than 
the Nyquist rate (fs > 2·fmax ) of the signal to achieve unambiguous representa?on of 
the signal. In the pathlogical case where the signal contains a frequency component at 
precisely the Nyquist frequency, then the corresponding component of the sample 
values cannot have sufficient informa?on to reconstruct the signal.  

Sampling



Putting this together:

1. The noise out from the square law detector is sqrt(2) times the noise power coming 
out of the telescope. 

2. Integrating over Δν  and τ, we get Δν τ samples. Combining these we can constrain 
the average output power better by a factor of 1/sqrt(N) = 1/sqrt(Δν τ).

So this means that the uncertainty in our ability to measure the noise power of the 
telescope for an observation of length τ and bandwidth Δν is just:

σ =
Pnoise
Δντ

radiometers: sampling and integration
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after smoothing. The central limit theorem of statistics implies that heavily smoothed
(�⌫RF⌧ � 1) output voltages also have a nearly Gaussian amplitude distribution. This
important equation is called the ideal radiometer equation for a total-power receiver. The
weakest detectable signals �T only have to be several (typically five) times the output rms
�T given by the radiometer equation, not several times the total system noise Ts. The
product �⌫RF⌧ may be quite large in practice (108 is not unusual), so signals as faint as
�T ⇠ 5⇥ 10�4Ts would be detectable. The Figures 3.33 and 3.34 illustrate the effects of
smoothing the detector output by taking running means of lengths N = 50 and N = 200
samples.

3.5.3 Some Caveats

The ideal radiometer equation suggests that the sensitivity of a radio observation improves
as ⌧1/2 forever. In practice, systematic errors set a floor to the noise level that can be
reached. Receiver gain changes, erratic fluctuations in atmospheric emission, or “confu-
sion” by the unresolved background of continuum radio sources usually limit the sensitivity
of single-dish continuum observations.

3.5.3.1 Gain instability

Note that the output voltage of a total-power receiver is directly proportional to the overall
gain G of the receiver:

P⌫ = GkTs (3.147)

If G isn’t perfectly constant, the change in output

�P⌫ = �GkTs (3.148)

caused by gain fluctuations �G produces a false signal

�TG = Ts
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that is indistinguishable from a comparable change �T in the system noise temperature
produced by an astronomical source. Receiver gain fluctuations and noise fluctuations are
independent random processes, so their variances (the variance is the square of the rms)
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Thermal noise (Johnson noise) exists in all electronic components and results from the 
thermal agitation of free-electrons. The noise is typically “white noise” (flat power 
response with frequency). 

In electronics, the noise temperature is a temperature (in Kelvin) assigned to a 
component such that the noise power delivered by the noisy component is given by, 

                                     P ~ kTdv. 

The noise contributions of the various components in a receiver system are usually 
independent (uncorrelated) and the total noise in a receiver system (TRX) can be 
estimated by summing all the individual contributions. 

The total system temperature,TSYS , is noise from the whole system and includes the 
antenna Temperature (noise from the sky background, atmosphere, losses in the feed, 
spillover from the ground) plus the noise from the receiver system itself:

 
At centimetre and millimetre wavelenghts,TRX dominates the system noise temperature. 

Noise
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Noise



When Penzias & Wilson made their measurements, they found: 

Tatm = 2.3 +/- 0.3 K,  
Tloss = 0.9 +/- 0.4 K,  
Tspill < 0.1 K.  
And they expected Tsky ~ 0. 

So looking straight up, they expected to measure TA, 

TA = 2.3 + 0.9 + 0.1 + 0 = 3.2 K. 

….but what they found was TA = 6.7 Kelvin! 

The excess was the CMB and Galactic emission. 

