Contacts

Dr. Markus Nielbock
Press and public relations officer
Telefon:+49 6221 528-134
E-Mail:pr@...

Max Planck Institute for Astronomy, Heidelberg

Max Planck Institute for Astronomy

Prof. Dr. Henrik Beuther
Telefon:+49 6221 528-447

Max Planck Institute for Astronomy, Heidelberg

Max Planck Institute for Astronomy

Original publication

1.
R. Shanahan et al.
Strong excess Faraday rotation on the Inside of the Sagittarius spiral arm

Links

Hot gas feeds spiral arms of the Milky Way

Magnetic fields point the way to the material that sustains star formation in the Milky Way

14. Januar 2020

An international research team, with significant participation of astronomers from the Max Planck Institute for Astronomy (MPIA), has gained important insights into the origin of the material in the spiral arms of the Milky Way, from which new stars are ultimately formed. By analysing properties of the galactic magnetic field, they were able to show that the dilute so-called Warm Ionized Medium (WIM), in which the Milky Way is embedded, condenses near a spiral arm. While gradually cooling, it serves as a supply of the colder material of gas and dust that feeds star formation.
Falschfarbendarstellung der Radioemission in der Milchstraße aus der THOR-Durchmusterung bei einer Wellenlänge von etwa 21 cm. Der jeweils obere Streifen (1.4 GHz continuum) zeigt die Emission von unterschiedlichen Quellen, während die unteren Bänder die Verteilung von atomarem Wasserstoff wiedergibt. Bild vergrößern
Falschfarbendarstellung der Radioemission in der Milchstraße aus der THOR-Durchmusterung bei einer Wellenlänge von etwa 21 cm. Der jeweils obere Streifen (1.4 GHz continuum) zeigt die Emission von unterschiedlichen Quellen, während die unteren Bänder die Verteilung von atomarem Wasserstoff wiedergibt. [weniger]

The Milky Way is a spiral galaxy, a disc-shaped island of stars in the cosmos, in which most bright and young stars cluster in spiral arms. There they form from the dense Interstellar Medium (ISM), which consists of gas (especially hydrogen) and dust (microscopic grains with high abundances of carbon and silicon). In order for new stars to form continuously, material must be constantly flushed into the spiral arms to replenish the supply of gas and dust.

A group of astronomers from the University of Calgary in Canada, the Max Planck Institute for Astronomy (MPIA) in Heidelberg and other research institutions have now been able to show that the supply comes from a much hotter component of the ISM, which usually envelops the entire Milky Way. This Warm Ionized Medium (WIM) has an average temperature of 10,000 degrees. High-energy radiation from hot stars causes the hydrogen gas of the WIM to be largely ionised. The results suggest that the WIM condenses in a narrow area near a spiral arm and gradually flows into it while cooling.

Ausschnitt der THOR-Durchmusterung in der Nähe des Sagittariusarms der Milchstraße. Die Kreuze zeigen die Position der Quellen mit polarisierter Radiostrahlung an. Ihre Größe entspricht der Stärke des Effekts der Faradayrotation. Die stärksten Signale wurden in einem eher unscheinbaren Streifen rechts von den hellen Objekten in der Mitte des Bildes gemessen. Die starken Radioquellen signalisieren die Lage des Spiralarms. Bild vergrößern
Ausschnitt der THOR-Durchmusterung in der Nähe des Sagittariusarms der Milchstraße. Die Kreuze zeigen die Position der Quellen mit polarisierter Radiostrahlung an. Ihre Größe entspricht der Stärke des Effekts der Faradayrotation. Die stärksten Signale wurden in einem eher unscheinbaren Streifen rechts von den hellen Objekten in der Mitte des Bildes gemessen. Die starken Radioquellen signalisieren die Lage des Spiralarms. [weniger]

The scientists discovered the dense WIM by measuring the so-called Faraday rotation, an effect named after the English physicist Michael Faraday. This involves changing the orientation of linearly polarised radio emissions when they pass through a plasma (ionised gas) traversed by a magnetic field. One speaks of polarised radiation when the electric field oscillates in only one plane. Ordinary light is not polarised. The magnitude of the change in polarisation also depends on the observed wavelength.

