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time averaging:

voltages:

multiplication:

for 
-> 0

Simple Interferometer

note: geometric delay removed through electronics

      we are interested in delays due to different 

      positions on sky
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Basics of Interferometry: Imaging I

slides: Essential Radio Astronomy by NRAO (Condon & Ransom)

Dr. Michael Wise (ASTRON)

Prof. David Wilner (Harvard)


see also SMA summer school 2021: https://lweb.cfa.harvard.edu/sma-school/program/



2 antennas, 1 x 30s sample

Example SMA (u,v) Plane Sampling



3 antennas, 1 x 30s sample

Example SMA (u,v) Plane Sampling



4 antennas, 1 x 30s sample

Example SMA (u,v) Plane Sampling



5 antennas, 1 x 30s sample

Example SMA (u,v) Plane Sampling



6 antennas, 1 x 30s sample

Example SMA (u,v) Plane Sampling



7 antennas, 1 x 30s sample

Example SMA (u,v) Plane Sampling



7 antennas, 10 x 30s samples

Example SMA (u,v) Plane Sampling



7 antennas, 1 hour

Example SMA (u,v) Plane Sampling



7 antennas, 3 hours

Example SMA (u,v) Plane Sampling



7 antennas, 7 hours

Example SMA (u,v) Plane Sampling



for continuum
“multi-frequency synthesis”
e.g. SWARM 44 GHz coverage
12 GHz x 2 SB x 2 pol, 4 GHz overlap
 
→ (u,v) samples spread radially

SMA Multi-frequency Synthesis



COM configuration of 7 SMA antennas, 𝝂 = 345 GHz, dec = + 22 deg

Example SMA (u,v) Plane Sampling



EXT configuration of 7 SMA antennas, 𝝂 = 345 GHz, dec = + 22 deg

Example SMA (u,v) Plane Sampling



VEX configuration of 6 SMA antennas, 𝝂 = 345 GHz, dec = + 22 deg

Example SMA (u,v) Plane Sampling



moving antennas: VLA

is a very significant operation!
VLA antennas on track



VLA D configuration

Bmax = 1 km

VLA D configuration

Bmax = 36 km

VLA configurations



10 metres wide, 20 metres long and 6 metres high

moving antennas: ALMA

Scheuerle Fahrzeugfabrik GmbH (www.scheuerle.com)

Pfedelbach - just around the corner!



note: no tracks, and no actual configurations. antennas are always moved ‘breathing array’

moving antennas: ALMA



samples of V(u,v) are limited by array and Earth-sky geometry

outer boundary
• no info on smaller scales
• resolution limit

inner boundary
• no info on larger scales
• extended sources invisible

irregular coverage in between
• sampling theorem violated
• information missing

Implications of (u,v) Plane Sampling



V(u,v) amplitude V(u,v) phase T(l,m)

V(u,v) amplitude V(u,v) phase T(l,m)

Inner and Outer (u,v) Boundaries



snapshot of uv coverage





one antenna 
pair - antennas 
moved over 
time!

can get uv coverage with just 2 antennas!



2D high-resolution map with 2 antennas

atomic 
hydrogen



2D high-resolution map with 2 antennas

overplotted on

optical emission



sensitivity of an interferometer

large number of antennas na  —> S ~ 1/na 


as in the case of single dish: sqrt-dependence on 

frequency width and integration time



interferometry vs. single dish

• 100-m baseline is a lot cheaper than building a 
100-m antenna

• Capability for reconfigurable spatial and spectral 
resolution 

• Lots of things are better when your data 
integrates down to zero 

• Get multi-pixel images with (b/D)^2 pixels 

• get positions of sources with subarcsec position 
(tracking errors of telescopes much bigger)

pros



interferometry vs. single dish

• 100-m baseline doesn’t have the sensitivity of a 
100-m single dish 

• Can’t use incoherent detectors (e.g., bolometers) 

• Data processing tends to be much more complex  
(both in realtime and offline) 

• Interferometers can’t recover very largest spatial  
scales (roughly limited to primary beam size) 

cons



How do we go from the measurement of the visibility function 
to images of the sky? 

basic imaging



• sample Fourier domain at discrete points

• radio astronomy jargon: 
    the “dirty image” is the true image convolved with the “dirty beam” 

• Fourier transform sampled visibility function

• apply the convolution theorem

    where the Fourier transform of the sampling pattern
    is the “point spread function” or “synthesized beam” or “dirty beam”

Formal Description of Imaging

I I

I



x

=

ideal case — V(u,v) uv coverage (S(u,v))

measured visibilities — VM(u,v)

uv plane only sampled at discrete points



snapshot of uv coverage



convolution with Dirty Beam



Jy
/p

ix
el

disk
+ 

central source

compact blob
(0.25x disk flux)

Example model sky brightness



S(u,v) s(l,m)
“dirty beam”

T(l,m) TD(l,m)
“dirty image”

=

Dirty beam and dirty image



Fast Fourier Transform (FFT) is used to compute the Fourier integral
• Direct computation by simple summation is slow

• must compute sin and cos functions directly for prescribed 
combinations of visibilities: O(N4) for N2 image cells

• can be managed computationally for modest values of N 
• but generally not practical for most modern imaging applications

• FFT algorithm 
• much faster than simple summation: O(NlogN)
• but speed does not come for free

• FFT requires data on a regularly spaced grid… and aperture synthesis 
does not provide V(u,v) samples on a regularly spaced grid

• also must pay attention to aliasing effects due to periodic form

Fast Fourier Transform



Computing the Dirty Image

Radio Astronomy - 5214RAAS6Y

• “Fourier Transform”
– Use Fast Fourier Transform (FFT) algorithm

– Compute scales as  ~O(NlogN) for (N x N) image
– FFT requires data on a regularly spaced grid

– Radio arrays sample V(u,v) on irregular grids, so.....