Noise - detection of CMB



A practical example

Two cases observing the same power source but on the left the smoothing 
(and so Δν τ) is four times that on the left. Note the same mean but the 
lower RMS scatter on the right.
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after smoothing. The central limit theorem of statistics implies that heavily smoothed
(�⌫RF⌧ � 1) output voltages also have a nearly Gaussian amplitude distribution. This
important equation is called the ideal radiometer equation for a total-power receiver. The
weakest detectable signals �T only have to be several (typically five) times the output rms
�T given by the radiometer equation, not several times the total system noise Ts. The
product �⌫RF⌧ may be quite large in practice (108 is not unusual), so signals as faint as
�T ⇠ 5⇥ 10�4Ts would be detectable. The Figures 3.33 and 3.34 illustrate the effects of
smoothing the detector output by taking running means of lengths N = 50 and N = 200
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3.5.3 Some Caveats

The ideal radiometer equation suggests that the sensitivity of a radio observation improves
as ⌧1/2 forever. In practice, systematic errors set a floor to the noise level that can be
reached. Receiver gain changes, erratic fluctuations in atmospheric emission, or “confu-
sion” by the unresolved background of continuum radio sources usually limit the sensitivity
of single-dish continuum observations.

3.5.3.1 Gain instability

Note that the output voltage of a total-power receiver is directly proportional to the overall
gain G of the receiver:

P⌫ = GkTs (3.147)

If G isn’t perfectly constant, the change in output
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caused by gain fluctuations �G produces a false signal
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that is indistinguishable from a comparable change �T in the system noise temperature
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radiometers: sampling and integration



There are a few things to realize here:

(1)Δν and τ are big numbers. The uncertainty in the total noise power ends 
up being a tiny fraction of the overall noise power. This is important 
because astronomical sources are very faint (noise power far sub-K) 
compared to any realistic TS.

(2)You want a cold telescope. A cool receiver, low spillover, etc. mean that Ts 
is low and allow you to achieve the same sensitivity much faster. Put 
another way linear (TS) is much faster than sqrt (integration time)!

(3)Your single dish radio measurements are basically measuring a tiny 
astronomical bump on top of a big (10s, 100s, even 1000s) of K total 
power.

radiometers: implications
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Recall that when pointed at our source:

Now imagine looking at an otherwise identical patch of sky just off to to the right, 
here:

The second measurement captures all of the “other stuff” so that:

How well do we know Tsource? From error propagation:

TsysON =TCMB +Treceiver +Tatm +...+Tsource

TsysOFF =TCMB +Treceiver +Tatm +...

What we 
want

Tsource =TsysON −TsysOFF

σ source = σT,on
2 +σT,off

2

radiometers: in practice



Imagine that we make identical observations of the two positions each for τ/2:

With one sqrt(2) reflecting the extra noise from subtracting (or adding) two pieces 
of noise and the other sqrt(2) reflecting that you spend half the time “ON” and half 
“OFF.”

Most of the time practically you will do something like this differential 
measurement. Depending on your strategy you may get this factor of two or you 
may do a little bit better (e.g., if you use one OFF for many observations or do 
some other clever trick).

σ source = σT,on
2 +σT,off

2 = 2σT = 2 TS
Δυτ / 2

= 2 TS
Δυτ

radiometers: in practice



A hardware oriented approach of this differential measurement:

And the cost of this approach is sensitivity, which is only half of that in an absolute setup. 
To see the factor of two consider that only half the total time τ is spent on source while 
the noise is sqrt(2) higher due to the difference operation (which adds noise 
quadratically):

Schematic of a beam switching system. 
The switch drives rapid variations 
between the source and a reference 
position off of the source.

radiometers: Dicke Switching

pros: no actual movement of the telescope
cons: Feed 2 may have different properties from Feed 1



In reality this perfect statistical behaviour will break down. Several possible cases:

(1) The gain of the telescope or receiver varies randomly over time, e.g., due to 
instability in the electronics. These gain variations set a floor to the gains from 
the classic radiometer equation.

(2) You integrate until you reach the sensitivity at which there is a radio source at 
every position in the sky where you look – this confusion noise then replaces 
the radiometer noise and limits your overall sensitivity.

(3) Non-Gaussian fluctuations in the atmosphere introduce systematic effects.

Integrate long enough with a single dish telescope and you are likely to run up 
against one of these effects.

Beyond the Radiometer Equation
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In reality this perfect statistical behaviour will break down. Several possible cases:

(1) The gain of the telescope or receiver varies randomly over time, e.g., due to 
instability in the electronics. These gain variations set a floor to the gains from 
the classic radiometer equation.

