Kontakt

Örs H. Detre
Telefon:+49 6221 528-271
E-Mail:detre@...

Max-Planck-Institut für Astronomie, Heidelberg

Max-Planck-Institut für Astronomie

Ulrich Klaas
Telefon:+49 6221 528-355
E-Mail:klaas@...

Max-Planck-Institut für Astronomie, Heidelberg

Max-Planck-Institut für Astronomie

Markus Nielbock
Presse- und Öffentlichkeitsarbeit
Telefon:+49 6221 528-134
E-Mail:pr@...

Max-Planck-Institut für Astronomie, Heidelberg

Mobil: +49 15678 747326

Originalveröffentlichung

1.
Ö. H. Detre, T. G. Müller, U. Klaas, et al.
Herschel-PACS photometry of the five major moons of Uranus

Herschel, Uranus und seine Monde

Beobachtungen mit dem Herschel-Weltraumteleskop geben Aufschluss über die Beschaffenheit der größten Uranusmonde

14. September 2020

Vor über 230 Jahren entdeckte der Astronom Wilhelm Herschel den Planeten Uranus und zwei seiner Monde. Jetzt gelang es einer Gruppe von Astronomen unter der Leitung von Örs H. Detre vom Max-Planck-Institut für Astronomie mit dem Infrarot-Weltraumteleskop Herschel, physikalische Eigenschaften der fünf Hauptmonde des Uranus zu bestimmen. Die gemessene Infrarotstrahlung, die wegen der Erwärmung der Oberflächen durch die Sonne erzeugt wird, deutet darauf hin, dass diese Monde Zwergplaneten wie Pluto ähneln. Das Team entwickelte eine neue Analysetechnik, die die schwachen Signale der Monde neben dem mehr als tausendfach helleren Uranus sichtbar machte. Die Studie wurde heute in der Fachzeitschrift Astronomy & Astrophysics veröffentlicht.
Die Abbildungen zeigen die Stellung der fünf größten Uranusmonde und ihre Bahnen um Uranus am 12. Juli 2011 aus der Sicht des Weltraumteleskops Herschel. Links: Berechnete Positionen und Bahnen der Monde. Die linke Seite der Bahnebene weist auf uns zu. Die Größe der Objekte ist nicht maßstabsgetreu dargestellt. Rechts: Falschfarbendarstellung der Infrarothelligkeit bei einer Wellenlänge von 70 µm nach Entfernung des Signals des Planeten Uranus, gemessen mit dem PACS-Instrument des Weltraumteleskops Herschel. Die charakteristische Form der Signale, die an ein dreiblättriges Kleeblatt erinnert, ist ein Artefakt, das durch das Teleskop erzeugt wird. Bild vergrößern
Die Abbildungen zeigen die Stellung der fünf größten Uranusmonde und ihre Bahnen um Uranus am 12. Juli 2011 aus der Sicht des Weltraumteleskops Herschel. Links: Berechnete Positionen und Bahnen der Monde. Die linke Seite der Bahnebene weist auf uns zu. Die Größe der Objekte ist nicht maßstabsgetreu dargestellt. Rechts: Falschfarbendarstellung der Infrarothelligkeit bei einer Wellenlänge von 70 µm nach Entfernung des Signals des Planeten Uranus, gemessen mit dem PACS-Instrument des Weltraumteleskops Herschel. Die charakteristische Form der Signale, die an ein dreiblättriges Kleeblatt erinnert, ist ein Artefakt, das durch das Teleskop erzeugt wird. [weniger]

Zur Erforschung der Außenbereiche des Sonnensystems wurden Raumsonden wie Voyager 1 und 2, Cassini-Huygens sowie New Horizons auf lange Reisen geschickt. Nun zeigt eine deutsch-ungarische Forschungsgruppe, angeführt von Örs H. Detre vom Max-Planck-Institut für Astronomie (MPIA) in Heidelberg, dass mit entsprechender Technik und Einfallsreichtum interessante Ergebnisse auch mit Beobachtungen aus der Ferne erzielt werden können.

Die Wissenschaftler nutzten Daten des zwischen 2009 und 2013 eingesetzten Infrarot-Weltraumteleskops Herschel, an dessen Entwicklung und Betrieb das MPIA ebenfalls maßgeblich beteiligt war. Im Vergleich zu den Vorgängern, die einen ähnlichen Spektralbereich abdeckten, waren die Beobachtungen dieses Teleskops deutlich schärfer. Es wurde nach dem Astronomen Wilhelm Herschel benannt, der im Jahr 1800 die Infrarotstrahlung fand. Einige Jahre zuvor entdeckte er zudem den Planeten Uranus und zwei seiner Monde (Titania und Oberon), die nun zusammen mit drei weiteren Monden (Miranda, Ariel und Umbriel) näher erforscht wurden.