In the present study, recently published in The Astrophysical Journal Letters, astronomers were able to detect an unusually strong signal in a rather inconspicuous area of the Milky Way, which is located directly on the side of the Sagittarius arm of the Milky Way facing the Galactic Centre. The spiral arm itself stands out in the imaging data due to strong radio emission generated by embedded hot stars and supernova remnants. However, the astronomers found the strongest shift in polarisation outside this prominent zone. They conclude from this that the increased Faraday rotation does not originate within this active part of the spiral arm. Instead, it originates from condensed WIM, which, like the magnetic field, belongs to a less obvious component of the spiral arm.

Illustration ausgewählter Blickrichtungen innerhalb der Milchstraße, der in etwa den untersuchten Bereich abdeckt. Der Stern gibt den Ort der Erde an. Der grüne Bogen zeichnet die vermutete Lage des verdichteten Warmen Interstellaren Mediums (WIM) an. Die weiße Sichtlinie, die diesen Bereich entlang der längsten Strecke durchstößt, entspricht der Position mit dem stärksten Effekt der Faradayrotation. Die orange Sichtlinie passiert das WIM auf kürzeren Strecken und beobachtet somit einen schwächeren Effekt. Die geringsten Beiträge liefern die Sichtlinien links außerhalb (grün) und innerhalb des Spiralarms (gelb). Bild vergrößern
Illustration ausgewählter Blickrichtungen innerhalb der Milchstraße, der in etwa den untersuchten Bereich abdeckt. Der Stern gibt den Ort der Erde an. Der grüne Bogen zeichnet die vermutete Lage des verdichteten Warmen Interstellaren Mediums (WIM) an. Die weiße Sichtlinie, die diesen Bereich entlang der längsten Strecke durchstößt, entspricht der Position mit dem stärksten Effekt der Faradayrotation. Die orange Sichtlinie passiert das WIM auf kürzeren Strecken und beobachtet somit einen schwächeren Effekt. Die geringsten Beiträge liefern die Sichtlinien links außerhalb (grün) und innerhalb des Spiralarms (gelb). [weniger]

The analysis is based on the THOR survey (The HI/OH Recombination Line Survey of the Milky Way), which has been conducted at MPIA for several years now and in which a large area of the Milky Way is observed at several radio wavelengths. Polarised radio sources such as distant quasars or neutron stars serve as “probes” for determining the Faraday rotation. This allows astronomers not only to detect the otherwise difficult to measure magnetic fields in the Milky Way, but also to study the structure and properties of the hot gas. “We were very surprised by the strong signal in a rather quiet area of the Milky Way,” says Henrik Beuther from MPIA, who is leading the THOR project. “These results show us that there is still a lot to be discovered in studying the structure and dynamics of the Milky Way.”

Collaboration

This study was made possible by a cooperation of the following research institutions:

Department of Physics and Astronomy, The University of Calgary, Canada; Max Planck Institute for Astronomy, Heidelberg, Germany; Department of Physics and Astronomy, West Virginia University, USA; Green Bank Observatory, USA; Center for Gravitational Waves and Cosmology, West Virginia University, USA; Argelander Institute for Astronomy, University of Bonn, Germany; Centre for Astronomy, University of Heidelberg, Germany; Jet Propulsion Laboratory, California Institute of Technology, USA; Interdisciplinary Centre for Scientific Computing, University of Heidelberg, Germany; Research School of Astronomy and Astrophysics, The Australian National University, Canberra, Australia; Max Planck Institute for Radio Astronomy, Bonn, Germany; Jodrell Bank Centre for Astrophysics, The University of Manchester, United Kingdom

 
loading content
Zur Redakteursansicht