Press Releases

Teaser 1536583030

Bringing the building blocks of life down to Earth, from space

October 02, 2018
Astronomers from McMaster University and the Max Planck Institute for Astronomy have completed calculations that lead to a consistent scenario for the emergence of life on Earth, based on astronomical, geological, chemical and biological models. In this scenario, life forms a mere few hundred million years after Earth’s surface was cool enough for liquid water; the essential building blocks for life were formed in space during the formation of the solar system, and delivered to warm little ponds on Earth by meteorites. The new results have been published in the Proceedings of the US National Academy of Sciences. [more]
Teaser 1536303227

Detecting the boiling atmosphere of the hottest known exoplanet

July 02, 2018
Astronomers have found that the atmosphere of the hottest known exoplanet, the hot Jupiter-like planet KELT-9b, is "boiling off," with the escaping gas being captured by the host star. Using the CARMENES instrument at Calar Alto Observatory, Fei Yan and Thomas Henning of the Max Planck Institute for Astronomy in Heidelberg were able to detect the escaping hydrogen atmosphere of the planet. Their observations indicate a spread-out hydrogen envelope that is being pulled towards the host star.  [more]
Teaser 1536302892

Astronomers Witness the Birth of a Planet

July 02, 2018
Scientists from the Max Planck Institute for Astronomy (MPIA) in Heidelberg and the SPHERE instrument consortium at the Very Large Telescope of the European Southern Observatory (ESO) in Chile have discovered and characterised an extremely young exoplanet in a state of its formation. This gas giant with the designation PDS 70 b, with a mass equivalent to several Jupiters, was detected orbiting the star PDS 70 within a gap of its protoplanetary disk. This means that PDS 70 b is still in the vicinity of its birth place and likely still accumulating material. The observations provide a unique opportunity to test models of planet formation, and to learn about the early history of planetary systems, including our own solar system. [more]
Teaser 1487602072

Probing the three-dimensional structure of a protoplanetary disk

February 07, 2017
Astronomers have detected three-dimensional structures in the protoplanetary disk around the young star TW Hydrae. Their pioneering reconstruction uses both the light reflected by dust and light emitted by certain gas molecules to reconstruct the disk’s physical structure – a step forward from previous images of such disks that could not distinguish density variations from chemical or thermodynamic patterns. The pattern, a ring-shaped gap, could either indicate the presence of a planet or instabilities that could form a planet. [more]
Teaser 1487156572

Witnessing the wild phase of star formation

February 05, 2016
Have you ever seen a stellar embryo? A research team that includes an MPIA astronomer has inspected the birth places of stars: the FU Orionis objects, a class of very young stellar objects. These protostars are surrounded by large asymmetrical disks, indicating a short, violent episode during the early formation of the star. By employing the 8m Subaru Telescope on the summit of Mauna Kea on Hawaii, four of those disks have now been imaged with extreme resolution, thereby allowing the astronomers to identify their structure. The results are being published in the journal 'Science Advances'. [more]
Teaser 1487156529

Ultracool disk around young star contains dusty surprises

February 03, 2016
While the circumstellar disk in question has been nicknamed "the Flying Saucer," what is most mysterious about it are not extraterrestrials, but tiny particles of cosmic dust. An unusual new measurement of the disk's dust temperature using the ALMA observatory has yielded surprisingly low values, a mere 7 degrees above absolute zero (7 K). The astronomers, including Dmitry Semenov of the Max Planck Institute for Astronomy, found that the only viable explanations involve unusual properties of the disk's dust grains. With these unusual properties, dust disks could be quite generally more massive than previously thought, with consequences for the types of planets that can be born in such disks. [more]
Teaser 1487670774

SPHERE auf der Jagd nach Exoplaneten Revolutionäres Instrument liefert erste Bilder am ESO-Very Large Telescope

June 05, 2014
Die Suche nach Planeten außerhalb unseres Sonnensystems und die Beantwortung der Fragen nach ihrer Entstehung und ihrer möglicherweise erdähnlichen Natur zählen zu den spannendsten Herausforderungen der modernen Astrophysik. Fast alle der mehr als 1000 bisher entdeckten Exoplaneten wurden jedoch nur indirekt nachgewiesen – direkte Bilder waren Mangelware. Mit SPHERE steht den Astronomen nun aber ein außergewöhnliches High-Tech-Instrument zur Verfügung, mit dem sich gezielt Aufnahmen von Exoplaneten und Staubscheiben neu entstehender Planetensysteme gewinnen lassen. Erste Bilder von SPHERE am Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) in Chile demonstrieren die enorme Leistungsfähigkeit des Instruments, das von zwölf Partnern entwickelt wurde – darunter auch das Max-Planck-Institut für Astronomie (MPIA) in Heidelberg als Co-PI-Institut. [more]
 
Go to Editor View
loading content