Die Entdeckung der Monde in den Herscheldaten war ein Zufall

Eigentlich haben wir die Beobachtungen durchgeführt, um den Einfluss von sehr hellen Infrarotquellen wie Uranus auf den Kameradetektor zu messen“, erläutert der Mitautor Ulrich Klaas, der die Arbeitsgruppe der PACS-Kamera des Herschel-Weltraumteleskops am MPIA leitete, mit der die Aufnahmen gemacht wurden. „Die Monde entdeckten wir nur zufällig als zusätzliche Knoten in dem extrem hellen Signal des Planeten.“ Die PACS-Kamera, die federführend am Max-Planck-Institut für extraterrestrische Physik (MPE) in Garching entwickelt wurde, war empfindlich für Wellenlängen zwischen 70 und 160 µm. Das ist mehr als hundert Mal größer als die Wellenlänge des sichtbaren Lichts. Darum sind die Bilder des ähnlich großen Weltraumteleskops Hubble auch etwa hundert Mal schärfer.

Kalte Objekte strahlen in diesem Spektralbereich sehr hell, wie beispielsweise Uranus und seine fünf Hauptmonde, die – von der Sonne erwärmt – Temperaturen zwischen rund 60 und 80 K (-213 bis -193 °C) erreichen.

Aufnahmen der fünf größten Uranusmonde Miranda, Ariel, Umbriel, Titania und Oberon. Die Raumsonde Voyager 2 schoss die Bilder am 24. Januar 1986 während eines Vorbeiflugs. Die Durchmesser der Monde sind maßstabsgerecht wiedergegeben. Bild vergrößern
Aufnahmen der fünf größten Uranusmonde Miranda, Ariel, Umbriel, Titania und Oberon. Die Raumsonde Voyager 2 schoss die Bilder am 24. Januar 1986 während eines Vorbeiflugs. Die Durchmesser der Monde sind maßstabsgerecht wiedergegeben. [weniger]

Der Zeitpunkt der Beobachtung war ebenfalls ein Glücksfall“, führt Thomas Müller vom MPE aus. Die Rotationsachse des Uranus und damit auch die Bahnebene der Monde ist ungewöhnlich stark gegen ihre Umlaufbahn um die Sonne geneigt. Während Uranus über mehrere Jahrzehnte um die Sonne kreist, wird hauptsächlich entweder die nördliche oder die südliche Halbkugel von der Sonne beleuchtet. „Während der Beobachtungen war die Stellung jedoch so günstig, dass die Äquatorregionen von der Sonneneinstrahlung profitierten. Dadurch konnten wir messen, wie gut sich die Wärme in einer Oberfläche hält, während sie sich durch die Rotation des Monds auf die Nachtseite dreht. Daraus haben wir einiges über die Beschaffenheit des Materials gelernt“, erklärt Müller, der die Modelle für diese Studie berechnet hat. Daraus leitete er thermische und physikalische Eigenschaften der Monde ab.

Als die Raumsonde Voyager 2 im Jahr 1986 am Uranus vorbeiflog, war die Stellung deutlich ungünstiger. Die Messinstrumente konnten nur die Südpolregionen von Uranus und den Monden erfassen.

Die Monde ähneln den Zwergplaneten am Rande des Sonnensystems

Müller fand, dass diese Oberflächen die Wärme unerwartet gut speichern und sich nur vergleichsweise langsam abkühlen. Dieses Verhalten kennen Astronomen von kompakten Objekten, die eine raue, eisige Oberfläche besitzen. Daher gehen die Wissenschaftler davon aus, dass es sich bei diesen Monden um Himmelskörper handelt, die den Zwergplaneten am Rande des Sonnensystems ähneln, wie beispielsweise Pluto oder Haumea. Unabhängige Studien von einigen äußeren, irregulären Uranusmonden, die ebenfalls auf Beobachtungen mit PACS/Herschel beruhen, deuten dagegen bei ihnen auf andere thermische Eigenschaften hin. Diese Monde zeigen Merkmale der kleineren und locker gebundenen Transneptunischen Objekte, die sich in einer Zone jenseits des Planeten Neptun aufhalten. „Dies würde auch zu den Spekulationen über den Ursprung der irregulären Monde passen“, ergänzt Müller. „Aufgrund ihrer exotischen Bahnen nimmt man an, dass sie erst zu einem späteren Zeitpunkt vom Uranussystem eingefangen wurden.