(2) You integrate until you reach the sensitivity at which there is a radio source at 
every position in the sky where you look – this confusion noise then replaces 
the radiometer noise and limits your overall sensitivity.

(3) Non-Gaussian fluctuations in the atmosphere introduce systematic effects.

Integrate long enough with a single dish telescope and you are likely to run up 
against one of these effects.

Beyond the Radiometer Equation
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Real electronic systems at telescopes have some gain, G, which acts multiplicatively on 
the signal.

Instability in the signal path can cause this gain to experience small fluctuations over 
time. Then the output power is affected:

Which looks like a changing system temperature over time:

And accordingly adds another noise term to what we measure:

Gain Variations
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The radio sky is full of sources and the beam patterns for single dish telescopes in 
particular are often very large. It is entirely possible to get into a regime in which 
there are astronomical sources inside your beam contributing power at a level 
comparable to or greater than your radiometer noise. In this case your 
measurement is not limited by radiometer noise but by confusion.

A power image of the northern sky. The ripples are real sources:

Confusion



A practical empirically derived relationship is:

Which works at low frequencies and reflects that confusion is dominated by 
extragalactic point sources with nonthermal spectra and that the degree to which 
you are confused depends on the size of the beam with which you observe. 
Different expressions but similar concerns apply in the infrared regime (e.g., 
Herschel was confusion limited at 200-500μm).

See the practical difference between the 
sky observed with the VLA (in gray) and 
with the GBT (in contour). Confusion 
depends on your angular resolution (note 
that at low frequencies it is still very easy to 
be dominated by confusion with the VLA in 
its compact configurations).

Confusion



The simple block diagram that we used for radiometers is more complicated 
in a real system. 
Radio telescopes almost always use some form of heterodyne mixing to 
manipulate the incoming signal before running it through most of the 
electronics of the system. 
The block diagram for such a system looks like:

Where the operative “heterodyne” part is the cross and the squiggle: the 
incoming signal, after amplification, is mixed with a local oscillator of a 
known frequency. The two waves interfere with one another and produce a 
signal with frequency equal to the difference of the incoming radio light and 
the local oscillator.

Heterodyne Receivers



One term has frequency of the 
difference in original 

frequencies.

Heterodyne Receivers

The two waves interfere with one another and produce a signal with frequency equal to the 
difference of the incoming radio light and the local oscillator. 

Local Oscillator - This can be set by the observer

(radio) frequency being observed

That is, once the signals are mixed you get the multiplication of the two: 

One term has frequency of 
the sum in original 

frequencies.

IF: intermediate frequency 
— can be selected  by 
electronics / filtering 



Heterodyne Receivers

Note: ‘image frequency’ is also mixed down to the same IF! 

from:

In the old days this was a problem - as one could not tell whether lines were 
observed in the upper or lower sidesband (USB or LSB). 

Single sideband receiver (SSB): only one sideband makes it through systrem.  
The other (image) sideband received is rejected 

Dual sideband receiver (DSB): both sidebands are superposed. 

Sideband seperating receiver (2SB): both sidebands are recorded separately - 
this is achieved, eg. Using 2 LOs, and shifting one LO by 90 degrees.  This 
Became achievable in the early 2000s.

Currently most receivers (ALMA etc) are 2SB receivers.

USBLSB



Heterodyne Receivers

A heterodyne receiver mixes the signal and filters it down to a lower, 
intermediate frequency set by the electronics. Why is this useful?

(1) Generically, it’s easier to work with lower frequencies.

(2) It means that by tuning a single local oscillator, the input frequency for 
any of a wide range of radio frequencies can be fed into the electronics at a 
controlled intermediate frequency (IF). 

(3) That means you can build one set of electronics to process this IF (so-
called “backends”) that can be used across the spectrum.



Some feeds inherently detect and separate 
polarisations, other types require orthomode 
transducers (OMT - see above) to separate 
channels. 

LNA = Low Noise Amplifier - amplifies the 
incoming signal - LNAs are usually cryogenically 
cooled to minimise the noise they also add to the 
overall system. 