• “Gridding”
– Used to resample V(u,v) for FFT

– Convolutional gridding used to resample VM(u,v)
– Gridding function affects resulting dirty image

• “Weighting”
– Weighting function Wk can be chosen

 to modify the side lobes
– Different weights ⟹ different B(x,y)

– Can “tune” for resolution or sensitivity
B(x, y) =

P
k Wkcos(ukl + vkm)P

k Wk

Dirty beam is a weighted sum of 
the measured Fourier components

Compute time

The Fourier transform is a computationally expensive 
procedure…goes as N*N for N samples.
In practice we use a faster algorithm called the Fast 
Fourier Transform (FFT) that scales as N* log N.
To use this algorithm, we must sample the V(u,v) 
data onto a regularly spaced grid.
The resampling or regridding process can also be 
computationally expensive.
We can control the properties of the beam by 
introducing the concept of “weights”.
Di!erent weighting schemes allow us to control 
which baselines contribute and by how much.

Fast Fourier Transform: Speed



FFT: the need for gridding



Gridding is used to resample V(u,v) onto a regular (u,v) grid to use FFT 
• conventional approach is to use convolution
• (u,v) cell size ≈ 0.5 x D, where D = antenna diameter

• prolate spheroidal functions are popular “gridding convolution functions”
• compact in (u,v) plane: minimize smoothing, allow efficient gridding
• drops to near zero at image edges, suppresses aliasing

• other gridding steps may include
   functions that apply primary beam weighting and offsets (“mosaicking”)
   functions that apply wide-field phase shifts (“W projection”)
   functions that correct for primary beam differences (“A projection”)

FFT: the need for gridding

 I



image size
• natural choice is often full primary beam A(l,m)
• e.g. SMA at 870 μm, 6 m antennas → image size 2 x 35 arcsec
• if there are strong sources in A(l,m) sidelobes, then the FFT will alias them 

into the image → make larger image (or image outlier fields)

pixel size
• satisfy Nyquist-Shannon sampling theorem for longest baselines

• in practice, use 3 to 5 pixels across dirty beam main lobe to aid deconvolution 
process

• e.g. SMA at 870 μm, baselines to 500 m → pixel size < 0.1 arcsec

gridding: image size and pixel size



grids in UV space vs RA / DEC

u,v l,m (RA/DEC)

pixel size —> image size

and vice versa!!!



• We can change the angular response of the interferometer by adding 
additional samples of V(u,v); this requires additional observing time

• Another way is to introduce a weighting function, W(u,v), into the 
visibility gridding process
• W(u,v) modifies the sampling function: S(u,v) → S(u,v)W(u,v)
• changes the dirty beam shape

• W(u,v) can be used to bring out features on different angular scales from 
the same samples of V(u,v)

visibility weighting schemes



W(u,v) = 1/𝝈2 in occupied cells (where 𝝈  is visibility noise)

• advantages
• maximize point source sensitivity
• lowest rms noise in image

• disadvantages
• usually many short baselines          
→ lower angular resolution

• many sample density variations  → 
more structure in dirty beam 

Gaussian fit to central core

0.59x0.50 arcsec

Natural Weighting



W(u,v) inversely proportional to local density of samples;
weight for occupied cell = constant

• advantages
• fills (u,v) plane more uniformly     
→ less structure in dirty beam

• more weight to long baselines      
→ higher angular resolution

• disadvantages
• down weights some data                   
→ higher rms noise

• can be trouble with sparse (u,v) 
coverage since cells with few 
samples have same weight as 
cells with many

Gaussian fit to central core

0.35x0.30 arcsec

Uniform Weighting



variant on uniform weighting that avoids giving too much weight to 
cells with low natural weight
• software implementations differ
• e.g. 

        SN is cell natural weight
        Sthresh is a threshold parameter
      high Stresh -> NA, low Stresh -> UN

• advantages
• parameter for continuous variation 

between best point source sensitivity 
and highest angular resolution

• usually can obtain most of natural 
weight sensitivity at the same time as  
most of uniform weight resolution (!)

Gaussian fit to central core

0.40x0.34 arcsec

Robust (“Briggs”) Weighting



apodize (u,v) sampling by a Gaussian function

          t is an adjustable tapering parameter

• like convolving image by a Gaussian
• advantages

• less weight to long baselines
 → lower angular resolution that 
      can improve sensitivity to     
      extended structure

• disadvantages
• higher noise per beam
• limits to usefulness as more and 

more data are down weighted

Gaussian fit to central core

1.5x1.5 arcsec

(natural weight + taper)

Tapering



• natural: equal weight to all visibilities → lowest noise 
• uniform: equal weight for filled (u,v) cells → higher noise
• robust: continuous variation between natural and uniform
• taper: lower resolution but improved brightness temperature sensitivity 

natural
0.59x0.50

ΔS = 1.0 mJy

uniform
0.35x0.30

ΔS = 2.1 mJy

robust=0
0.40x0.34

ΔS = 1.3 mJy

natural + taper
1.5x1.5

ΔS = 1.4 mJy

robust=0 + taper
0.59x0.50

ΔS = 1.2 mJy

Weighting Schemes and Noise



Example: WSRT



Example: JVLA



• imaging parameters provide a lot of freedom
• appropriate choices depend on science goals

natural robust uniform

lower angular resolution

best point source sensitivity

worse sidelobe structure

highest angular resolution

worse point source sensitivity

better sidelobe structure

+ taper to
improve sensitivity to extended emission, reduce dirty beam sidelobe 
structure, match resolution from different observations, … 

 

Visibility Weighting Scheme Summary