Beinahe wären die fünf Hauptmonde jedoch übersehen worden. Insbesondere sehr helle Objekte wie Uranus erzeugen in den Daten von PACS/Herschel starke Artefakte, die dazu führen, dass ein Teil des Infrarotlichts in den Aufnahmen über große Bereiche verteilt wird. Bei leuchtschwachen Himmelsobjekten fällt das kaum auf. Bei Uranus jedoch umso mehr. „Die zwischen 500 und 7400-mal schwächeren Monde befinden sich in solch einem geringen Abstand vom Uranus, dass sie mit den ähnlich hellen Artefakten verschmelzen. Lediglich die hellsten Monde, Titania und Oberon, stechen ein wenig aus dem umgebenden Schein heraus“, erläutert Mitautor Gábor Marton vom Konkoly Observatorium in Budapest die Problematik.

Eine ausgefeilte Datenverarbeitung macht das zunächst Unsichtbare sichtbar

Diese Bilder erläutern, wie die Uranusmonde aus den Daten isoliert wurden. Links: Das Originalbild enthält die Infrarotsignale von Uranus und seinen fünf Hauptmonden, gemessen bei einer Wellenlänge von 70 µm. Uranus ist einige tausend Mal heller als ein einzelner Mond. Sein Bild ist durch störende Einflüsse von Teleskop und Kamera von Bildartefakten dominiert. Titania und Oberon sind gerade noch erkennbar. Mitte: Aus den Daten erstellten die Forscher durch eine aufwendige Prozedur ein Modell für die Helligkeitsverteilung des Planeten Uranus. Dieses wird vom Ausgangsbild abgezogen. Rechts: Nach der Subtraktion verbleiben die Signale der Monde. Die nicht ganz perfekte Filterung beeinträchtigt das Bild an der Position von Uranus. Bild vergrößern
Diese Bilder erläutern, wie die Uranusmonde aus den Daten isoliert wurden. Links: Das Originalbild enthält die Infrarotsignale von Uranus und seinen fünf Hauptmonden, gemessen bei einer Wellenlänge von 70 µm. Uranus ist einige tausend Mal heller als ein einzelner Mond. Sein Bild ist durch störende Einflüsse von Teleskop und Kamera von Bildartefakten dominiert. Titania und Oberon sind gerade noch erkennbar. Mitte: Aus den Daten erstellten die Forscher durch eine aufwendige Prozedur ein Modell für die Helligkeitsverteilung des Planeten Uranus. Dieses wird vom Ausgangsbild abgezogen. Rechts: Nach der Subtraktion verbleiben die Signale der Monde. Die nicht ganz perfekte Filterung beeinträchtigt das Bild an der Position von Uranus. [weniger]

Diese zufällige Entdeckung spornte Örs H. Detre dazu an, die Monde besser sichtbar zu machen, damit ihre Helligkeit zuverlässig gemessen werden konnte. „In ähnlichen Fällen, wie bei der Suche nach Exoplaneten, verwenden wir Koronografen, um ihren hellen Zentralstern zu verdecken“, erläutert Detre. „Das Herschel-Teleskop verfügte über ein solches Gerät nicht. Stattdessen machten wir uns die hervorragende photometrische Stabilität des PACS-Instruments zunutze.“ Gestützt auf diese Stabilität und nach Berechnung der genauen Positionen der Monde zum Zeitpunkt der Beobachtungen entwickelte er eine Methode, die es ihm ermöglichte, Uranus aus den Daten zu entfernen. „Wir waren alle überrascht, als auf den Bildern deutlich vier Monde erschienen und wir sogar Miranda, den kleinsten und innersten der fünf größten Uranusmonde nachweisen konnten“, so Detre abschließend.

Das Ergebnis zeigt, dass wir nicht immer aufwendige Raumfahrtmissionen zu den Planeten benötigen, um neue Erkenntnisse über das Sonnensystem zu erlangen“, gibt Mitautor Hendrik Linz vom MPIA zu bedenken. „Zudem könnte der neue Algorithmus auf weitere Beobachtungen angewendet werden, die in großer Zahl im elektronischen Datenarchiv der Europäischen Weltraumagentur ESA gesammelt wurden. Wer weiß, welche Überraschung dort noch auf uns wartet?

Hintergrundinformationen

Herschel ist ein Weltraumobservatorium der Europäischen Weltraumagentur ESA mit wissenschaftlichen Instrumenten, die von Konsortien unter europäischer Führung zur Verfügung gestellt werden und an denen die NASA maßgeblich beteiligt ist.

MN

 
loading content
Zur Redakteursansicht