A typical heterodyne radio astronomy receiver 
system. The receiver amplifies the incoming 
signal from the feed, filters the signal and 
“down-converts” it to a lower frequency where 
it can be more easily sampled or detected. 

Heterodyne Receivers



multi-beam receivers

note: usually, single-pixel receivers. it’s like having a CCD with one pixel

solution: multi-beam receivers

Parkes 21cm multi beam 
(13 beams)

IRAM HERA receiver (9 beams)



multi-beam receivers



Radio Telescopes / Antennas

consider additional 
effects if you are 

not on-axis



e.g. CCAT-prime - extremely wide FOV

now called: Fred Young Submillimeter Telescope (FYST)

Schematic layout of a crossed-Dragone 
telescope. Light from the sky is reflected first off 
a primary mirror and then off a slightly smaller 
secondary before reaching the instrument port 
on the side. This mirror combination permits a 
high throughput of the light over a very wide 

field of view and delivers a flat focal plane that 
will accommodate hundreds of thousands to 

millions of detectors. Sketch by Cornell 
Professor Mike Niemack.

altitude of 5,612 metres (18,412 ft), 
on Cerro Chajnantor mountain/
summit



Bolometers as very sensitive thermometers 
Composite of an absorber and the actual thermometer (thermistor) 
The absorber is kept at very low temperature (0.3 degree above absolute zero) by a 
weak thermal link to a heat sink. 
Electromagnetic radiation (photons) is absorbed. 
→ energy is transferred to the absorber whose temperature will increase 
→ An ultra-sensitive thermometer (thermistor) transforms the temperature variations 
of the absorber in electric signals, consequently amplified and digitally processed by 
computers. 

Bolometers



Most useful application in the (sub-)mm range: 60 μm – 3.4 mm wavelength 
→ at shorter wavelength: photo-electric effect in Ge:Ga or Silicon can be exploited 
better —> CCD 
→ at longer wavelength: photons deposit less and less energy into the absorber 
material  —> heterodyne receivers
Bolometers are not strongly discriminating regarding the spectral range of the 
incoming radiation 
→ spectral range (pre-)selection by means of feed horns and filters necessary 
→ wide spectral bandwidth input easily possible 

Bolometers



Advantage of the composite concept: 
- individual bolometers can be packed together → bolometer arrays filling more of 

the focal plane than just one beam width 

Issues:
strong cooling of the bolometers is mandatory to suppress thermal noise. Usually, 
liquid helium is used as coolant. 
But: temperatures far below 1 Kelvin are necessary ↔ 4He gets superfluid at ~2 K 

…use 3He instead ... does not become superfluid, but is much more rare 

just 2 keywords here: 
– Hot Electron Bolometers (HEB): incoming radiation onto some metal compounds 
(e.g. NbN) heat preferentially the electron gas → Te locally rises and pushes NbN 
out of superconductivity → elevated resistivity → signal detection 
– Transition-Edge-Sensors (TES): exploits the strongly temperature-dependent 
resistance of the superconducting phase transition 

Bolometers



Bolometers started out with a single detecting element and imaging was 
performed by a raster process in which telescope moves over a celestial object 
one pixel at a time! Now, bolometer arrays have been constructed greatly 
improving survey speed. 

Bolometers: Scuba  / Scuba-2



Bolometer: LABOCA

– Operates at 870 µm (345 GHz) with ~60 GHz of bandwidth
– Each of the 295 elements collects a signal within a beam size of 19.2 arcsec
– pixel distance: ~36 arcsec, Total field-of-view on the sky: 11.4 arcmin diameter



Bolometer: PACS @ Herschel

first time to build astronomical bolometers down to 60 µm
– 64x32 bolometer pixels array at “blue” side (60-130 µm),  
   32x16 pixels at “red” side (130-210 µm)    
– bolometers closely packed, they over-sample the beam, no beam feed horns 

One 16x16 pixel sub-matrix of PACS  &  
the 4x2 sub-matrix composite of PACS-blue ( l = 
60 – 120 µm)

built at CEA Saclay (France). 



Bolometer: Application example

starless globule B 68 in Ophiuchus 

Nielbock et al. 2012


